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Abstract. This paper describes a fast software implementation of the
elliptic curve version of DSA, as specified in draft standard documents
ANSI X9.62 and IEEE P1363. We did the implementations for the fields
GF(2"), using a standard basis, and GF(p). We discuss various design
decisions that have to be made for the operations in the underlying field
and the operations on elliptic curve points. In particular, we conclude
that it is a good idea to use projective coordinates for GF(p), but not
for GF(2"). We also extend a number of exponentiation algorithms, that
result in considerable speed gains for DSA, to ECDSA, using a signed
binary representation. Finally, we present timing results for both types
of fields on a PPro-200 based PC, for a C/C++ implementation with
small assembly-language optimizations, and make comparisons to other
signature algorithms, such as RSA and DSA. We conclude that for prac-
tical sizes of fields and moduli, GF(p) is roughly twice as fast as GF(2").
Furthermore, the speed of ECDSA over GF(p) is similar to the speed of
DSA; it is approximately 7 times faster than RSA for signing, and 40
times slower than RSA for verification (with public exponent 3).

1 Introduction

Elliptic curve public key cryptosystems (ECPKCs) were proposed independently
by Victor Miller [M85a] and Neil Koblitz [K87] in the mid-eighties, but it is only
recently that they are starting to be used in commercial systems. See [M93] for
an introduction to practical aspects of public key cryptosystems based on elliptic
curves. The elliptic curve discrete logarithm problem (ECDLP) has been studied
for several years now, and no significant weaknesses have been found, although
some special instances of it have been broken [MOV93], [S97a].
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A number of publications discuss software implementations of ECPKCs.
[HMV92] is probably the earliest, and uses the field GF(2"), where the field
elements are represented in an optimal normal basis [MOVW88] or as polynomi-
als over the subfield GF(28). [SOOS95] uses a standard basis for GF(2"), where
the irreducible field polynomial is a trinomial. [DBV+96] and [GP97] represent
the elements of GF(2") as polynomials over the subfield GF(2'6). Few compar-
isons of ECPKCs to other public key cryptosystems are available; only [SOOS95]
compares Diffie-Hellman key agreement using elliptic curves over GF(2") to its
counterpart using large integer numbers, and concludes that the elliptic curve-
based version is several times faster, the exact ratio depending on the platform
and the amount of optimization used. As far as we know, [MOC97] is the only
implementation of ECPKCs over GF(p) that has been reported, and no compar-
isons have been made between elliptic curves over GF(2") and over GF(p).

In this paper, we present an implementation of a signature scheme based on
elliptic curves. The signature scheme used is elliptic curve DSA (ECDSA), as
defined in the ANSI X9.62 draft standard and the IEEE P1363 draft standard.
We consider curves both over GF(2") and GF(p), in each case using curves that
are specified in ANSI X9.62.

The remaining part of this paper is organized as follows. Section 2 gives
more background on elliptic curves, elliptic curve public key cryptosystems, and
related standards. Sections 3 and 4 discuss implementation considerations that
are specific to GF(p) and GF(2") respectively. Section 5 discusses issues related
to operations on elliptic curve points, operations that are common to both GF(p)
and GF(2"). The overall timing results and comparisons to other public key
cryptosystems appear in Section 6. A number of topics for further work and
research are given in Section 7.

2 Elliptic curve cryptosystems

Elliptic curves have been studied by mathematicians since long before they were
used in cryptography. Apart from their use for public key cryptosystems, they
formed the basis of the elliptic curve factoring method [L87] and of several
methods for primality proving, e.g. [AM93]. Recently, they were an important
tool in the proof of Fermat’s last theorem.

An elliptic curve is the set of solutions of a Weierstrass equation over a
mathematical structure, usually a field. For cryptographic purposes, this field
is mostly a finite field of the form either GF(p) or GF(2"). In these particular
cases, the Weierstrass equation can be reduced to the following simpler forms:

y? = 2® + ax + b over GF(p), with a,b € GF(p) and 4a® + 27b% # 0 ;
y* 4+ 2y = 2 + az? + b over GF(2"), with a,b € GF(2") and b # 0 .

If the formal point at infinity O is added to the set of solutions, an addition
operation can be defined, and this turns the set into a group. The addition
operation is defined as follows. Let P, = (x1,¥1) and Py = (22, y2) be two points
on the elliptic curve, neither the point at infinity.
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Over GF(p): The inverse of a point Py is —P; = (z1, —y1). If P» # — Py, then
P| + Py = Py = (3,y3), with

3=\ -1 — 122 ,
y3:>\(x1—x3)—y1 )
and

Y2701 o PL#P, |
= T2 — T
373 +a
2y
Over GF(2™): The inverse of a point Py is —P; = (z1,y1 + x1). If P» # — P,
then Pl + P2 = P3 = ($3,y3) with

itP=P.

x3:A2+)\+x1+w2+a ,
ys = ANz1 +23) + 23+ Y1,

and
wifH#pz ’
A= T2t@
$1+y—11fP1=P2 .
1

For both fields we have the following formulas for the cases where the point
at infinity is involved: P, + (—P1) = 0,0+ P, =P, +0O =P, and O+ 0 = O.

The basic assumption of elliptic curve public key cryptosystems is that the
discrete logarithm problem in the elliptic curve group (ECDLP) is a hard prob-
lem. Hence all public key cryptographic primitives based on the discrete log-
arithm over the integers modulo a prime can be translated to an equivalent
primitive based on the ECDLP. Moreover, the ECDLP is currently considered
to be harder than the integer DLP. Therefore, the sizes of fields, keys, and other
parameters can be chosen considerably smaller for elliptic curve based systems;
typical field sizes are between 160 and 200 bits. This can be especially advanta-
geous in systems where resources such as memory and/or computing power are
limited, but even where this is not the case, ECPKCs turn out to be competitive
to other public key cryptosystems such as RSA and DSA.

An important condition for the practical usefulness of ECPKCs is that we can
efficiently implement the point multiplication operation, which is the repeated
group operation, and the equivalent of exponentiation in systems based on the
discrete logarithm problem for integers modulo a prime. As became clear from
the definition above, the elliptic curve group operation can be expressed in terms
of a number of operations in the underlying field. For all cases where the point
at infinity is not involved, we see that for the calculation of one group operation,
we need 1 field inversion, 2 general field multiplications, 1 or 2 field squarings, a
number of field additions or subtractions, and a number of multiplications by a
fixed small constant. For the case GF(2"), we will see that only field inversions
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and multiplications need to be counted, since the other operations are much
faster and their share in the overall time for a group operation is negligible. For
GF(p), the time needed for a squaring is of the same order of magnitude as the
time needed for a multiplication, so we have to take into account the squarings
as well; the number of squarings is 1 for a general point addition and 2 for a
point doubling (i.e. the case where P; = P).

An important design decision is how the field elements are represented. We
discuss this issue for each field separately in Sections 3 and 4.

A number of standardization bodies have started initiatives to standard-
ize ECPKCs, among them are ANSI, IEEE, ISO, IETF. Most standards are
still drafts, but are expected to be approved in the near future. The speci-
fied schemes include signature schemes, encryption schemes, and key agreement
schemes. ECDSA is specified in ANSI X9.62 and IEEE P1363; both descriptions
are almost identical. We based our implementation on the most recent draft
documents we had available, i.e. [A97] and [197].

Both [A97] and [197] provide the option to apply point compression to points
on an elliptic curve, in order to reduce storage requirements or bandwidth. The
basic idea is that specifying the two coordinates of a point is unnecessary, since
the fact that they satisfy the curve equation provides redundancy. More specifi-
cally, if the z-coordinate is known, at most two values of y are possible, and they
can be computed by solving a quadratic equation. One extra bit of information
allows to distinguish between the two values of y; this means that an elliptic
curve point needs only slightly more storage space than an element of the un-
derlying field. We do not discuss point compression in the rest of the paper since
the cost is small compared to the cost of the overall signing and verification
operations.

3 Elliptic curves over GF(p)

In this section we describe implementation issues that are specific to curves
over the field GF(p). The issues that apply to both GF(p) and GF(2™) will be
discussed in Section 5.

3.1 Representation of field elements

For GF(p), the most obvious way to represent the elements is as numbers in the
range [0,p — 1], where each residue class is represented by its member in that
range. Yet, it is not the only way. Since we will be using modular multiplica-
tions and squarings, we might consider representing the elements as Montgomery
residues [M85b]. This only influences the inversion operation, since the inverse of
a Montgomery residue is not the Montgomery residue of the inverse, i.e. the in-
verse operation does not commute with taking the Montgomery residue. Hence
an extra transformation is needed, but this problem can be alleviated by us-
ing the algorithm described in [K95a] that computes the Montgomery inverse.
Moreover, if projective coordinates are used (see Section 3.4), very few inverse
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operations are needed anyway. Despite all this, we decided not to use the Mont-
gomery representation for the simple reason that in our implementation the
difference in speed between Montgomery and Barrett [B87] reduction is negligi-
bly small. This also saves us the hassle of having to implement a special inverse
algorithm and converting between two representations. However, in some cases
the representation as Montgomery residues could be advantageous.

3.2 Field multiplication and squaring

For field multiplication and squaring, we started from our own implementation
in C of well-known algorithms for operations on multi-precision numbers, see e.g.
[K81]. Since standard C does not support the full capabilities of modern PCs
for integer multiplication and division (i.e. 32-bitx 32-bit—64-bit and 64-bit/32-
bit—32-bit), we used a number of small assembly language macros to make these
available. As discussed in Section 3.1, we use a Barrett-like modular reduction
algorithm.

3.3 Field inversion

In most public key cryptosystems that are not based on elliptic curves, the time
spent computing modular inverses is negligible compared to the time needed for
modular exponentiation. Therefore, in many implementations not much effort
has been spent on optimizing the modular inverse algorithm. However, in a
straightforward implementation of the equations in Section 2, every single group
operation needs to compute one modular inverse, and it turns out that this is
where most of the execution time goes. It therefore is worthwhile to give some
more thought to the optimization of this operation.

We compared a number of algorithms, mostly variants of the extended version
of Euclid’s algorithm. The best results were obtained with an algorithm that is
based on the Montgomery inverse algorithm [K95a], after speeding it up by
applying some extra heuristics and using the same assembly language macros
as for multiplication and squaring. For lack of space, we cannot discuss the
algorithm in detail here. It suffices to state that we were able to considerably
improve the inversion operation, but we still found a ratio of 23 between the
time for an inversion and a multiplication in a field with a 192-bit modulus.

3.4 Projective coordinates

With a ratio of 23 between inversion and multiplication, it is clear that the former
operation will be the major bottleneck of the implementation. Fortunately, there
are ways to circumvent this problem, and they lie in the possibility of using
different ways to specify the group operation. An alternative definition, that is
explicitly specified in the appendices to [I97], uses projective coordinates. In this
representation, the elliptic curve equation has 3 variables, and a point has 3
coordinates (z,v, 2), but any point with coordinates (A%z, A3y, A\z) for arbitrary
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A # 0 is considered equal to the former. In fact, this can be thought of as keeping
the denominator of the equations for the group operation in a separate variable,
and postponing the actual inversion operation until the z- or y-coordinates are
really needed, for instance at the end of a point multiplication.

The drawback of projective coordinates is that a group operation involves
considerably more field multiplications. In [I97], projective formulas are given
that allow a point doubling to be computed using 10 field multiplications in the
general case, and 8 if the curve parameter a is 3 less than the modulus. A point
addition requires 16 multiplications in the general case, and only 11 if one of the
points has a z-coordinate equal to 1. On the whole, assuming that an inversion
takes the time of approximately 23 multiplications, we can save roughly between
10 and 19 multiplication times per group operation.

4 Elliptic curves over GF(2™)

In this section we describe implementation issues that are specific to curves
over the field GF(2™). The issues that apply to both GF(p) and GF(2") will be
discussed in Section 5.

4.1 Representation of field elements

For GF(2"), a number of representations of the field elements are known and
each of them has its specific advantages. The most well known representation is
the standard basis representation, used for instance in [SOOS95]. Field elements
are represented as binary polynomials modulo an irreducible binary polynomial
of degree n. Standard basis implementations can be made more efficient if an
irreducible polynomial with low Hamming weight and no terms of high degree is
chosen, such as a trinomial or a pentanomial. At least one of these can be found
for any value of n.

Another well known representation uses an optimal normal basis MOV WS88].
This basis gives rise to elegant hardware implementations, but for software, our
experience is that a standard basis is more efficient.

A third representation (see e.g. [HMV92], [DBV+96] or [GP97]) represents
elements of the field as polynomials over a subfield of the form GF(2"), where r
is a divisor of n. This representation enables efficient implementations, but limits
the possible values of n to multiples of r. This is not so much an implementation
issue, since we can make r small enough that the number of possible values of n
is still sufficiently large. But the fact that these fields have some extra structure,
consisting of a fairly large subfield, could reduce the security in the sense that
the ECDLP over these fields might turn out to be easier to break.

Although there currently is no indication that the latter fields are less secure,
we wanted to avoid the risk by choosing a prime n. And since optimal normal
bases seem to be slower in software, we opted for a standard basis representa-
tion using trinomials or pentanomials. This representation is well specified in
both [A97] and [I97].
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4.2 Field multiplication and squaring

The algorithms for multiplication and squaring in a standard basis, as well as
algorithms for reduction modulo a trinomial or pentanomial, are described in
[SO0S95]. Contrary to GF(p), no assembly language was used, because most
microprocessors do not have a special instruction for multiplying binary polyno-
mials. While this may seem to result in a biased comparison between both kinds
of fields, the situation in a practical application is likely to be similar, hence our
comparisons are practically relevant.

Note that the squaring operation is much more efficient than multiplication,
because GF(2™) has characteristic two, so that all the cross-terms vanish.

4.3 Field inversion

The almost inverse algorithm [SOOS95] is the fastest known algorithm for com-
puting modular inverses of binary polynomials. With a suitable choice of the
field polynomial, the inversion time is approximately 3 times longer than the
multiplication time.

At the end of the algorithm, a Montgomery-like reduction is necessary to
convert the almost inverse to the real inverse. This reduction is fast if the irre-
ducible field polynomial has low Hamming weight and has no terms of low degree
(smaller than the word size of the processor), except for the constant term. Un-
fortunately, most of the field polynomials specified in ANSI X9.62 do have terms
of low degree. This increases the timings of the almost inverse algorithm by up
to 30%. Therefore, we conclude that the choice of polynomials in ANSI X9.62 is
rather unfortunate, and may be revised if that is practically feasible.

This problem can be circumvented by converting the field elements and el-
liptic curve points from a representation based on a standardized polynomial
to an internal representation based on a polynomial with better properties. We
did not implement the conversion yet, but we give timing results using both a
polynomial from the standard and a more suitable polynomial.

Because the ratio between field inversion and field multiplication is rather
low, the use of projective coordinates brings no benefit for GF(2™) in a standard
basis representation.

4.4 Basis Conversion

Although a single basis may be chosen for a program’s internal representation
of field elements, it is important for interoperability with other implementations
that an efficient method of converting between the chosen representation and
the others exist. This is the case for the bases already discussed; the procedure
involves finding a root (in the target basis) of the field polynomial of the orig-
inal basis. The field element in the target basis is then calculated as the linear
combination of powers of that root. Details are provided in [A97] for conver-
sion between standard and optimal normal bases. In practice, the calculation of
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the root is expensive, so the roots are tabulated and the required powers are
calculated during the first conversion.

Apart from interoperability, basis conversion is also useful from an efficiency
point of view, for example for field inversion (see Section 4.3).

5 Operations on elliptic curve points

The basic group operations can be implemented in a straightforward way in
terms of the field operations discussed in Sections 3 and 4. However, the core
operation of ECPKCs is the repeated group operation, i.e. the multiplication
of a point by an integer, and this operation deserves some more thought. It is
the equivalent of modular exponentiation for integer DLP-based systems, and is
therefore also referred to as elliptic curve exponentiation, and the multiplier is
sometimes called the exponent. We will use both terms interchangeably; we are
confident that this will not cause confusion since strictly speaking there exists
no such thing as elliptic curve exponentiation.

Many authors have discussed fast ways to do exponentiation under various
conditions; [G96] gives a concise overview. Most of these algorithms can be ex-
tended to the point multiplication in an elliptic curve group. However, the elliptic
curve group has the interesting property that the inverse of a point is extremely
efficient to compute (see Section 2). This allows for some extra optimizations
[R60]. On the other hand, exponents in an elliptic curve system are generally
much shorter than in other systems such as RSA. Some optimizations described
in the literature may only be advantageous for exponents above certain lengths,
and may not be worthwhile for elliptic curves.

In the next paragraphs, we discuss point multiplication for a number of cases
that are relevant to ECDSA. The algorithms are mostly based on known algo-
rithms for exponentiation, but we adapt them in order to make better use of
the parameters of the elliptic curve case. Before that, we will discuss some issues
related to the representation of the exponent.

5.1 Representation of exponents

The binary representation can be considered as the generic representation for
exponents, because it is the basis for the square-and-multiply algorithm. This
algorithm is discussed in [K81, p. 442] for instance, and gives an extremely simple
and relatively efficient way to find addition chains. It has been improved upon
in a number of ways depending on the context, e.g. by using windowed methods,
or precomputation, but the binary representation remains the basis of many
practical implementations.

For elliptic curve exponentiation, the binary representation can still be used,
but a signed binary representation, where each bit has a sign, seems more ap-
propriate. A negative bit is processed similarly as a positive bit, but uses the
inverse of the point, which can easily be calculated and used in the course of an
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exponentiation. It is important to note that this representation is not unique,
e.g. 10001 and 1111 both represent the number 15 (1 stands for a negative bit).

In [MO90], an algorithm is proposed to convert from a non-signed to a par-
ticular signed representation. The result has the so-called non-adjacent form
(NAF); this means that of any two adjacent bits, at least one must be zero. An
interesting property of the NAF representation is that it is unique. Also, for a
random exponent, the expected fraction of non-zero bits is 1/3, as opposed to
1/2 for a binary representation. This results in an 11% speed-up on average for
the standard square-and-multiply algorithm. As we will see, the use of the NAF
can speed up windowed techniques as well.

Although the recoding algorithm in [MO90] looks a little involved, the signed
binary NAF of a number e can be computed easily as follows: subtract e from
3e, replacing the borrow mechanism by the rule 0 — 1 = 1, and then discard the
least significant bit.

Alternative signed binary representations have been proposed in [KT92] and
[MOC97]. These representations have better properties with respect to windowed
exponentiation techniques. However, we will see that in comparing different rep-
resentations, it is important to take into account the number of precomputations.
It is an open problem what the best signed binary representation for windowed
techniques is.

To analyze the expected number of operations for a point multiplication, we
need an estimate of the expected length of a run of zeros, since this has an impact
on the expected number of additions. According to [KT92], this average length
is 4/3 for the signed binary NAF and 3/2 for the improved method they propose.
In [MOC97], an algorithm is proposed that results in an average zero-run length
of 2. The binary representation has an average zero-run length of 1 [K95b].

5.2 General point multiplication

The square-and-multiply (or double-and-add in additive notation) algorithm can
easily be extended to a double-and-add/subtract algorithm based on signed bi-
nary NAF. The expected improvement is roughly 11% [MO90].

Other algorithms, such as the sliding window technique, can be extended to
the signed binary NAF representation as well. We will first give an example for
a particular window size, and then generalize the results to arbitrary window
sizes.

With a window size w of 4 bits, the only windows that can occur are 1000,
1001, 1010, 1001, 1010, plus their counterparts with the signs of all bits reversed.
The values associated to the latter can easily be computed as the negative of
the precomputed values associated to the former. All other window values are
excluded because of the NAF property. Denoting the point to be multiplied
by P, this means that we only have to precompute and store 6P, 7P, 8P, 9P
and 10P; the other values can be obtained from these by taking the negative.
The precomputation can be done in 7 operations using the addition sequence
1,2,4,6,7,8,9,10. This can even be reduced to 5 operations if trailing zeros are
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handled such as in alg. 14.85 of [MvV97]. In this case, only 3P, 5P, 7P and 9P
need to be precomputed.

If we consider the window size w as a parameter, the average number of
operations for a complete point multiplication is

A+1—w/2

Cw) +A+2—w+ o i3 (1)

where A = |log,(k)| (denoting the exponent by k), 4/3 is the average zero-run-
length, and C(w) is the number of operations needed for the precomputation.
The expression for C'(w) for a signed binary NAF is slightly more complex than
for the binary case:

The algorithm described here was considered in [KT92], and in the same
paper, an improvement was proposed, consisting of an alternative, slightly more
complex, algorithm to convert from binary to signed binary representation. This
results in an increased average length of zero runs and a reduced number of
operations in the course of the algorithm. As an example, consider the bit string
00111100 as part of an exponent; this is replaced by 01000100 in the NAF.
With a window size of 4, two add/subtract operations are needed to handle
the NAF of this bit string, whereas the original form potentially needs one
addition, depending on the other exponent bits; hence it is better not to do the
substitution. The expected number of operations of the improved algorithm is
[KT92]:

A+1.25
w+ 1.5

When comparing the number of operations given by (1) and (2) for exponents
up to 2000 bits, we find that the latter algorithm needs in fact more operations
than the former, contrary to the conclusion in [KT92]. This is probably due to an
overestimation of the cost of precomputation C(w) in (1): because of the NAF
property, a considerable number of values do not have to be precomputed since
they cannot occur. Since the algorithm proposed in [KT92] does not produce a
NAF, we see no way to obtain comparable savings for the precomputation step.

We used the first algorithm in our implementation. The optimal window
size is 4 for exponents up to roughly 170 bits, 5 for the range 170420 bits,
6 for the range 420-1290 bits and 7 for 1290 bits up to well above 2000 bits.
Comparing to a sliding window technique based on the binary representation,
we gain approximately 2.6% for 200-bit exponents, decreasing to only 1.3% for
2000 bits.

In a recent paper [MOC97], an even better recoding algorithm is proposed,
resulting in an average zero-run length of 2. To our understanding, there is
no restriction on the values of the windows, and the number of values to be
precomputed is 2¥~! — 1, as in (2). When we calculate the expected number of
operations under these assumptions, we find that the difference with the signed
binary NAF remains under a fraction of a percent for exponent lengths up to

(A +2.75 —w) + o (2)
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over 2000 bits. In that range, there are alternating subranges for which signed
binary NAF is better than [MOC97] and vice-versa.

Note that in the estimates of the number of operations, no distinction was
made between additions and doublings. For GF(2"), this is a good approxima-
tion, since both operations are almost equally fast. However, for GF(p) with
projective coordinates, a typical doubling is 25% faster than a typical addition,
so an accurate estimate of the number of operations should make a distinction
between them. Fortunately, this distinction has very little influence on the opti-
mal window size, since the number of doublings depends only lightly on it.

5.3 ECDSA key generation and signing operation

Most of the time needed for key generation and signing is typically taken by the
multiplication of the EC group generator by a random number. The EC group
and generator are typically known ahead of time; therefore, we can afford to do
some precomputation at initialization time in order to obtain a faster signing
operation. A number of algorithms for exponentiation with a fixed generator
have been described in [BGMW92]. We use a rather simple one, which is also
described in algorithm 14.109 of [MvV97]. We denote the group generator by
P and use the additive notation. After choosing a basis b, we precompute the
products b® P for all values of 4 up to a certain bound ¢ so that all multipliers will
be smaller than b'. Then the algorithm does a point multiplication in at most
t + h — 2 group operations, where h is the maximum value of the digits in the
b-ary representation of the exponent.

To avoid doing basis conversions, we choose b = 2", which essentially results
in a windowed method with window size w. If we use a binary representation for
the exponent, h = b — 1. However, if we use the signed binary NAF, a number
of high values of the window are impossible and h is reduced to

h=2 for even w
3
2w+1 _
h = 3 for odd w .

For the curves and field sizes used for the timings, using the NAF reduces the
signature time by almost 10%.

Note that the algorithm we implemented is not the best algorithm known.
The signing time can be reduced even more using a slightly more advanced re-
coding algorithm from [BGMW92], which has h = 2¥~1. With the parameters
used for our timings, this would result in an additional 5% gain. Recently, an
algorithm was proposed [MOC97] that gives better results for elliptic curves
over GF(p). The algorithm is substantially different from the algorithms dis-
cussed in [BGMW92]; it trades point additions for doublings, which are more
efficient when projective coordinates are used (see Section 3.4).
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5.4 ECDSA verification operation

Both the DSA and the ECDSA operation require the computation of a simulta-
neous multiple point multiplication, i.e., a group element of the form ki P + ko Ps,
where P; and P, are elements of the group and k; and ks are integers. Algo-
rithm 14.88 of [MvV97] gives a way to compute this in an interleaved way, rather
than by calculating the two point multiplications separately and adding the re-
sult. If this algorithm is combined with a sliding window technique, we obtain an
algorithm that is only 20%-25% slower than a single point multiplication. The
optimal window length is 2 for exponents up to at least 500 bits. From simula-
tions, we estimate that the average length of a zero run is approximately 0.6.
The number of operations is given by a formula similar to (1).

6 Timings and comparison

We timed our implementation for a number of example curves from the current
draft of ANSI X9.62. For GF(p) we used a modulus of 192 bits. The curve
parameter a of the example curve is 3 less than the modulus, allowing for a
faster projective doubling operation. For GF(2"), we did timings for 2 trinomials
of degree 191, one that is specified in the standard, and one that has better
properties with respect to the reduction step of the almost inverse algorithm.
For the latter, we did not use a curve from the standard.

The timings were done on a PPro200-based PC with Windows NT 4.0 using
MSVC 4.2 and maximal optimization. The code for RSA and DSA was written
in C, using some small macros in assembly language. The elliptic curve code was
mainly written in C++; for GF(p) the same multi-precision routines in C were
called as for RSA and DSA.

Table 1 gives timing results for the field operations and the elliptic curve
group operations for both GF(p) and GF(2"). The computation of inverses is
clearly more expensive over GF(p), but this is largely compensated for by the
faster multiplication, since projective coordinates can be used.

Table 1. Timings for field operations over GF(p) and GF(2"). The field size is approx-
imately 191 bits for both. For GF(2"), two timings are given, one using a trinomial
specified in ANSI X9.62 and the other using a trinomial with better properties with
respect to the almost inverse algorithm. All times in ps.

GF(2"), standard | GF(2"), improved
GF(p) trinomial trinomial
addition 1.6 0.6 0.6
multiplication 7.8 39 39
squaring 7.6 2.6 2.6
inverse 180 159 126
EC addition 103 242 215
EC double 76 246 220
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Table 2 gives timing results for the overall key generation, signing, and ver-
ification operations for ECDSA, RSA and DSA, as well as for general point
multiplication on an elliptic curve. For DSA and ECDSA, we assumed that the
underlying group is the same for all users; if this is not the case, the key gener-
ation time has to be augmented by the time needed to generate an appropriate
group (such as prime generation, point counting on an elliptic curve, etc.).

Table 2. Comparison of ECDSA to other signature algorithms. For EC, the field size
is approximately 191 bits. The modulus for RSA and DSA is 1024 bits long; the RSA
public exponent is 3. All times in ms, unless otherwise indicated.

ECDSA GF(2") | ECDSA GF(2") | ECDSA
standard tr(in.) improved tfin.) GF(p) RSA | DSA
key generation 13.0 11.7 5.5 1s 22.7
signature 13.3 11.3 6.3 43.3 | 23.6
verification 68 60 26 0.65 | 28.3
general point multipl. 56 50 21.1

The modulus for both RSA and DSA is 1024 bits long. There is no general
consensus about the relative security levels of EC, RSA, and DSA as a function
of the size of the parameters. It is probably safe to state that EC with a group
size of 190 bits is slightly stronger than RSA or DSA with a 1024-bit modulus.
The RSA public exponent is 3. Note that the DSA implementation does not use
precomputation for the key generation and signing operation, whereas ECDSA
does.

7 Further work

There are still a number of potential optimizations we have not used in our
implementation.

For GF(2"), anomalous curves could be used [K91]. In [S97b], an algorithm is
proposed that requires less than A/3 elliptic curve additions and a number of field
squarings, the latter being almost for free in GF(2™). This would be particularly
interesting to speed up the verification operation. Note that anomalous curves
over GF(p) should be avoided for cryptographic use [S97a]; for anomalous curves
over GF(2™) no particular weaknesses have been found.

For key and signature generation, the optimizations described at the end of
Section 5.3 could be implemented. Using an advanced technique from [BGMW92]
might further improve the speed of these operations.

In [GP97], an improved point multiplication algorithm is described, based
on a more efficient way to repeatedly double a point by trading inversions for
multiplications. The paper only discusses the GF(2") case, and is currently not
advantageous for our implementation because the inversion is relatively fast.
However, a similar idea can probably be applied to GF(p), and there the benefit
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could be more important because of the fast field multiplication. Note that this
idea cannot be combined with projective coordinates; more work is needed to
determine which of the two results in the fastest implementation.
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