
 On the Performance of TCP Loss Recovery Mechanisms

Michele M. de A. E. Lima
Department of Informatics

State University of West Paraná

Nelson L. S. da Fonseca
Institute of Computing

State University of Campinas

José F. de Rezende
GTA/COPPE

Federal University of Rio de Janeiro

Abstract -This paper compares TCP Loss Recovery mechanisms
that were proposed by the IETF to overcome TCP Reno lack of
ability to recover efficiently from multiple losses in a single
transmission window. The TCP extensions: NewReno, SACK
and Limited Transmit, are compared under different traffic
scenarios.

I. INTRODUCTION

Currently, TCP is the leading transport protocol in the
Internet. It is responsible for 95% of the bytes and for 90% of
the packets sent. Moreover, 80% of the flows sent through the
Internet are TCP flows. Among the applications that use
TCP, the Web is the dominant one, comprising up to 75% of
the bytes, 70% of the packets, and 75% of the flows
considering both client and server traffic [1]. To optimize
TCP congestion control mechanism it is necessary to take
into account the characteristics of current network traffic that
use TCP.

The congestion control mechanism of TCP Reno, the most
popular TCP implementation, is composed of four
algorithms: Slow Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery [2]. The first two algorithms
are used by a TCP sender to control the amount of data
injected into the network, while the other two are used to
recover from packet losses without the need for
Retransmission TimeOuts (RTOs).

Although the joint use of Fast Retransmit and Fast
Recovery makes possible for a TCP Reno connection to
achieve high throughput during moderate congestion, it is not
effective in dealing with multiple packet losses in a single
window. Each invocation of these algorithms can retransmit a
single segment. At every loss, the congestion window is
reduced to half of its size. Therefore, when multiple loss
occur, the window size is reduced significantly. The return to
its original size occurs only after a considerable delay.

If three or more packets are lost in a row, the TCP sender is
forced to wait for a RTO to find out that a loss occurred,
keeping the connection idle for a relatively long period.
Moreover, after a RTO, the TCP sender is forced to enter in a
costly Slow Start phase.

Measurement of a busy web server indicates that roughly
56% of the retransmissions happen after a RTO, while Fast
Retransmit handled only 44% of those retransmissions [6].
Results also indicate that 85% of the retransmissions due to
RTO could be avoided by the correct triggering of the Fast
Retransmit algorithm [7].

Several IETF proposals have been presented to improve
the loss recovery mechanism of TCP Reno, such as TCP
SACK, TCP New Reno and TCP Limited Transmit.

In this paper, these loss recovery mechanisms are
compared under different traffic scenarios. The use of TCP
Limited Transmit with TCP Reno, TCP Sack, and TCP
NewReno, to improve TCP performance is also investigated.
Although previous works have conducted similar
comparison, none of them have considered web traffic as
traffic model as is done here. Moreover, no previous work
compared all the mentioned TCP extensions.

This paper is organized as follows. Section II presents a
brief summary of the mechanisms proposed to solve TCP
Reno inefficacy. Section III presents previous research,
which compare TCP Loss Recovery algorithms. In Section
IV, numerical results are presented. Finally, in section V,
conclusions are drawn.

II. TCP EXTENSIONS

This section briefly describes TCP SACK, TCP NewReno

and TCP Limited Transmit, which were conceived to
overcome TCP Reno loss recovery shortcoming.

TCP SACK ameliorates TCP Reno performance problems
by providing information to the sender about the packets,
which were correctly received by the TCP receiver. TCP
NewReno improves TCP Reno loss recovery mechanism by
the differentiation of the ACKs received. TCP Limited
Transmit was specially designed to improve TCP Reno loss
recovery mechanisms for connections with small congestion
window size.

A. TCP Sack

The lack of information about which packets were lost
leads to TCP Reno inability to recover efficiently from
multiple losses in a single window [5]. The Selective
ACKnowledgment (SACK) mechanism was proposed to
ameliorate such limitation [3]. In SACK, the TCP receiver
informs the TCP sender which packets were received
correctly, allowing the TCP sender to implement a selective
retransmission mechanism, so that only the missing segments
are retransmitted. Since not all end systems may implement
this TCP extension, its use should be negotiated.

SACK extension uses two of TCP options field, SACK-
permitted, sent in SYN packets to indicate the willingness to
use SACK. The second option field is used to convey extra
acknowledgment information to TCP sender.

A packet with SACK option contains a list of blocks. Each
block represents contiguous bytes of segments received and
queued at the TCP receiver. A block is identified by two 32-
bit unsigned integers in network byte order: the left edge of
block and the right edge. The former is the first sequence
number of the block, and the latter is the sequence number
immediately following the last sequence number of the block.
A SACK option length is 8*n+2 bytes, where n is the number
of blocks and the two extra bytes correspond to the fields
kind and length of the TCP option. A maximum of 4 SACK
blocks can be specified since the option field of TCP header
is 40 bytes length.

A TCP receiver of a connection that uses SACK should
generate SACK options in all ACKs, except in those that
acknowledge the enqueued segment with the highest
sequence number. The SACK option is a notification of
which segments were received correctly. It does not imply
that the segments were transferred to the application, since
the TCP receiver can discard the segment, if necessary.

When a TCP sender receives an ACK, which contains a
SACK option, it uses this information to decide which
packets should be retransmitted. The TCP sender adds a flag
(SACKed) to each segment enqueued at the retransmission
queue, which have not yet been acknowledged. When
receiving an ACK with SACK option, the sender must turn
on the flags of all segments that have been selectively
acknowledged. The segments that should be retransmitted are
the ones with the flag set to off and which sequence number is
lower than the highest segment number. If there are enqueued
segments when a timeout occurs, the TCP sender should turn
off the flags of all segments in the retransmission queue, and
must retransmit all segments at the left edge of the window.

B. TCP NewReno

A TCP sender knows about the correct reception of a
packet only when an ACK is received. If an ACK does not
acknowledge all packets already sent, the TCP sender can

neither infer the number of lost segments, nor which packets
should be retransmitted. In addition, a TCP sender can learn
about just one lost segment per round trip time (RTT).
Therefore, it is difficult to make the appropriate decision
during the Fast Retransmit/Fast Recovery phase [5].

The Fast Retransmit phase begins when the TCP sender
receives three duplicated ACKs, which suggests that a packet
was lost. After the retransmission of a packet, an ACK can
acknowledge all packets sent (total acknowledgment) or just
some of them (partial acknowledgment). A partial
acknowledgement is a strong indication that more than one
packet were lost [4]. It is also an indication that the first
unacknowledged packet should be retransmitted in order to
recover more efficiently from a burst of losses, avoiding the
need to wait for the expiration of the timer. In line with that, a
TCP extension called TCP New Reno was proposed as a RFC
with experimental status [5].

In TCP New Reno, when a packet is retransmitted, the
highest sequence number is recorded in a variable called
recover. When an ACK is received, it is verified whether the
ACK is a partial or a total acknowledgment. If it is a partial
acknowledgment, the packet with the lowest sequence
number not yet acknowledged is retransmitted and the
congestion window is deflated by the amount of
acknowledged data. Moreover, the window size is
incremented by one segment and a new packet is transmitted
if allowed by the current congestion window value.

TCP NewReno is specially indicated in the absence of the
SACK TCP extension. TCP NewReno is also recommended
even when SACK is supported, since SACK option can only
be used when both TCP end-systems support it.

A major drawback of TCP New Reno is that the sender
retransmits only one packet per RTT. When several losses
occur, the TCP sender usually recovers only after a
considerable delay.

C. TCP Limited Transmit

Since both TCP SACK and TCP NewReno senders need to
receive three duplicate ACKs to trigger the Fast Retransmit
algorithm, they perform poorly for small window size,
especially for windows smaller or equal to three segments
[6][7]. When the duration of the connection is short, a TCP
sender cannot probe the available bandwidth, due to the small
amount of data to be sent.

The congestion window of a TCP sender is typically small
during a web session since HTTP initiates separate TCP
connections to transfer one or more objects of a Web page 1.

1 HTTP 1.0 opens a TCP connection per object of a Web page. HTTP 1.1
TCP connections are persistent, which allows the transfer of more than one
object per connection.

Results indicate that only 10% of RTOs occurs when the
congestion window is larger than 10 segments. Moreover,
only 4% of the retransmissions due to RTO can be eventually
avoided by the use of SACK [6].

To improve the effectiveness of TCP for small windows,
the Limited Transmit algorithm was proposed in a RFC with
experimental status [8]. In the Limited Transmit algorithm
when two consecutive ACKs for the same segment are
received, a new segment is transmitted if the receiver
advertised window allows and if the amount of outstanding
data is equal or less than the congestion window plus 2 [8].
The main idea is to cause the sending of a higher number of
ACKs and, consequently, the triggering of the Fast
Retransmit algorithm. The size of the congestion window
should not be changed during the transmission of these new
segments. Moreover, if SACK is used, the TCP sender should
not send new segments when duplicate ACKs do not bring
new information.

Such modifications can avoid on average 25% of
retransmissions due to RTO. Moreover bursts of
retransmissions are prevented, since they are clocked out by
incoming ACKs.

III. RELATED WORK

In [9], Fall and Floyd presented a comparison study of

TCP Tahoe, TCP Reno, TCP New Reno and TCP SACK.
They illustrated the benefits of adding SACK extension to
TCP. The comparison was based in simulated scenarios
ranging from one to four packets losses. This work did not
consider Internet traffic characteristics. Moreover, it did not
use multiple metrics for comparison.

Balakrishnan, Padmanabhan, Seshan, Stemm and Katz [6]
analyzed the use of TCP connections by Web browsers
accessing a busy Web server. They discovered that short Web
transfers lead to poor loss recovery performance. They
presented an enhancement to TCP loss recovery mechanism,
called Enhanced Recovery, which is very similar to the joint
use of Limited Transmit and TCP NewReno. In this study,
only the aspect of congestion control mechanism of Enhanced
Recovery and TCP SACK are compared.

Lin and Kung [7] proposed a new version of TCP
congestion control mechanism, called TCP NetReno, which
was optimized to improve TCP Fast Recovery phase and to
avoid RTOs. One of the enhancements proposed in this work
is similar to the Limited Transmit proposal. TCP NetReno
was compared to TCP SACK and to TCP NewReno, by
considering the number of dropped packets, the number of
RTOs and the goodput. The simulation experiments used
backlogged FTP traffic.

8MB 1ms

8MB 1ms

8MB 1ms

800Kb 100ms

S1

S2

S3

D
R

Fig1. Topology used in the simulation experiments

IV. NUMERICAL RESULTS

Simulation experiments were performed using ns-2.1b9a
[10]. The topology used is presented in Fig 1. The link
between node R and node D is the bottleneck link. RED was
the buffer management mechanisms used in the bottleneck
link.

The simulations used a traffic generator, called TrafficGen,
to generate specific traffic loads [11]. The Web traffic is
modeled by a hybrid Lognormal/Pareto distribution. The
body of the distribution corresponding to an area of 0.88 is
modeled by a Lognormal distribution, with mean of 7247
bytes and the tail is modeled by a Pareto distribution with
mean of 10558 bytes [13]. FTP traffic is generated using an
exponential distribution with mean of 512 KBytes.

Both FTP and HTTP traffic is generated from node S1 to
node D. Additional CBR/UDP traffic is generated from nodes
S2 and S3 to node D to create interfering traffic.

TCP Reno, TCP NewReno, and TCP Sack were compared
under different load conditions. The total load was varied
from 0,3 to 0,9. The joint use of these protocols with Limited
Transmit, denoted by reno-lt, newreno-lt and sack-lt, were
simulated under the same traffic scenario. The average
obtained bandwidth (BW), the average round trip time (RTT)
and the average number of timeouts (RTO) as a function of
network load are plotted in Fig. 2 and in Fig. 3. Confidence
intervals were generated by the independent replication
method and are not shown for the sake of visual
interpretation.

From Fig. 2, it can be noticed that for loads greater than
0,6 there is no significant difference on the obtained
bandwidth by different TCP extensions.

It can be verified in Fig 2.a that the use of any extension do
not influence so much in the obtained bandwidth when the
network load is greater of 60%. TCP Reno and TCP
NewReno with Limited Transmit obtained slightly higher
share bandwidth.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0,3 0,4 0,5 0,6 0,7 0,8 0,9

Load(rho)

B
W

reno-lt

reno

newreno-lt

newreno

sack-lt

sack

(a)

0,19

0,20

0,21

0,22

0,23

0,24

0,25

0,26

0,27

0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load(rho)

R
TT

reno-lt reno newreno-lt
newreno sack-lt sack

(b)

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load(rho)

R
TO

reno-lt reno newreno-lt
newreno sack-lt sack

(c)

Fig 2. Web Experiments

The joint use of Limited Transmit with TCP Reno (reno-lt)
and the joint use of Limited Transmit with TCP NewReno
(newreno-lt) decrease the duration of RTT’s as well as the
number of RTO’s. The decrease of RTT given by reno-lt is
9% of the RTT value given by Reno, and 26% of the number
of RTO’s given by Reno. The decrease of the duration of
RTT and of the number of RTO’s given by new-reno-lt when
compared to the corresponding values given by NewReno is
respectively 10% and 30%. Newreno-lt provides better results
because it can also avoids timeout when multiple segments
are lost in a single window.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load(rho)

B
W

reno-lt
reno
newreno-lt
newreno
sack-lt
sack

0,00

5,00

10,00

15,00

20,00

25,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load(rho)

R
TO

reno-lt reno newreno-lt
newreno sack-lt sack

Fig 3. FTP Experiments

These results were already expected, since the Limited
Transmit was designed to improve TCP performance for
small congestion windows, typical of web traffic. In the
experiments the average congestion window size was 6
segments for loads less than 0,6 and 3 segments for higher
loads.

The joint use of Sack with Limited Transmit does not
imply in significant improvement. It performs worst than do
reno-lt and newreno-lt. One possible explanation for that is
that multiple losses do not contribute to more than 10% of the
timeouts. Since Sack was design to improve TCP when
multiple losses occur in a single window, it is not effective in
avoiding timeouts [7]. Sack is more effective when
connections have large congestion windows, which is
common in satellite networks.

Fig. 3 presents results for FTP traffic. RTT results are not
shown since they slightly differ for different TCP extensions.

It can be seen that the mean number of RTO produced
under FTP traffic can be seven times greater than the number
of RTO under web traffic. However, the use of reno-lt and
newreno-lt also reduces the number of RTO by 26% and 29%
when compared to results given by Reno and NewReno,
respectively.

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50

0,3 0,4 0,5 0,6 0,7 0,8 0,9

Load(rho)

B
W

reno-lt
newreno-lt
sack-lt

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50

0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load(rho)

R
TO

reno-lt
newreno-lt
sack-lt

 Fig 4. Fairness Experiments

Fig. 4 presents fairness results for reno-lt, newreno-lt and
sack-lt. Web traffic was used and the load was varied from
0,3 to 0,9.

RTT results are not presented since they did not
significantly differ. As can be seen in the Fig. 4, the obtained
bandwidth value is very similar, which means that they share
fairly the available bandwidth. However, newreno-lt presents
better results for the mean number of RTO. Again, Sack
performance was the worst among them.

V. CONCLUSIONS

In this paper, the joint use of Limited Transmit with TCP
Reno, with TCP NewReno and with TCP SACK were
investigated. Simulation experiments using current network
traffic were utilized in the comparison of different schemes. It
was shown that the joint use of TCP NewReno with Limited
Transmit provides better improvement on the loss recovery
mechanism of TCP Reno when compared to the improvement
given by the other schemes since TCP NewReno with
Limited Transmit reduces the total number of timeouts and
consequently reduces the delay of the connections.

REFERENCES

 [1] K. Claffy, G. Miller, and K. Thompson. “The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone”. In
Proceedings of INET'98.

[2] M. Allman, V. Paxson, W. Stevens. “TCP Congestion Control”. RFC
2581, April 1999.

[3] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow. “TCP Selective
Acknowledgment Options”. RFC 2018, October 1996.

[4] J. Hoe. “Improving the Startup Behavior of a Congestion Control
Scheme for TCP”. In ACM SIGCOMM, August 1996.

[5] S. Floyd and T. Henderson. “The NewReno Modification to TCP's Fast
Recovery Algorithm”. RFC 2582, April 1999.

[6] H. Balakrishnan, V. Padmanabhan, S. Seshan, S. Stemm and R. Katz.
“TCP Behavior of a Busy Internet Server: Analysis and
Improvements”. In Proceedings of IEEE Infocom, March 1998.

[7] Dong Lin and H. T. Kung. “TCP Fast Recovery Strategies: Analysis
and Improvements”. In Proceedings of Infocom 98, March 1998.

[8] M. Allman, H. Balakrishnan and S. Floyd. “Enhancing TCP's Loss
Recovery Using Limited Transmit”. RFC 3042, January 2001.

[9] Kevin Fall and Sally Floyd. “Simulation-based Comparisons of Tahoe,
Reno and SACK TCP”. Computer Communication Review, July 1996.

[10] http://www.isi.edu/nsnam/ns

[11] Kleber V. Cardoso and José. F. de Rezende. “HTTP Traffic Modeling:
Development and Application”. International Telecommunications
Symposium – ITS2002, Natal Brazil. “in press”.

[12] Maurizio Molina, Paolo Casteli, and Gianluca Foddis. “Web Traffic
Modelling Exploiting TCP connections – Temporal Clustering through
HTML-Reduce”. IEEE Network Magazine, vol. 14, no 3, pp 46-55,
2000.

[13] Pauls Barford, Azer Bestravos, Adam Bradley and Mark Crovella.
“Changes in Web Client Access patterns: Characteristics and Caching
Implications”. In Special Issue on Characterization and Performance
Evaluations, 1999.

