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Abstract -This paper compares TCP Loss Recovery mechanisms 
that were proposed by the IETF to overcome TCP Reno lack of 
ability to recover efficiently from multiple losses in a single 
transmission window. The TCP extensions: NewReno, SACK 
and Limited Transmit, are compared under different traffic 
scenarios. 
 

I. INTRODUCTION 

Currently, TCP is the leading transport protocol in the 
Internet. It is responsible for 95% of the bytes and for 90% of 
the packets sent. Moreover, 80% of the flows sent through the 
Internet are TCP flows. Among the applications that use 
TCP, the Web is the dominant one, comprising up to 75% of 
the bytes, 70% of the packets, and 75% of the flows 
considering both client and server traffic [1]. To optimize 
TCP congestion control mechanism it is necessary to take 
into account the characteristics of current network traffic that 
use TCP.  

The congestion control mechanism of TCP Reno, the most 
popular TCP implementation, is composed of four 
algorithms: Slow Start, Congestion Avoidance, Fast 
Retransmit and Fast Recovery [2].  The first two algorithms 
are used by a TCP sender to control the amount of data 
injected into the network, while the other two are used to 
recover from packet losses without the need for 
Retransmission TimeOuts (RTOs). 

Although the joint use of Fast Retransmit and Fast 
Recovery makes possible for a TCP Reno connection to 
achieve high throughput during moderate congestion, it is not 
effective in dealing with multiple packet losses in a single 
window. Each invocation of these algorithms can retransmit a 
single segment. At every loss, the congestion window is 
reduced to half of its size. Therefore, when multiple loss 
occur, the window size is reduced significantly. The return  to 
its original size occurs only after a considerable delay. 

If three or more packets are lost in a row, the TCP sender is 
forced to wait for a RTO to find out that a loss occurred, 
keeping the connection idle for a relatively long period. 
Moreover, after a RTO, the TCP sender is forced to enter in a 
costly Slow Start phase.  

Measurement of a busy web server indicates that roughly 
56% of the retransmissions happen after a RTO, while Fast 
Retransmit handled only 44% of those retransmissions [6]. 
Results also indicate that 85% of the retransmissions due to 
RTO could be avoided by the correct triggering of the Fast 
Retransmit algorithm [7]. 

Several IETF proposals have been presented to improve 
the loss recovery mechanism of TCP Reno, such as TCP 
SACK, TCP New Reno and TCP Limited Transmit.  

In this paper, these loss recovery mechanisms are 
compared under different traffic scenarios. The use of TCP 
Limited Transmit with TCP Reno, TCP Sack, and TCP 
NewReno, to improve TCP performance is also investigated. 
Although previous works have conducted similar 
comparison, none of them have considered web traffic as 
traffic model as is done here. Moreover, no previous work 
compared all the mentioned TCP extensions. 

This paper is organized as follows. Section II presents a 
brief summary of the mechanisms proposed to solve TCP 
Reno inefficacy.  Section III presents previous research, 
which compare TCP Loss Recovery algorithms. In Section 
IV, numerical results are presented. Finally, in section V, 
conclusions are drawn. 

 
II. TCP EXTENSIONS 

 
This section briefly describes TCP SACK, TCP NewReno 

and TCP Limited Transmit, which were conceived to 
overcome TCP Reno loss recovery shortcoming. 

TCP SACK ameliorates TCP Reno performance problems 
by providing information to the sender about the packets, 
which were correctly received by the TCP receiver. TCP 
NewReno improves TCP Reno loss recovery mechanism by 
the differentiation of the ACKs received. TCP Limited 
Transmit was specially designed to improve TCP Reno loss 
recovery mechanisms for connections with small congestion 
window size. 



A. TCP Sack 

The lack of information about which packets were lost 
leads to TCP Reno inability to recover efficiently from 
multiple losses in a single window [5]. The Selective 
ACKnowledgment (SACK) mechanism was proposed to 
ameliorate such limitation [3]. In SACK, the TCP receiver 
informs the TCP sender which packets were received 
correctly, allowing the TCP sender to implement a selective 
retransmission mechanism, so that only the missing segments 
are retransmitted. Since not all end systems may implement 
this TCP extension, its use should be negotiated.  

SACK extension uses two of TCP options field, SACK-
permitted, sent in SYN packets to indicate the willingness to 
use SACK. The second option field is used to convey extra 
acknowledgment information to TCP sender. 

A packet with SACK option contains a list of blocks. Each 
block represents contiguous bytes of segments received and 
queued at the TCP receiver. A block is identified by two 32-
bit unsigned integers in network byte order: the left edge of 
block and the right edge. The former is the first sequence 
number of the block, and the latter is the sequence number 
immediately following the last sequence number of the block. 
A SACK option length is 8*n+2 bytes, where n is the number 
of blocks and the two extra bytes correspond to the fields 
kind and length of the TCP option. A maximum of 4 SACK 
blocks can be specified since the option field of TCP header 
is 40 bytes length. 

A TCP receiver of a connection that uses SACK should 
generate SACK options in all ACKs, except in those that 
acknowledge the enqueued segment with the highest 
sequence number. The SACK option is a notification of 
which segments were received correctly. It does not imply 
that the segments were transferred to the application, since 
the TCP receiver can discard the segment, if necessary.   

When a TCP sender receives an ACK, which contains a 
SACK option, it uses this information to decide which 
packets should be retransmitted. The TCP sender adds a flag 
(SACKed) to each segment enqueued at the retransmission 
queue, which have not yet been acknowledged. When 
receiving an ACK with SACK option, the sender must turn 
on the flags of all segments that have been selectively 
acknowledged. The segments that should be retransmitted are 
the ones with the flag set to off and which sequence number is 
lower than the highest segment number. If there are enqueued 
segments when a timeout occurs, the TCP sender should turn 
off the flags of all segments in the retransmission queue, and 
must retransmit all segments at the left edge of the window.  

B. TCP NewReno 

A TCP sender knows about the correct reception of a 
packet only when an ACK is received. If an ACK does not 
acknowledge all packets already sent, the TCP sender can 

neither infer the number of lost segments, nor which packets 
should be retransmitted. In addition, a TCP sender can learn 
about just one lost segment per round trip time (RTT). 
Therefore, it is difficult to make the appropriate decision 
during the Fast Retransmit/Fast Recovery phase [5]. 

The Fast Retransmit phase begins when the TCP sender 
receives three duplicated ACKs, which suggests that a packet 
was lost. After the retransmission of a packet, an ACK can 
acknowledge all packets sent (total acknowledgment) or just 
some of them (partial acknowledgment). A partial 
acknowledgement is a strong indication that more than one 
packet were lost [4]. It is also an indication that the first 
unacknowledged packet should be retransmitted in order to 
recover more efficiently from a burst of losses, avoiding the 
need to wait for the expiration of the timer. In line with that, a 
TCP extension called TCP New Reno was proposed as a RFC 
with experimental status [5]. 

In TCP New Reno, when a packet is retransmitted, the 
highest sequence number is recorded in a variable called 
recover. When an ACK is received, it is verified whether the 
ACK is a partial or a total acknowledgment. If it is a partial 
acknowledgment, the packet with the lowest sequence 
number not yet acknowledged is retransmitted and the 
congestion window is deflated by the amount of 
acknowledged data. Moreover, the window size is 
incremented by one segment and a new packet is transmitted 
if allowed by the current congestion window value. 

TCP NewReno is specially indicated in the absence of the 
SACK TCP extension. TCP NewReno is also recommended 
even when SACK is supported, since SACK option can only 
be used when both TCP end-systems support it. 

A major drawback of TCP New Reno is that the sender 
retransmits only one packet per RTT. When several losses 
occur, the TCP sender usually recovers only after a 
considerable delay. 

C. TCP Limited Transmit 

Since both TCP SACK and TCP NewReno senders need to 
receive three duplicate ACKs to trigger the Fast Retransmit 
algorithm, they perform poorly for small window size, 
especially for windows smaller or equal to three segments 
[6][7]. When the duration of the connection is short, a TCP 
sender cannot probe the available bandwidth, due to the small 
amount of data to be sent. 

The congestion window of a TCP sender is typically small 
during a web session since HTTP initiates separate TCP 
connections to transfer one or more objects of a Web page 1. 

                                                 
1 HTTP 1.0 opens a TCP connection per object of a Web page. HTTP 1.1 
TCP connections are persistent, which allows the transfer of more than one 
object per connection. 
 



Results indicate that only 10% of RTOs occurs when the 
congestion window is larger than 10 segments. Moreover, 
only 4% of the retransmissions due to RTO can be eventually 
avoided by the use of SACK [6]. 

To improve the effectiveness of TCP for small windows, 
the Limited Transmit algorithm was proposed in a RFC with 
experimental status [8]. In the Limited Transmit algorithm 
when two consecutive ACKs for the same segment are 
received, a new segment is transmitted if the receiver 
advertised window allows and if the amount of outstanding 
data is equal or less than the congestion window plus 2 [8]. 
The main idea is to cause the sending of a higher number of 
ACKs and, consequently, the triggering of the Fast 
Retransmit algorithm. The size of the congestion window 
should not be changed during the transmission of these new 
segments. Moreover, if SACK is used, the TCP sender should 
not send new segments when duplicate ACKs do not bring 
new information. 

Such modifications can avoid on average 25% of 
retransmissions due to RTO. Moreover bursts of 
retransmissions are prevented, since they are clocked out by 
incoming ACKs. 

 
III. RELATED WORK 

 
In [9], Fall and Floyd presented a comparison study of 

TCP Tahoe, TCP Reno, TCP New Reno and TCP SACK. 
They illustrated the benefits of adding SACK extension to 
TCP. The comparison was based in simulated scenarios 
ranging from one to four packets losses. This work did not 
consider Internet traffic characteristics. Moreover, it did not 
use multiple metrics for comparison. 

Balakrishnan, Padmanabhan, Seshan, Stemm and Katz [6] 
analyzed the use of TCP connections by Web browsers 
accessing a busy Web server. They discovered that short Web 
transfers lead to poor loss recovery performance.  They 
presented an enhancement to TCP loss recovery mechanism, 
called Enhanced Recovery, which is very similar to the joint 
use of Limited Transmit and TCP NewReno. In this study, 
only the aspect of congestion control mechanism of Enhanced 
Recovery and TCP SACK are compared. 

Lin and Kung [7] proposed a new version of TCP 
congestion control mechanism, called TCP NetReno, which 
was optimized to improve TCP Fast Recovery phase and to 
avoid RTOs. One of the enhancements proposed in this work 
is similar to the Limited Transmit proposal. TCP NetReno 
was compared to TCP SACK and to TCP NewReno, by 
considering the number of dropped packets, the number of 
RTOs and the goodput. The simulation experiments used 
backlogged FTP traffic. 
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Fig1. Topology used in the simulation experiments 

IV. NUMERICAL RESULTS 

Simulation experiments were performed using ns-2.1b9a 
[10]. The topology used is presented in Fig 1. The link 
between node R and node D is the bottleneck link. RED was 
the buffer management mechanisms used in the bottleneck 
link. 

The simulations used a traffic generator, called TrafficGen, 
to generate specific traffic loads [11]. The Web traffic is 
modeled by a hybrid Lognormal/Pareto distribution. The 
body of the distribution corresponding to an area of 0.88 is 
modeled by a Lognormal distribution, with mean of 7247 
bytes and the tail is modeled by a Pareto distribution with 
mean of 10558 bytes [13]. FTP traffic is generated using an 
exponential distribution with mean of 512 KBytes. 

Both FTP and HTTP traffic is generated from node S1 to 
node D. Additional CBR/UDP traffic is generated from nodes 
S2 and S3 to node D to create interfering traffic. 

TCP Reno, TCP NewReno, and TCP Sack were compared 
under different load conditions. The total load was varied 
from 0,3 to 0,9. The joint use of these protocols with Limited 
Transmit, denoted by reno-lt, newreno-lt and sack-lt, were 
simulated under the same traffic scenario. The average 
obtained bandwidth (BW), the average round trip time (RTT) 
and the average number of timeouts (RTO) as a function of 
network load are plotted in Fig. 2 and in Fig. 3. Confidence 
intervals were generated by the independent replication 
method and are not shown for the sake of visual 
interpretation. 

From Fig. 2, it can be noticed that for loads greater than 
0,6 there is no significant difference on the obtained 
bandwidth by different TCP extensions.  

It can be verified in Fig 2.a that the use of any extension do 
not influence so much in the obtained bandwidth when the 
network load is greater of 60%. TCP Reno and TCP 
NewReno with Limited Transmit obtained slightly higher 
share bandwidth. 
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Fig 2.  Web Experiments 

 

The joint use of Limited Transmit with TCP Reno (reno-lt) 
and the joint use of Limited Transmit with TCP NewReno 
(newreno-lt) decrease the duration of RTT’s as well as the 
number of RTO’s. The decrease of RTT given by reno-lt is 
9% of the RTT value given by Reno, and 26% of the number 
of RTO’s given by Reno. The decrease of the duration of 
RTT and of the number of RTO’s given by new-reno-lt when 
compared to the corresponding values given by NewReno is 
respectively 10% and 30%. Newreno-lt provides better results 
because it can also avoids timeout when multiple segments 
are lost in a single window.  
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Fig 3.  FTP Experiments 

 

These results were already expected, since the Limited 
Transmit was designed to improve TCP performance for 
small congestion windows, typical of web traffic. In the 
experiments the average congestion window size was 6 
segments for loads less than 0,6 and 3 segments for higher 
loads. 

The joint use of Sack with Limited Transmit does not 
imply in significant improvement. It performs worst than  do 
reno-lt and newreno-lt.  One possible explanation for that is 
that multiple losses do not contribute to more than 10% of the 
timeouts. Since Sack was design to improve TCP when 
multiple losses occur in a single window, it is not effective in 
avoiding timeouts [7]. Sack is more effective when 
connections have large congestion windows, which is 
common in satellite networks. 

Fig. 3 presents results for FTP traffic.  RTT results are not 
shown since they slightly differ for different TCP extensions. 

It can be seen that the mean number of RTO produced 
under FTP traffic can be seven times greater than the number 
of RTO under web traffic. However, the use of reno-lt and 
newreno-lt also reduces the number of RTO by 26% and 29% 
when compared to results given by Reno and NewReno, 
respectively. 
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 Fig 4.  Fairness Experiments 

 
 
 

Fig. 4 presents fairness results for reno-lt, newreno-lt and 
sack-lt. Web traffic was used and the load was varied from 
0,3 to 0,9.  

RTT results are not presented since they did not 
significantly differ. As can be seen in the Fig. 4, the obtained 
bandwidth value is very similar, which means that they share 
fairly the available bandwidth. However, newreno-lt presents 
better results for the mean number of RTO.  Again, Sack 
performance was the worst among them. 

 

 
V. CONCLUSIONS  

 
 

In this paper, the joint use of Limited Transmit with TCP 
Reno, with TCP NewReno and with TCP SACK were 
investigated. Simulation experiments using current network 
traffic were utilized in the comparison of different schemes. It 
was shown that the joint use of TCP NewReno with Limited 
Transmit provides better improvement on the loss recovery 
mechanism of TCP Reno when compared to the improvement 
given by the other schemes since TCP NewReno with 
Limited Transmit reduces the total number of timeouts and 
consequently reduces the delay of the connections. 

  

REFERENCES 
 

 [1] K. Claffy, G. Miller, and K. Thompson. “The Nature of the Beast: 
Recent Traffic Measurements from an Internet Backbone”. In 
Proceedings of INET'98. 

[2] M. Allman, V. Paxson, W. Stevens. “TCP Congestion Control”. RFC 
2581, April 1999. 

[3] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow. “TCP Selective 
Acknowledgment Options”. RFC 2018, October 1996. 

[4] J. Hoe. “Improving the Startup Behavior of a Congestion Control 
Scheme for TCP”. In ACM SIGCOMM, August 1996. 

[5] S. Floyd and T. Henderson. “The NewReno Modification to TCP's Fast 
Recovery Algorithm”. RFC 2582, April 1999. 

[6] H. Balakrishnan, V. Padmanabhan, S. Seshan, S. Stemm and R. Katz. 
“TCP Behavior of a Busy Internet Server: Analysis and 
Improvements”. In Proceedings of IEEE Infocom, March 1998. 

[7] Dong Lin and H. T. Kung. “TCP Fast Recovery Strategies: Analysis 
and Improvements”. In Proceedings of Infocom 98, March 1998. 

[8] M. Allman, H. Balakrishnan and S. Floyd. “Enhancing TCP's Loss 
Recovery Using Limited Transmit”. RFC 3042, January 2001. 

[9] Kevin Fall and Sally Floyd. “Simulation-based Comparisons of Tahoe, 
Reno and SACK TCP”. Computer Communication Review, July 1996. 

[10]  http://www.isi.edu/nsnam/ns 

[11] Kleber V. Cardoso and José. F. de Rezende. “HTTP Traffic Modeling: 
Development and Application”.  International Telecommunications 
Symposium – ITS2002, Natal Brazil. “in press”. 

[12] Maurizio Molina, Paolo Casteli, and Gianluca Foddis. “Web Traffic 
Modelling Exploiting TCP connections – Temporal Clustering through 
HTML-Reduce”. IEEE Network Magazine, vol. 14, no 3, pp 46-55, 
2000. 

[13] Pauls Barford, Azer Bestravos, Adam Bradley and Mark Crovella. 
“Changes in Web Client Access patterns: Characteristics and Caching 
Implications”. In Special Issue on Characterization and Performance 
Evaluations, 1999. 


