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Abstract—Gravitational Search Algorithms (GSA) are 

heuristic optimization evolutionary algorithms based on 

Newton's law of universal gravitation and mass interactions. 

GSAs are among the most recently introduced techniques that 

are not yet heavily explored. An early work of the authors has 

successfully adapted this technique to the cell placement 

problem, and shown its efficiency in producing high quality 

solutions in reasonable time. We extend this work by fine tuning 

the algorithm parameters and transition functions towards better 

balance between exploration and exploitation. To assess its 

performance and robustness, we compare it with that of Genetic 

Algorithms (GA), using the standard cell placement problem as 

benchmark to evaluate the solution quality, and a set of artificial 

instances to evaluate the capability and possibility of finding an 

optimal solution. Experimental results show that the proposed 

approach is competitive in terms of success rate or likelihood of 

optimality and solution quality. And despite that it is 

computationally more expensive due to its hefty mathematical 

evaluations, it is more fruitful on the long run. 
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I. INTRODUCTION  

GSA is a heuristic stochastic swarm-based search 
algorithm in the field of numerical optimization, based on the 
gravitational law and laws of motion. Like many other nature 
inspired algorithms, it needs refinements to maximize its 
performance in solving various types of problems. In addition 
to the problem encoding that sometimes can be a challenge, 
fine tuning its parameters play a significant role balancing the 
search time versus solution quality. This algorithm is 
relatively recent and not heavily explored. 

Cell placement is one of four consecutive steps in physical 
design process of VLSI circuits, namely: partitioning, 
placement, routing and compaction. In the placement stage, 
the description of the physical layout of the chip is introduced, 
by assigning geometric coordinates to the cells. The objective 
of the placement algorithm is to find a layout that minimizes a 
cost function, whose major part is the area, but quite often 
involves the aspect ratio, to make the chip as close to square 
as possible and hence increase the die yield. 

II. LITERATURE REVIEW 

Approaches to solve cell placement problem are generally 
classified into two classes; constructive and iterative 
improvement methods. Several heuristic optimization 

strategies for solving placement problem have been 
implemented via a set of diversified algorithms; evolution-
based placement like Genetic Algorithms [5] and Simulated 
Annealing [6], and a comprehensive summary of those 
strategies is presented in [1]. 

Gravitational Search Algorithms (GSAs) are novel 
heuristic optimization algorithms introduced in [2], and 
researched in the past few years, as a flexible and well-
balanced strategy to improve exploration and exploitation 
methods. In [3], the binary gravitational search algorithm was 
developed to solve different nonlinear problem. A new multi-
objective gravitational search algorithm was proposed in [4]. 
The GSA shows satisfactory results for solving many 
problems in a various applications; Solving Symmetric 
Traveling Salesman Problem [7], solving the flow shop 
scheduling problem [8], in feature selection [9], image 
enhancement [10], solving DNA sequence design problem 
[11], and optimize the filter modeling parameters [12]. A 
hybrid algorithm was derived from both Genetic Algorithms 
and Gravitational Search Algorithm for   feature set selection 
[13]. 

In this paper, we enhance our implementation of the 
gravitational search technique, to solve the cell placement, 
with the intention compare its performance with well know 
evolutionary algorithms in future work. The results show that 
the algorithm can improve the solution quality in a reasonable 
amount of time. This paper is organized as follows: Section 2 
gives a formal description of the GSA theory, Section 3 gives 
a brief description of the cell placement problem, section 4 
demonstrates the proposed gravitational search algorithm for 
cell placement, In section 5 we discuss the performance of this 
algorithms in solving standard problems as compared to the 
well know genetic algorithm, and section 6 wraps up our 
work. 

III. METHODOLOGY 

The Gravitational Search Algorithm (GSA) was proposed 
by Rashedi [2], as a simulation of Newton’s gravitational 
force behaviors. In this algorithm, possible solutions of the 
problem in hand  are considered as objects whose performance 
(quality) is determined by their masses, all these objects attract 
each other by the gravity force that causes a global movement 
of the objects towards the objects with heavier masses. The 
position of each object corresponds to a solution of the 
problem, and inertial masses are determined by a fitness 
function. The heavy masses, which represented a good 
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solutions, move more slowly than lighter ones, this represents 
the exploitation of the algorithm. 

The GSA starts with a set of agents, selected at random or 
based on some criteria, with certain positions and masses 
representing possible solutions to a problem, and iterates by 
changing the positions based on some values like fitness 
function, velocity and acceleration that gets updated in every 
iteration. To relate those values and parameters, let us 
demonstrate the relations among them. 

In a system with N agents, the position of the i
th

 agent is 
defined as: 

 

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑, … , 𝑥𝑖
𝑛)  𝑓𝑜𝑟   𝑖 = 1,2, … , 𝑁 (1) 

 

Where 𝑥𝑖
𝑑   present the position of the i

th
 agent in the d

th
 

dimension, and n is dimension of the search space.  

At the time t a force acts on mass i from mass j. This force 
is defined as follows: 

 

𝐹𝑖𝑗
𝑑 = 𝐺(𝑡)

𝑀𝑝𝑖 (𝑡)×𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗+𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) (2) 

Where Maj is the active gravitational mass of agent j, Mpi is 
the passive gravitational mass of agent i, G(t) is gravitational 
constant at time t, ε is a small constant, and Rij(t) is the 
Euclidian distance between two agents i and j: 

 

𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡). 𝑋𝑗(𝑡)‖ (3) 

 
The total force acting on massi in the d

th
 dimension in time 

t is given as follows: 

 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑

𝑁

𝑗𝜖𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

(𝑡) (4) 

Where randj is a random number in the interval [0, 1], K 
best is the set of first K agents with the best fitness value. 

The acceleration related to mass i in time t in the d
th

 
dimension is given as follows: 

 

𝑎𝑖
𝑑 =

Fi
d(t)

Mii(t)
 (5) 

 
Where Mii is the inertial mass of i

th
 agent. 

The next velocity of an agent could be calculated as a 
fraction of its current velocity added to its acceleration. 
Position and velocity of agent is calculated as follows: 

  

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖  𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (6) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (7) 

             
Where randi is a uniform random variable in the interval 

[0, 1]. 

Gravitational constant, G, is initialized at the beginning of 
the search and will be reduced with time to control the search 
accuracy as follows: 

𝐺(𝑡) = 𝐺0𝑒−𝛼
𝑡
𝑇 (8) 

 
Where T is the number of iteration, G0 and α are given 

constant. 

The gravitational mass and the inertial mass are updated 
by the following equations: 

𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖 ,        𝑖 = 1, 2, … . , 𝑁 (9) 

𝑚𝑖 (𝑡) =
𝑓𝑖𝑡𝑖 (𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (10) 

𝑀𝑖  (𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

 (11) 

 
Where fiti(t) represent the fitness value of the agent i at 

time t, and, worst(t) and best(t) are given as follows for a 
minimization problem: 

 

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,..,𝑁}

𝑓𝑖𝑡𝑗(𝑡) (12) 

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡) (13) 

IV. CELL PLACEMENT PROBLEM  

We use the Normalized Polish Notation (RPN) [14] to 
describe any arrangement representing a possible solution; for 
n cells, a string with n modules (cells) and n-1 operators of the 
* or + type, to mean above or next to. As an example, the 
string (2 3 * 1 + 4 5 + 6 7* + *) is an encoding for the 
arrangement in Figure 1. Here, relaxed means the case where 
the area is that of the minimal rectangle enclosing the cells, 
while the restricted means the case where the area is that of 
the minimal square enclosing the cells.  

 

Fig. 1. (a) Relaxed and (b) Restricted area 

Such a configuration is an agent in gravitational search 
algorithm; new agents are generated from the existing ones by 
applying certain operators which are described in [14] and 
[15]. New solutions are assigned fitness values that reflect 
their quality. We propose the following fitness measure: 

 

F =  α
A

SL
+ (1 − α)

S

L
 (14) 

Where L and S are the long and short sides of the rectangle 
enclosing all the cells and A is the algebraic sum of the areas 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 4, No. 8, 2013 

76 | P a g e  

www.ijacsa.thesai.org 

of all cells regardless of the placement, and the product SL 
represents the area associated with the solution. The factor α is 
a number between 0 and 1, introduced to dictate the relative 
significance of the aspect ratio  to the actual area; to favor 
square arrangements we use smaller values of α. If α=1 then 
aspect ratio is not optimized. 

V. GRAVITATIONAL SEARCH ALGORITHM ADAPTATION 

Cell placement can be viewed as a two-dimensional bin 
packing problem, where the goal is to arrange a number of 
cells with different sizes in a way that reduces the area 
enclosing them and producing near square die while providing 
enough space for efficient routing. In this sense, we propose a 
new algorithm for cell placement problem by means of GSA, 
in which each mass will be an agent looking for an optimal 
solution in the search space. 

Since cell placement needs meet simultaneously several 
constraints, it is difficult to be solved by the traditional GSA. 
For this reason, the definition of distance between solutions 
(positions) and their update are modified as will be shown in 
the following procedure: 

𝑚𝑎𝑠𝑠𝑖(𝑡) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡 

∑ (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗(𝑡) − 𝑤𝑜𝑟𝑠𝑡)𝑁
𝑗=1

 (15) 

 

 

𝑓𝑜𝑟𝑐𝑒𝑖𝑗(𝑡) = 𝐺(𝑡)
𝑚𝑎𝑠𝑠𝑖(𝑡)×𝑚𝑎𝑠𝑠𝑗(𝑡)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗(𝑡)+𝜖
,       where €=0.1 (16) 

𝐺(𝑡) = 𝐺𝑖𝑛𝑖(1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
),              where Gini=100 (17) 

 

 

𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑖(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗 × 𝑓𝑜𝑟𝑐𝑒𝑖𝑗(𝑡)

𝑁

𝑗=1

 (18) 

 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) =
𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑖(𝑡)

𝑚𝑎𝑠𝑠𝑖(𝑡)
 (19) 

 

 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡)
+ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) 

(20) 

 

 

𝑝𝑟𝑜𝑝𝑎𝑝𝑖𝑙𝑖𝑡𝑦𝒊 = |tanh (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡 + 1)| (21) 

 
However, the position updating equation (7) cannot be 

applied in our case, because we are working in a string form to 
present the solution. Therefore, Rashedi [3] proposed the 
Binary GSA for nonlinear problem, which has the same 
formulation presented above, but with a different equation for 
updating the position of each agent. In order to update our 
solution, the formulation of binary GSA is used as shown in 
step 3.6. However, the stopping criteria can be based time 
budget or number of iterations, or reaching a target fitness or 
cost function (area in cell placement), or an improvement rate 
less than a threshold. 

VI. THE ALGORITHM OUTLINE 

The gravitational search algorithm is outlined as follows: 

1. Generate initial population of N agents at random 

2. Compute G(t), Best Fitness and Worst Fitness 

3. For each agent i, do: 

3.1. Evaluate Fitnessi 

3.2. Evaluate Massi 

3.3. Evaluate Force of Massi 

3.4. Evaluate Acceleration of Massi 

3.5. Update Velocity of Massi 

3.6. Find new Position of Agenti 

If (Probabilityi > Threshold) 

 { 

 If (Randi < Probabilityi)  

  Then Pair Solutioni with the Best 

Fit Solutions 

  Else Impose some minor change to 

Solutioni   

 } 

4. If Stopping Criteria Not Met, Go To 2 Else Stop 

VII. RESULTS 

We carried two kind of tests; one on standard benchmark 
problems to evaluate the quality of the solutions, and another 
on artificial problems with known optimal solutions to 
measure the possibility of finding the optimal solution. The 
algorithm has achieved good results regarding the solution 
quality and success rate in finding optimal solution. 

In the first study, three MCNC benchmarks; Xerox with 10 
cells, Ami33 with 33 cells, and Ami49 with 49 cells, selected 
from MCNC and tested. Table1 1, 2, and 3 summarize the 
results of running the two algorithms on one of the benchmark 
problems in Table 1. For each case, 10 runs with different 
initial solutions are performed, for fixe number of iterations 
each. The number of iterations is set to a value proportional to 
the problem size. Clearly, GSA outperformed GA in the best, 
worst and mean waste as a measure all the time, and the aspect 
ratio most of the time.  

TABLE I. PERFORMANCE COMPARISON:  (XEROX 10), 15000 

ITERATIONS 

  GA GSA 

Best wasted area, Aspect 

ratio 

5.9 %, 1.83 4.2 %, 1.63 

Worst wasted area, Aspect 

ratio 

8.3 %, 1.22 6.7 %, 1.05 

Mean wasted area 7.0 % 5.4 % 

 

TABLE II. PERFORMANCE COMPARISON: (AMI33), 30000 ITERATIONS 

 GA GSA 

Best wasted area, Aspect 

ratio 

8.6 %, 2.12 6.1 %, 1.45 

Worst wasted area, Aspect 

ratio 

14.2 %, 1.78 9.1 %, 2.11 

Mean wasted area 11.2 % 7.2 % 

 

TABLE III. PERFORMANCE COMPARISON: (AMI49), 50000 ITERATIONS 
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 GA GSA 

Best wasted area, Aspect 

ratio 

13.1 %, 2.4 8.1 %, 1.56 

Worst wasted area, Aspect 

ratio 

18.2 %, 2.3 13.2 %, 1.21 

Mean wasted area 16.1 % 9.8 % 

Fig. 2 shows the progress of the two algorithms over time; 
wasted area of the best solution in hand after multiple 
thousands of iterations. Same initial set of solutions (with 42% 
waste best case) evolved relatively at the same rate in the first 
few thousands of iterations, and then the GSA starts having 
better progress. 

The second test is carried out on three artificial problems 
with 10, 20 and 30 cells of known optimal solutions, where a 
square is split into smaller squares and rectangles to generate 
instances with the target size, as shown in Figure3. Both GSA 
and GA are run 6 times with different initial solutions.  

 

Fig. 2. Search Progress; Waste area for Ami49 versus Iterations (GSA solid, 

GA dashed) 

 
Fig. 3. Artificial Instances for Know Optimal Solutions 

The algorithm is brought to stop if an optimal solution is 
achieved or the number of iterations equals 15000, 30000 and 
50000 for the 10, 20 and 30 cells respectively. Table 4 shows 
the success rate or the likelihood of optimality. Again, GSA 
beats GA in for the small medium and large size, with 
significant outperformance of 100% in the 10 cells instance  

TABLE IV. SUCCESS RATE OF ARTIFICIAL PROBLEMS (GSA VS. GA) 

  Success Rate 

No. of Cells No. of Iterations GSA GA 

10 15,000 6 out of 6 4 out of 6 

20 30,000 3 out of 6 1 out of 6 

30 45,000 2 out of 6 1 out of 6 

A major drawback of thi technique is its computational 
requirement; each iteration needs to many computations 
compared to other evolutionary algorithms like genetic 
algorithms for example. However, the effectiveness of this 
search and its balance between exploration and exploitation 
overcome this drawback. Table 5 shows the time taken by the 
GSA and GA to solve a 20-cell artificial instance with known 
optimal solution, running with same initial set of solutions on 
a personal computer with moderate specs. Both algorithms are 
made to stop when they reach a solution with some target 
quality; 5%, 10% 15% and 20% of wasted area  relative to the 
optimal area. 

TABLE V. TIME REQUIREMENTS FOR 20 CELLS INSTANCE 

 Time (Minutes) 

Wasted Area GSA GA 

5% 42.3 54.3 

10% 34.8 42.9 

15% 31.2 30.6 

20% 23.1 23.8 

VIII. CONCLUSION 

The GSA power of solving a relatively complex problem, 
such as Cell Placement, is investigated using both benchmark 
and artificial instances with various sizes. Comparative tests 
have shown that GSA outperforms GA as a well known 
evolutionary algorithm, in terms of solution quality, i.e. the 
wasted area of the best configuration, aspect ratio, and the 
likelihood of finding optimal solutions. It is quite significant 
to note that although iterations take longer time in GSA 
compared to GA, the total time required to achieve a target 
solution quality is less when we target higher quality 
solutions. While the two algorithms take nearly the same 
amount of time to find decent solutions, targeting high quality 
solutions; 5% waste or less, can be achieved in 75% of the 
time with GSA.  After the first few thousands of iterations, 
GSA outperforms GA by 10% to 40% in terms of wasted area.      

REFERENCES 

[1] K. Shahookar and P. Mazumder, "VLSI Cell Placement Techniques." 
ACM Computer Survey, vol.23, no. 2, pp. 143–220, June 1991. 

[2]  E.Rashedi, H.Nezamabadi-pour, and S.Saryazdi, "GSA: A Gravitational 
Search Algorithm." Journal of Information of Science 179, 2232-2243, 
2009.  

[3] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "Binary Gravitational 
Search Algorithm." Springer Science + Business Media B.V. 2009 

[4] H. R. Hassanzadeh, M. Rouhani, "A Multi-Objective Gravitational 
Search Algorithm." International Conference on Computational 
Intelligence, Communication Systems and Networks. 24, pp117-122, 
2010. 

[5] T. W. Manikas,  M.H. Mickle, "A Genetic Algorithm for Mixed Macro 
and Standard Cell Placement." The 45th Midwest Symposium 
on Circuits and Systems, vol. 2, pp 115 - 118, vol.2, August 2002 

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Manikas,%20T.W..QT.&searchWithin=p_Author_Ids:38185066300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mickle,%20M.H..QT.&searchWithin=p_Author_Ids:37298278500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8452
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8452


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 4, No. 8, 2013 

78 | P a g e  

www.ijacsa.thesai.org 

[6]  G. Nan, M. Li, D. Lin, J. Kou. Adaptive Simulated Annealing for 
Standard Cell Placement. Springer, 2005 Advances in Natural 
Computation Vol. 3612, pp 943-947, 2005 

[7]   A. R. Hosseinabadi, M. yazdanpanah and A. S. Rostami, A New 
Search Algorithm for Solving Symmetric Traveling Salesman Problem 
Based on Gravity, World Applied Sciences Journal 16 (10): pp 1387-
1392, ISSN 1818-4952, 2012 

[8]  Gu W X, Li X T, Zhu L, "A gravitational search algorithm for flow 
shop schduling. CAAI Transactions on Intelligent Systems". 5(5): 411-
418, 2010. 

[9]  J.P. Papa, A. Pagnin,  S.A.  Schellini, A.   Spadotto. Feature selection 
through gravitational search algorithm. Acoustics, Speech and Signal 
Processing (ICASSP), IEEE International Conference on, May 2011,  
pp: 2052 – 2055, 2011. 

[10] W. Zhaoa, "Adaptive Image Enhancement based on Gravitational 
Search Algorithm." Procedia Engineering 15, pp. 3288 – 3292  
Published by Elsevier Ltd. 2011. 

[11] J. Xiao, Z. Cheng, "Theories and Applications DNA Sequences 
Optimization Based on Gravitational Search Algorithm for Reliable 
DNA computing." Sixth International Conference on Bio-Inspired 
Computing. IEEE Computer Society, 2011 

[12] Rashedi E, Nezamabadi-pour H, Saryazdi S, "Filter modeling using 
gravitational search algorithm. Engineering." Applicaitons of Artifical 
Intelligence,  24, pp. 117-122, 2011 

[13] M. Omar and J. Al-Neamy, "Hybrid Gravitational Search Algorithm and 
Genetic Algorithms for  Automated Segmentation of Brain Tumors 
Using Feature_based  Symmetric Ananlysis", (IJCSIS) International 
Journal of Computer Science and Information Security, Vol. 11, No. 5, 
May 2013. 

[14] D. F. Wong, and C. L. Liu, A New Algorithm for Floorplan Design, 
Proc. DAC, pp.101–107,1986. 

[15] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. S. Richards, 
“Distributed genetic algorithms for the floorplan design problem,” IEEE 
Trans. Computer-Aided Design, vol. 10, pp. 483–492, Apr. 1991. 

 

http://link.springer.com/search?facet-author=%22Guofang+Nan%22
http://link.springer.com/search?facet-author=%22Minqiang+Li%22
http://link.springer.com/search?facet-author=%22Dan+Lin%22
http://link.springer.com/search?facet-author=%22Jisong+Kou%22
http://link.springer.com/book/10.1007/11539902
http://link.springer.com/book/10.1007/11539902
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Papa,%20J.P..QT.&searchWithin=p_Author_Ids:37604389900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pagnin,%20A..QT.&searchWithin=p_Author_Ids:37712110900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schellini,%20S.A..QT.&searchWithin=p_Author_Ids:37712111600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Spadotto,%20A..QT.&searchWithin=p_Author_Ids:37688904600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5916934
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5916934

