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Abstract We model and evaluate the performance of a distributed key-value
storage system that is part of the Spotify backend. Spotify is an on-demand
music streaming service, offering low-latency access to a library of over 20
million tracks and serving over 20 million users currently. We first present a
simplified model of the Spotify storage architecture, in order to make its anal-
ysis feasible. We then introduce an analytical model for the distribution of the
response time, a key metric in the Spotify service. We parameterize and vali-
date the model using measurements from two different testbed configurations
and from the operational Spotify infrastructure. We find that the model is
accurate—measurements are within 11% of predictions—within the range of
normal load patterns. In addition, we model the capacity of the Spotify storage
system under different object allocation policies and find that measurements
on our testbed are within 9% of the model predictions. The model helps us
justify the object allocation policy adopted for Spotify storage system.
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1 Introduction

Spotify is an on-demand music streaming service (www.spotify.com), offering
low-latency access to a library of over 20 million tracks and serving over 20
million users currently [1]. The core function of the Spotify service is audio
streaming, which is provided by the Spotify storage system, with backend
servers located at three sites (Stockholm, Sweden, London, UK, and Ashburn,
VA). The Spotify backend servers run even a number of related services, such
as music search, playlist management, and social functions. The Spotify service
is a peer-assisted system, meaning it has a peer-to-peer component to offload
backend servers. When a client plays a music track, its data is obtained from
a combination of three sources: the client local cache (if the same track has
been played recently), other Spotify clients through peer-to-peer technology,
or the Spotify storage system in a backend site [1].

Low latency is key to the Spotify service. When a user presses “play”, the
selected track should start “instantly.” To achieve this, the client generally
fetches the first part of a track from the backend and starts playing as soon
as it has sufficient data so that buffer underrun (“stutter”) will be unlikely to
occur. Therefore, the main metric of the Spotify storage system is the fraction
of requests that can be served with latency at most t for some small value of
t, typically around 50 ms. (We sometime use the term response time instead
of latency in this paper.) The Spotify storage system has the functionality
of a (distributed) key-value store. It serves a stream of requests from clients,
whereby a request provides a key and the system returns an object (e.g., a
part of an audio track).

In this paper, we present an analytical model of the Spotify storage archi-
tecture. The model allows us to estimate the distribution of the response time
of the storage system as a function of the load, the storage system configura-
tion, and model parameters that we measure on storage servers. The model
centers around a simple queuing system that captures the critical system re-
source (i.e., the bottleneck), namely, access to the server’s memory cache and
disk where the objects are stored. We validate the model (1) for two differ-
ent storage system configurations on our laboratory testbed, which we load
using anonymized Spotify traces, and (2) for the operational Spotify storage
system, whereby we utilize load and latency metrics from storage servers of
the Stockholm site. We find that the model predictions are within 11% of
the measurements, for all system configurations and load patterns within the
confidence range of the model. As a consequence, we can predict how the re-
sponse time distribution would change in the Stockholm site, if the number
of available servers would change, or how the site in a different configuration
would handle a given load. Overall, we find that a surprisingly simple model
can capture the performance of a system of some complexity. We explain this
result with two facts: (1) the storage systems we model are dimensioned with
the goal that access to memory/storage is the only potential bottleneck, while
CPUs and the network are lightly loaded; (2) we restrict the applicability of
the model to systems with small queues —they contain at most one element
on average. In other words, our model is accurate for a lightly loaded system.
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The model captures well the normal operating range of the Spotify storage
system, which has strict response time requirements. In addition, the system
is dimensioned to absorb sudden load surges, which can be caused by, e.g., one
of the Spotify backend sites failing, or the service being launched in the new
region.

Further, we model a capacity of a storage cluster under two different object
allocation policies, the popularity-aware policy, where objects are allocated to
servers according to their popularity, with the aim of load balancing, and
the random policy, where objects are allocated uniformly at random across
servers. We validate the model on our laboratory testbed and find that the
model predictions are within 9% of the measurements, for the parameter range
investigated. The model suggests that the capacity of the Spotify storage sys-
tem under both policies will be (approximately) the same. This justifies the
Spotify design, which adopts the random policy, which is easier to implement
in the key-value storage system than the popularity-aware policy.

This work is a significant extension of a conference publication presented at
CNSM 2012 [2]. It includes now an analytical model for estimating the capacity
of a storage cluster for different object allocation policies, together with its
validation on our testbed. In addition, the related work section is extended,
and numerous small improvements have been made and clarifications have
been added to the text in [2].

The paper is organized as follows. Section 2 describes the Spotify storage
system. Section 3 contains the analytical model for predicting distribution of
response time and its validation, both on the lab testbed and on the Spotify
operational system. Section 4 describes the model for estimating the capacity
of a storage cluster under two different allocation policies and contains the
validation results. Section 5 discusses related work and Section 6 contains our
conclusions and future work.

2 The Spotify backend storage architecture

We give a (simplified) overview of the part of the Spotify backend responsible
for music delivery to the clients. Its architecture is captured in Fig. 1. Each
Spotify backend site has the same layout of storage servers, but the number
of servers varies. The master storage component is shared between the sites.
When a user logs in, the client connects to an Access Point (AP) using a pro-
prietary protocol. Through the AP, the client can access the backend services
including storage. The client maintains a long-lived TCP connection to the
AP, and requests to backend services are multiplexed over this connection.

Spotify’s storage is two-tiered. A client request for an object goes to Produc-
tion Storage, a collection of servers that can serve most requests. The protocol
between the AP and Production Storage is HTTP, and in fact, the Production
Storage servers run software based on the caching Nginx HTTP proxy [3]. The
objects are distributed over the production service machines using consistent
hashing of their respective keys [4]. Each object is replicated on three different
servers, one of which is identified as the primary server for the object. APs
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Fig. 1 Spotify Storage Architecture

route a request for an object to its primary server. If the primary server fails
or does not store the requested object, the server will request it from one of
the replicas. If they do not store it, the request will be forwarded over the
Internet to Master Storage (which is based upon a third-party storage service)
and the retrieved object will subsequently be cached in Production Storage.

A key performance metric for Spotify is playback latency, and the system
design is intended to provide low latency for the vast majority of requests
coming from a large, and growing, user base. By using a proprietary protocol
with long-lived connections, the latency overhead of a connection establish-
ment (DNS, TCP handshake, TCP windows) is avoided. The design with a
two-tiered storage arises from the engineering problem of providing low-latency
access for most requests to a growing catalogue of music, with a popularity
distribution close to Pareto. The Production Storage tier gives low-latency ac-
cess to almost all requests, using high performance servers, while the Master
Storage tier provides a large storage capacity for all information at a higher
latency.

While the presentation here centers on music delivery, we remark that the
storage system delivers additional data to Spotify clients, in particular images
(e.g., cover art for albums) and advertisements. We also point out that the
number of requests that a client makes to the backend storage for each track
played varies significantly, due to local caching and peer-to-peer functionality.
As a consequence, the request rates presented in this paper do not correspond
to the actual number of tracks played in the Spotify system.
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Fig. 2 Simplified architecture as a basis for the performance model

3 Predicting response time

In order to make a performance analysis tractable, we develop a simplified
model of the Spotify storage architecture (Fig. 1) for a single Spotify backend
site, the result of which is shown in Fig. 2. First, we omit Master Storage in
the simplified model and thus assume that all objects are stored in Production
Storage servers, since more than 99% of the requests to the Spotify storage
system are served from the Production Storage servers. Second, we model
the functionality of all APs of a site as a single component. We assume that
the AP selects a storage server uniformly at random to forward an incoming
request, which approximates the statistical behavior of the system under the
Spotify object allocation and routing policies. Further, we neglect network
delays between the AP and storage servers and the queuing delays at the
AP, because they are small compared to the response times at the storage
servers. In the following, we analyze the performance of the model in Fig. 2
under steady-state conditions, Poisson arrivals of requests, and exponentially
distributed service times.

3.1 Modeling a single storage server

In the context of a storage system, the critical resources of a storage server are
memory and disk access, which is captured in Fig. 3. When a request arrives
at a server, it is served from memory with probability q and from one of the
disks with probability 1− q. Assuming that the server has nd identical disks,
the request is served from a specific disk with probability 1/nd. We further
assume that requests arrive at the server following a Poisson process with rate
λ. (All rates in this paper are measured in requests/sec.) We model access
to memory or a disk as an M/M/1 queue. We denote the service rate of the
memory by µm and that of the disk by µd, whereby µm ≫ µd holds.
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Fig. 3 Queuing model of critical resources on a server

Based on Fig. 3, we compute the latency T for a request on a server, which
we also refer to as response time. (In queuing systems, the term sojourn time is
generally used for T .) The probability that a request is served below a specific
time t is given by Pr(T ≤ t) = qPr(Tm ≤ t) + (1 − q)Pr(Td ≤ t), whereby
Tm and Td are random variables representing the latency of the request being
served from memory or a disk, respectively. For an M/M/1 queue in steady
state with arrival rate λ, service rate µ, and latency T , the formula Pr(T ≤
t) = 1− e−µ(1−λ/µ)t holds [5]. Therefore, we can write

Pr(T ≤ t) = q(1− e−µm(1−λm/µm)t) + (1− q)(1− e−µd(1−λd/µd)t),

whereby λm is the arrival rate to the memory queue and λd to a disk queue.
Typical values in our experiments are t ≥ 10−3 sec, λm ≤ 103 requests/sec,
and µm ≥ 105 requests/sec. We therefore approximate e−µm(1−λm/µm)t with
0. Further, since λm = qλ and λd = (1 − q)λ/nd hold, the probability that a
request is served under a particular latency t is given by

Pr(T ≤ t) = q + (1− q)(1− e−µd(1−(1−q)λ/µdnd)t). (1)

3.2 Modeling a storage cluster

We model a storage cluster as an AP and a set S of storage servers, as shown
in Fig. 2. The load to the cluster is modeled as a Poisson process with rate λc.
When a request arrives at the cluster, it is forwarded uniformly at random to
one of the storage servers. Let Tc be a random variable representing the latency
of a request for the cluster. We get that Pr(Tc ≤ t) =

∑

s∈S
1
|S|Pr(Ts ≤ t),

whereby Ts is a random variable representing the latency of a request for a
storage server s ∈ S.

For a particular server s ∈ S, let µd,s be the service rate of a disk, nd,s

the number of identical disks, and qs the probability that the request is served
from memory. Let f(t, nd, µd, λ, q) := Pr(T ≤ t) defined in Equation 1. Then,
the probability that a request to the cluster is served under a particular latency
t is given by
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Pr(Tc ≤ t) =
1

|S|

∑

s∈S

f(t, nd,s, µd,s,
λc

|S|
, qs). (2)

The above model does not explicitly account for the replications of objects.
As explained in Section 2, the Spotify storage system replicates each object
three times. The AP routes a request to the primary server of the object. A
different server is only contacted, if the primary server either fails or does not
store the object. Since both probabilities are small, we consider in our model
only the primary server for an object.

3.3 Evaluation on the lab testbed

The evaluation is performed on our KTH lab testbed, which comprises some
60 rack-based servers interconnected by Ethernet switches. We use two types
of servers, which we also refer to as small servers and large servers (Table 1).

3.3.1 Single storage server

In this series of experiments, we measure the response times of a single server
having a single disk as a function of the request rate, and we estimate the
model parameters. This allows us to validate our analytical model of a single
server, as expressed in Equation 1. The requests are generated using a Spotify
request trace, and they follow a Poisson arrival process. A request retrieves an
object, which has an average size of about 80 KB.

The setup consists of two physical servers, a load injector and a storage
server, as shown in Fig. 4 (top). Both servers have identical hardware; they
are either small or large servers. All servers run Ubuntu 10.04 LTS. The load
injector has installed a customized version of HTTPerf [6]. It takes as input the
Spotify trace, generates a stream of HTTP requests, and measures the response
times. The storage server runs Nginx [3], an open-source HTTP server.

Before conducting an experiment, we populate the disk of the storage server
with objects. A small server is populated with about 280K objects (using
22GB), a large one with about 4,000K objects (using 350GB). Each run of
an experiment includes a warm-up phase, followed by a measurement phase.
During warm up, the memory is populated with the objective to achieve the
same cache hit ratio as the server would achieve in steady state, i.e., after a long
period of operation. The memory of the small server holds some 12K objects,
the memory of the large server some 750K objects. We use a Spotify request
trace for the warmup, with 30K requests for the small server and 1,000K
requests for the large server. The measurement runs are performed with a
different part of the Spotify trace than the warmup runs. A measurement run
includes 30K requests for the small server and 100K requests for the large
server.

We perform a series of runs. The runs start at a request rate of 10 and
end at 70, with increments of 5, for the small server; they start at a rate of 60
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Fig. 4 Setup and measurement of request latency for a single server.

and end at 140, with increments of 20, for the large server. The response time
for a request is measured as indicated in Fig. 4 (bottom). Fig. 6(a) and Fig.
7(a) show the measurement results for three selected latencies for the small
and large server, respectively. The vertical axis gives the fraction of requests
that have been served within a particular latency. The horizontal axis gives
the rate of the request arrival process. All measurement points in a figure that
correspond to the same request rate result from a single run of an experiment.

The figures further include the model predictions in the form of solid lines.
These predictions come from the evaluation of Equation 1 and an estimation
of the model parameters/confidence limits, which will be discussed in Section
3.5.

We make three observations regarding the measurement results. First, the
fraction of requests that can be served below a given time decreases as the load
increases. For small delays, the relationship is almost linear. Second, the model
predictions agree well with the measurements below the confidence limit. In
fact, measurements and models diverge at most 11%. A third observation can
not be made from the figures but from the measurement data. As expected, the
variance of the response times is small for low request rates and becomes larger
with increasing rate. For instance, for the small server, we did not measure
any response times above 200 msec under a rate of 30; however, at the rate of
70, we measured several response times above 1 sec.

3.3.2 A cluster of storage servers

In this series of experiments, we measure the response times of a cluster of
storage servers as a function of the request rate, and we estimate the model
parameters. This allows us to validate our analytical model of a cluster as
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Small server Specification
Model Dell Power edge 750 1U server
RAM 1GB
CPU Intel(R) Pentium(R) 4 CPU 2.80GHz
Harddisk Single disk 40GB
Network Controller Intel 82547GI Gigabit Ethernet Controller

Large server Specification
Model Dell PowerEdge R715 2U Rack Server
RAM 64GB
CPU two 12-core AMD Opteron(tm) processors
Harddisk Single disk - 500GB
Network Controller Broadcom 5709C Gigabit NICs

Table 1 Servers on the KTH testbed

Fig. 5 Setup and measurement of request latency for clusters.

expressed in Equation 2. Similar to the single-server experiments, the requests
are generated using a Spotify request trace, and they follow a Poisson arrival
process.

We perform experiments for two clusters: one cluster with small servers
(one load injector, one AP, and five storage servers) and one with large servers
(one load injector, one AP, and three storage servers). The testbed setup can be
seen in Fig. 5 (top). The software setup of the load injector and storage servers
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(a) Single small server

(b) Cluster of small servers

Fig. 6 Lab testbed measurements and model predictions for small servers.

have been discussed above. The AP runs a customized version of HAProxy [7]
that forwards a request to a storage server and returns the response to the
load injector.

Before conducting an experiment, we populate the disks of the storage
servers with objects: we allocate each object uniformly at random to one of the
servers. We then create an allocation table for request routing that is placed
in the AP. This setup leads to a system whose statistical behavior closely
approximates that of the Spotify storage system. During the warmup phase
for each run, we populate the memory of all storage servers in the same way as
discussed above for a single server. After the warmup phase, the measurement
run is performed. Driven by a Spotify trace, the load injector sends a request
stream to the AP. Receiving a request from the load injector, the AP forwards
it to a storage server according to the allocation table. The storage server
processes the request and sends a response to the AP, which forwards it to
the load injector. The response time of each request is measured as shown in
Fig. 5 (bottom). Regarding dimensioning, the number of allocated objects per
server is similar to the one in the experiments discussed above involving single
servers. The same is true regarding the number of objects cached in memory,
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(a) Single large server

(b) Cluster of large servers

Fig. 7 Lab testbed measurements and model predictions for large servers.

the number of requests for a warmup run, and the number of requests for a
measurement run.

For each experimental run, a request stream is generated at a certain rate,
and, for each request, the response time is measured. The runs start at a re-
quest rate of 50 and end at 300, with increments of 50, for the cluster of small
servers; they start at a rate of 180 and end at 360, with increments of 60,
for the cluster of large servers. Fig. 6(b) and Fig. 7(b) show the measurement
results for three selected latencies for the cluster of small and large servers,
respectively. The figures further include the model predictions in the form of
solid lines. The predictions are obtained from Equation 2 and model param-
eters, discussed in Section 3.5. Our conclusions from the experiments on the
two clusters are similar to those on the single servers: the fraction of requests
that can be served under a given time decreases as the load increases. The
relationship is almost linear; the slopes of the curves decrease slightly with in-
creasing request rate. Further, the measurements and models diverge at most
9.3% below the confidence limit.
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3.4 Evaluation on the Spotify operational environment

For this evaluation, we had access to hardware and direct, anonymized mea-
surements from the Spotify operational environment. The single server evalua-
tion has been performed on a Spotify storage server, and the cluster evaluation
has been performed with measurement data from the Stockholm backend site.

3.4.1 Single storage server

We benchmark an operational Spotify server with the same method as dis-
cussed in Section 3.3.1. Such a server stores about 7.5M objects (using 600GB),
and a cache after the warm-up phase contains about 375K objects (using
30GB). (The actual capacity of the Spotify server is significantly larger. We
only populate 600GB of space, since the traces for our experiment contains
requests for objects with a total size of 600GB.) The server has six identical
disks and objects are uniformly at random allocated to disks. For a run of
the experiment, 1000K requests are processed during the warm-up phase, and
300K requests during the measurement phase. The runs start at a request
rate of 100 and end at 1,100, with increments of 100. Fig. 8(a) shows the
measurement results for three selected latencies for the Spotify operational
server.

The qualitative observations we made for the two servers on the KTH
testbed (Section 3.3.1) hold also for the measurements from the Spotify server.
Specifically, the measurements and model predictions diverge at most 8.45%,
for request rates lower than the model confidence limit.

3.4.2 Spotify storage system

For the evaluation, we use 24 hours of anonymized monitoring data from the
Stockholm site. This site has 31 operational storage servers. The monitoring
data includes, for each storage server, measurements of the arrival rate and
response time distribution for the requests that have been sent by the APs.
The measurement values are five-minute averages. The data includes also mea-
surements from requests that have been forwarded to the Master Storage, but
as stated in Section 3, such requests are rare, below 1% of all requests sent to
the storage servers.

Some of the servers at the Stockholm site have a slightly different config-
uration from the one discussed above. These differences have been taken in
account for the estimation of model parameters. Fig. 8(b) presents the mea-
surement results in the same form as those we obtained from the KTH testbed.
It allows us to compare the performance of the storage system with predic-
tions from the analytical model. Specifically, it shows measurement results
and model predictions for three selected latencies, starting at a request rate
of 1,000 and ending at 12,000, with increments of 1,000. The confidence limit
is outside the measurement interval, which means that we have confidence
that our analytical model is applicable within the complete range of available
measurements.



On the performance of the Spotify backend 13

(a) Single Spotify Storage server

(b) Cluster of Spotify Storage servers

Fig. 8 Spotify operational environment measurements and model predictions

We make two observations, considering Fig. 8(b). First, similar to the eval-
uations we performed on the KTH testbed, the measurements and the model
predictions diverge at most 9.61%. This is somewhat surprising, since this op-
erational environment is much more complex and less controllable for us than
the lab testbed. For instance, for our testbed measurements, (1) we generate
requests with Poisson arrival characteristics, which only approximates arrivals
in the operational system; (2) on the testbed we use identical servers, while
the production system has some variations in the server configuration; (3) the
testbed configurations do not consider Master Storage, etc.

Furthermore, the measurements suggested that the fraction of requests
under a specific latency stays almost constant within the range of request
rates measured. In fact, our model predicts that, the fraction of requests served
within 50 msec stays almost constant until the confidence limit, at about 22,000
requests/sec. Therefore, we expect that this site can handle a much higher
load than observed during our measurement period, without experiencing a
significant decrease in performance when considering the 50 msec response-
time limit. A response time of up to 50 msec provides the user experience that
a selected track starts “instantly”.
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Parameter Small server Large server Spotify server
µd 93 120 150
nd 1 1 6
γ 0.0137 0.00580 0.000501
q0 0.946 1.15 0.815

Table 2 Model parameters for a single storage server

3.5 Estimating model parameters / confidence limit

We determine the model parameters for the single server, given in Equation
1, namely, the service rate of a disk µd, the number of identical disks nd,
and the probability that a request is served from memory q. While nd can be
read out from the system configuration, the other two parameters are obtained
through benchmarking. We first estimate the average service time Ts of the
single disk through running iostat [8] while the server is in operation (i.e. after
the warm-up phase), and we obtain µd = 1/Ts. We estimate parameter q as
a fraction of requests that have a latency below 1 msec while the server is in
operation. Fig. 9 shows the measured values for q for different server types
and request rates. We observe a significant difference in parameter q between
the testbed servers (small and large server) and a Spotify operational server.
We believe that this difference is due to the fact that software and hardware
of the Spotify server is highly optimized for Spotify load, while the testbed
servers are general-purpose machines and configured with default options.

We observe in Fig. 9 that, for all three server types, the value of q decreases
linearly with increasing request rate. This behavior can be explained by the
server software, which includes Nginx on a Linux distribution. Nginx employs
an event-driven model for handling concurrent requests that are sent to a
configurable number of processes k. Such a process, accessing disk I/O in the
installed version of Linux, may be blocked and put into an uninteruptible-sleep
state [9]. (There exists an asynchronous implementation of Linux disk I/O [10],
which, however, does not support disk caching in memory and, therefore, is
not applicable to our case.) As a result, when all processes are blocked, a newly
arrived request that can be served from memory must wait for a process to
become unblocked. As the probability that all processes are blocked at the
same time increases (roughly) linearly with the request rate, the probability
that a newly arrived request can be served from memory without waiting
decreases similarly. We approximate, through least-square regression, q with
the linear function q = −γλ + q0, whereby λ is the request rate. All model
parameters of a single storage server are summarized in Table 2.

Fig. 9 leads us to a modified interpretation of the parameter q in the model
described in Section 3.1: q is the probability that an arriving request (a) can
be served from memory and (b) there are at most k−1 disk requests currently
executing.

The model for a cluster, given by Equation 2, contains the model parame-
ters of each server in the cluster. Therefore, to estimate the parameters of the
cluster, the parameters of each individual server need to be obtained.



On the performance of the Spotify backend 15

Fig. 9 Estimating the parameter q

We now compute the model confidence limit for a single server, i.e., the
maximum request rate up to which we feel confident that our model (i.e.,
Equation 1) applies. Through extensive testing, we found that our model pre-
dictions are close to the measurements from the real system, as long as the
average length of any disk queue is at most one. Note that, for a queue length
of at most one, the estimation errors considering the mean service time (which
refers to the inverse of the service rate of a disk µd), and the actual service time
distribution (which our model assumes to be exponential) do not have signifi-
cant effects on observed system performance. To increase the confidence limit,
both µd and the service time distribution should be estimated with higher
precision. We attempted to estimate the service time distribution with higher
accuracy and failed after many tries.

From the behavior of an M/M/1 queue we know that the average queue
length for each disk is Ld = λd

µd−λd

. Applying the linear approximation for
q and setting Ld = 1, simple manipulations give the model confidence limit
λL for a single server as the positive root of γλ2

L + (1 − q0)λL − 1
2µdnd = 0.

The confidence limits in Fig. 6(a), Fig. 7(a), and Fig. 8(a) are computed using
this method. As can be observed from the figures, increasing request rates
beyond the confidence limits coincides with a growing gap between model
predictions and measurements, specifically for the latency of 50 msec, which
is an important value for the Spotify storage system.

We now discuss the model confidence limit for the cluster, i.e., the max-
imum request rate up to which each individual server is loaded within its
specific confidence limit.

The allocation of objects to primary servers in the Spotify storage system
can be approximated by a process whereby each object is placed on a server
uniformly at random, weighted by the storage capacity of the server. (In Sec-
tion 4, we refer to this allocation policy as the random policy.) Therefore,
the number of objects allocated to a server can vary, even for homogeneous
servers. To compute the confidence limit for the cluster, we must know the
load of the highest loaded server, since the load of each server must be below
its confidence limit.
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If the server contains a large number of objects, as in our system, the ex-
pected load on the server is (approximately) proportional to the number of ob-
jects. The distribution of the number of objects across servers, and, therefore,
the distribution of the load, can be modeled using the balls-and-bins model
[11]. We interpret balls as objects or requests and bins as servers. A result from
the analysis of the balls-and-bins model states that, when m balls are thrown
independently and uniformly at random into n bins and m ≫ n ·(log n) can be
assumed, then, with high probability, there is no bin that receives more than

M = m
n +

√

2m logn
n balls [12]. Applying this result to our case, we can state

that there is no server with load above M , with high probability. (The balls-
and-bins model applies in our case, because (a) objects are allocated according
to the random policy and (b) request rates are more than 4000 requests/sec
on average on a Spotify backend site, while the number of servers is at most
50, as described in Section 3.4.)

Using the above result, we derive the confidence limit λL,c of the cluster c

as the smaller root of 1
|S|2λ

2
L,c+(− 2λL

|S| −
2 log |S|

|S| )λL,c+λ2
L = 0, where λL is the

minimum of the confidence limits of all the servers. The confidence limits in
Fig. 6(b), Fig. 7(b), and Fig. 8(b) are computed using this method. As for the
single server, the model predictions for the cluster diverge significantly from
the measurements for rates beyond the confidence limits.

3.6 Applications of the model

We apply the analytical model to predict, for the Spotify storage system at
the Stockholm site, the fraction of requests served under given latencies for a
load of 12,000 requests/sec, which is the peak load from the dataset we used.
While our evaluation has involved 31 servers, we use the model to estimate
response time for configurations from 12 to 52 storage servers. The result is
shown in Fig. 10a. The confidence limit is 17 servers. Above this number,
we have confidence that the model applies. We observe that for each latency
curve in the figure the slope decreases with increasing number of servers. This
means that adding additional servers to the storage system of, say, 20 servers
result in a much larger reduction of response time than adding servers to the
storage system of, say, 50 servers. Further, we can see that the quality-of-
service requirement has a significant effect on the required number of servers,
and substantial investment would be needed to increase the service quality.
For example, if the quality-of-service requirement changes from serving 80%
of the requests within 5 msec to either (1) serving 80% of the requests within 1
msec, or (2) serving 90% of the requests within 5 msec, the number of required
servers must increase from less than 24 to ca. 52.

Second, we predict the fraction of requests served under specific response
times for a storage system with 25 servers. We consider a scenario where the
load varies from 1,000 to 20,000 requests/sec. The result is shown in Fig. 10b.
The confidence limit is 18,000 below which our model applies. We observe
that the slope of all curves in the figure is almost zero between 1,000 to 3,000
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(a) Varying the number of servers in the storage system for a load of 12,000 requests/sec

(b) Varying the load in the storage system for 25 storage servers

Fig. 10 Applications of the model to system dimensioning

requests/sec, beyond which it starts decreasing. We can predict that increasing
the load on the storage system from 1,000 to 3,000 requests/sec does not have
any measurable impact on performance, while we expect that an increase from
1,000 to 15,000 requests/sec clearly will. Our model also predicts that, for a
response time limit of 50 msec, the fraction of requests served within the
response time limit remains almost unchanged for rates between 1,000 and
18,000 requests/sec.

4 Estimating the capacity of a storage cluster for different object

allocation policies

A Spotify backend site (see Fig. 2) stores more than 60 million objects, which
makes complete replication of objects across servers impractical. Therefore,
each object is stored on, or allocated to, a subset of servers. In the Spotify
storage system, each object is allocated to three servers. For the discussion
in this section, we can assume that each object is allocated to a single server
only, because the two other replicas are only accessed in rare cases, including
failure of the primary server or cache miss.
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In this section, we develop and validate a model for the capacity of a stor-
age cluster using two different allocation policies. An object allocation policy

defines the allocation of a set of objects to a set of servers.
The first policy, which we call the random policy, allocates an object uni-

formly at random to a server in the cluster. The second policy, which we call
the popularity-aware policy, allocates an object to a server depending on how
frequently the object is requested, i.e. the request rate for this object. The
allocation is performed in such a way that each server experiences the same
(or almost the same) aggregate request rate.

We call the aggregate request rate to a server also the load on the server,
and, similarly, we call the aggregate request rate to a cluster the load on the
cluster. We denote the maximum request rate that a server can process without
violating a local service objective the capacity of the server. (In this work, we
consider an objective that the 95th percentile of the response time to a request
is below 50 msec.) Similarly, by the capacity of the cluster, we understand the
maximum request rate to a cluster, such that each server serves a rate below
its capacity.

Assuming the request rate for each object is known, the popularity-aware
policy is optimal (for a cluster of homogeneous servers) in the sense that it
results in the largest possible capacity of the cluster, since all servers carry the
same load. In contrast, under the random policy, servers experience different
request rates, and, therefore, the cluster capacity is lower than under the
popularity-aware policy. The model we develop in this section will quantify
the difference in capacity between the two policies. While the popularity-aware
policy is generally superior in performance, the random policy is less complex
to implement. The popularity-aware policy requires a (large) routing table,
which must be maintained, and the object allocation needs to be adapted as the
popularity of objects changes. On the other hand, routing under the random
policy can be realized with functions that approximate random assignment,
e.g. hash functions, and the allocation does not need to be adapted when
the popularity of objects changes. The Spotify backend control system uses a
random allocation policy for reasons that will become clear in this section.

4.1 The load for a server under the random policy

Let Li be a random variable representing the request rate seen by a specific ob-
ject i on a given server. Assuming that objects 1..n are allocated to this server,
the load on the server is L =

∑n
i=1 Li. Fig. 11 shows the distribution of the

object request rate for a Spotify backend site, computed from a one-day trace.
The figure also shows a Pareto distribution (scale parameter xmin = 0.33,
shape parameter α = 1.55), obtained through a maximum-likelihood estima-
tor, which approximates this data. (We evaluated the goodness-of-fit of the
Pareto distribution through a Kolmogorov-Smirnov(KS) test [13], which mea-
sures the distance between the empirical distribution and the Pareto distribu-
tion. Using 1000 samples, we obtained a distance 0.0116, which is a good fit
according to [14].) In the following, we use the Pareto distribution for Li.
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From [15], Equation 28, we find that the (1-q)-quantile of the sum of n i.i.d.
Pareto random variables with shape parameter α, for large n, can be written
as

z1−q(n) ≈ n1/α(1− q)−1/α +
nα

α− 1
for 1 < α < 2.

If we let q go to 0, we obtain an approximation of the 1-quantile z1(n).
Since we can interpret z1(n) as the load L on a server with n objects, we get

L ≈ n1/α +
nα

α− 1
for 1 < α < 2. (3)

4.2 The capacity of a cluster under random and popularity-aware policies

Assume the cluster contains a set S of homogeneous storage servers (see Fig.
2). Each server has the capacity of Ω requests/sec, that is, the maximum
request rate for which the service objectives are not violated. We define Ωc,
the capacity of the cluster under arbitrary allocation policy as the maximum
request rate for which the service objectives are not violated at any of the
servers. We assume that the access point forwards a request independently to
a server s with probability ps. Then, the capacity of the cluster is determined
by pm = maxs∈S{ps} as follows

Ωc =
Ω

pm
. (4)

As mentioned before, under the popularity-aware policy, all servers expe-
rience the same (or almost the same) load. As a result, ps = 1

|S| ∀s ∈ S,

and the capacity of the cluster under the popularity-aware policy, denoted by
Ωc(popularity), becomes

Ωc(popularity) = Ω · |S| . (5)

In order to compute the capacity of the cluster under the random policy,
we estimate the maximum number of objects on any server of the cluster. The
estimate is obtained from an analysis of the balls-and-bins model, which has
been discussed in Section 3.5. Following this analysis and assuming O is the
set of all objects and Om the set of objects allocated to server m, i.e., the
server with the highest load, we can write

|Om| ≈
|O|

|S|
+

√

2|O| log |S|

|S|
(6)

if |O| ≫ |S|(log |S|).
Using Equation 3, we get for the maximum load of any server in the cluster

Lm = z1(|Om|) ≈ |Om|1/α +
|Om|α

α− 1
. (7)
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(a)

(b)

Fig. 11 Approximating the load distribution using a Pareto distribution with shape pa-
rameter α = 1.55 and scale parameter xmin = 0.33.

And for pm,

pm ≈
z1(|Om|)

z1(|O|)
=

|Om|1/α + |Om|α
α−1

|O|1/α + |O|α
α−1

. (8)
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Applying Equation 4, the cluster capacity for the random policy, denoted
by Ωc(random), becomes

Ωc(random) ≈ Ω ·
|O|1/α + |O|α

α−1

|Om|1/α + |Om|α
α−1

(9)

assuming |O| ≫ |S|(log |S|). Recall that Equation 7, 8, and 9 assume that
1 < α < 2.

Note that, while the condition |O| ≫ |S|(log |S|) holds for a Spotify back-
end site, the discussion in this section applies generally to information systems
whose object popularity follows a Pareto distribution and where the above
condition is true.

We now compare the performance of the popularity-aware policy with
that of the random policy, by computing the relative cluster capacity, namely
Ωc(random)

Ωc(popularity)
, in function of the number of objects |O| in the system and the

number of servers |S| in the cluster. Fig. 12(a) and Fig. 12(b) provide this
comparison, based on which we make three observations.

First, for a fixed number of objects, the relative capacity decreases (sublin-
early) with the number of servers. For example, for 60,000 objects, the relative
capacity is about 0.80 for 200 servers, while the relative capacity decreases to
about 0.63 for some 1,000 servers. This is expected, because an increase in the
number of servers results in a higher variation of number of objects allocated
to a server, and, therefore, an increasing difference in capacity between the two
policies. Second, for a fixed number of servers, the relative capacity increases
with the number of objects.

Third, and most importantly, the random policy results in a cluster capac-
ity that approaches that of the popularity-aware policy, if |O|/|S| log(|S|) is
large. In other words, for a system with a large value of |O|/|S| log(|S|), adopt-
ing either policy does not make a significant difference. This is exactly the case
for the Spotify storage system, as can be seen from Fig. 12(a), and, therefore,
the additional complexity of implementing the popularity-aware policy in the
Spotify backend control system is not needed.

4.3 Evaluation of the model on the lab testbed

In this series of experiments, we measure the cluster capacity for different
number of objects under random and popularity-aware policies. This allows
us to validate our analytical model of a cluster, as expressed in Equations 5
and 9.

For experimentation, we use the cluster of five small servers described in
Section 3.3.2. From the measurement results presented in Section 3.3.1 and
Fig. 6(a), we infer that the capacity of a single server in this cluster Ω is
40 requests/sec, which corresponds to the maximum rate at which the server
serves 95% of requests within 50 msec.

Each experimental run is performed for a specific number of objects, which
are 1250, 1750, 2500, 5000, and 10000. For each number of objects, we evaluate
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(a)

(b)

Fig. 12 Relative cluster capacity of the random allocation policy versus the popularity-
aware policy in function of (a) the number of servers and (b) the number of objects.

the system for the random and for the popularity-aware policy. Also, for each
number of objects k, we create a request trace from the Spotify trace, by se-
lecting k objects uniformly at random and sampling from the load distribution
for objects (Fig. 11) to obtain a request trace of 100,000 requests.

For each experimental run, a request stream is generated at a certain rate as
described in Section 3.3.2. During a run, we periodically measure the number
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Number of Random policy Popularity-aware policy
objects Measurement Model Error(%) Measurement Model Error(%)
1250 166.50 176.21 5.83 190.10 200 5.21
1750 180.30 180.92 0.35 191.00 200 4.71
2500 189.70 182.30 3.90 190.80 200 4.82
5000 188.40 186.92 0.78 191.00 200 4.71
10000 188.60 190.39 0.95 192.40 200 3.95

Table 3 Lab testbed measurements and model predictions of model for estimating a cluster
capacity. (All capacities are in requests/sec.)

Number of Relative cluster capacity
objects Measurement Model Error(%)
1250 0.88 0.88 0
1750 0.94 0.90 4.17
2500 0.99 0.91 8.32
5000 0.99 0.93 5.25
10000 0.98 0.95 2.89

Table 4 Lab testbed measurements and model predictions of model for estimating a relative
cluster capacity.

of object requests forwarded to each server using Zabbix agents, which allows
us to estimate the request rate to each server. We adjust the request rate to
the cluster such that the maximum request rate for all storage servers is within
1% from Ω = 40 requests/sec, and report this rate as the cluster capacity.

Tables 3 and 4 contain the results of the measurements. For system con-
figurations with certain number of objects and both allocation policies, Ta-
ble 3 shows the measured cluster capacities, the model predictions, and the
prediction errors. Table 4 shows the relative cluster capacities obtained from
measurements, the model predictions, and the prediction errors.

We make two observations from the measurement results. First, within
the parameter range of the measurements, the capacity of the cluster under
the popularity-aware policy does not depend on the number of objects. On
the other hand, the capacity of the cluster under the random policy increases
with the number of objects, as expected from our model. Second, the model
predictions are close to the measurements, with the error of at most 8.32%.
We can conclude that the testbed cluster performs according to the model
predictions, which contributes to the validation of the model.

5 Related work

Extensive research has been undertaken in modeling the performance of stor-
age devices [16–21]. The authors in [16] present a performance model for Ursa
Minor[22], a robust distributed storage system. The model allows them to pre-
dict the average latency of a request, as well as the capacity of the system.
Measurement-based performance models of storage systems are presented in
[17,18]. In [17], expected latency and throughput metrics are predicted for
different allocation schemes of virtual disks to physical storage devices. The
authors of [18] predict the average response time of I/O requests when multiple
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virtual machines are consolidated on a single server, while in [21] architectures
for clustered video servers are proposed.

The development and evaluation of distributed key-value stores is an ac-
tive research area. In contrast to Spotify’s storage system design, which is
hierarchical, many advanced key-value storage systems in operation today are
based on a peer-to-peer architecture. Among them are Amazon Dynamo [23],
Cassandra [24], and Scalaris [25]. Facebook’s Haystack storage system follows
a different design, which is closer to Spotify’s. Most of these systems use some
form of consistent hashing to allocate objects to servers. The differences in
their designs are motivated by their respective operational requirements, and
they relate to the number of objects to be hosted, the size of the objects,
the rate of update, the number of clients, and the expected scaling of the
load. While these systems generally provide more functionality than the Spo-
tify storage system does, to our knowledge, no performance model has been
developed for any of them.

Hierarchical caching systems share similarities with our architecture, and
many works have studied and modeled the performance of such systems [26–
32]. Most of these works model the ‘cache hit ratio’, or the fraction of requests
that can be served from caches, for different caching levels and replacement
algorithms, e.g., Least Recently Used (LRU) or Least Frequently Used (LFU).
A few also model the distribution of response times [26,30], but (1) the models
are in complex forms, for which approximations are provided, and (2) the
models are evaluated using simulation only. In contrast, our work focuses on
modeling the distribution of response times in closed form, and our models
are evaluated both on a testbed and in an operational environment.

The modeling of the distribution of response times is addressed in [19] for
a single storage server and is based on a two-stage queuing network. In [20],
a queuing model is developed to model response times of a cluster of servers,
considering general service times. The model gives the response time in a trans-
formed form, or by its moments, and further approximations would be needed
to derive its distribution. In [21] the service time distribution in clustered video
servers is evaluated, approximating non-dominant delay components with con-
stant values. Note that the models in [19] and [20] are evaluated on a simulator
only, and the works do not include testbed experiments.

Compared to the above results, this paper considers a complete distributed
system system. It predicts the distribution of the response times through a
simplified system model, and justifies the system model thorough experimental
evaluation.

Automated control frameworks for dynamically adjusting the number of
storage servers in a stateful storage system (where a specific request can be
served from only a subset of servers) recently gained popularity. Some frame-
works, e.g., SCADS[33] and ElastMan [34], are designed to achieve a target
response time expressed in quantiles, while others, e.g., Yak [35], target an
average response time. While our paper does not address the dynamic con-
figuration of a storage system, it complements previous works by proposing
an initial operating point, which can be subsequently adapted using a control
framework.
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Object placement for networked multimedia storage system is a well-studied
area. Most works deal with video distribution systems. Many of them evaluate
the benefits of a popularity-aware allocation policy over other policies, for in-
stance, [36–39]. These works all find that a popularity-aware allocation policy
provides higher throughput than other policies. Our work is complementary
to the previous efforts, as it investigates the system dimensioning and config-
uration parameters, for which either a popularity-aware or a random policy
provides better performance. In our context, we show that the key parameters
are the number of objects and the number of servers in the system.

6 Conclusion

We make the following contributions with this paper. First, we introduce an
architectural model of a distributed key-value store that simplifies the archi-
tecture and functionality of the Spotify storage system. Second, we present
a queuing model that allows us to compute the response time distribution of
the storage system. Then, we perform an extensive evaluation of the model,
first on our testbed and later on the Spotify operational infrastructure. This
evaluation shows that the model predictions are accurate, with an error of at
most 11%. Third, we present an analytical model for estimating the capacity
of a storage cluster under the random and popularity-aware object allocation
policies. Measurements on our testbed are within 9% of the model predictions.
For the case of a Spotify backend site, the model suggests that both policies
result in (approximately) the same performance. This justifies the Spotify de-
sign, which adopts the random policy (which is easier to implement than the
popularity-aware policy).

The reported errors result from the fact that we use a simple model to
describe, on an abstract level, the behavior of a complex distributed system.
This simplicity is a virtue insofar as it provides better insight and can be com-
puted in real time. The downside, in the case of the model for response time
distribution, is that the applicability of the model is restricted to a lightly
loaded system; however, this corresponds to the operational range of the Spo-
tify storage system (see further discussion below). To increase the accuracy of
the model, or to extend the range of load patterns for which it can make pre-
dictions, one needs to refine the system model. Such refinements can include,
modeling the specific software process structure in a server, the OS scheduling
policies, heterogeneous hardware, the detailed request routing policy in the
cluster, as well as the real arrival process and service discipline of the queuing
model. The difficulty will be to identify refinements that significantly increase
the accuracy of the model while keeping it simple and tractable.

Note that the process of developing the (relatively) simple models in this
paper has not been as straightforward as it may seem. To the contrary, this
work was difficult and lengthy. We started out with studying the Spotify back-
end architecture in great detail and simplified this complex system in several
iterations, in order to make its analysis feasible. During this work, we devised
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several alternative models, each of which we validated through experimenta-
tion. The models in this paper are the results of all this work.

As we have shown, the confidence range of our model covers the entire op-
erational range of the load to the Spotify storage system. As we have validated
through experimentation, the performance of the system deteriorates when the
load significantly surpass the model-predicted confidence limit. Lastly, apply-
ing our model, we predict for a specific Spotify backend site that the system
could handle the peak load observed during a specific day with fewer servers,
or, alternatively, that the system with 25 servers could handle a significantly
higher load than observed, without noticable performance degradation (for
important response time limit, which is 50 msec).

This work is important to Spotify, since latency is the key performance
metric of its storage system. The main reason for this is that estimating latency
distributions and capacity is essential to guarantee the quality of the overall
service. Thus, while the system we evaluated is overprovisioned, our models
allow for predictions and capacity planning to accommodate user growth and
site failures. This growth in Spotify is at times very bursty, e.g., when the
service is launched in new countries. Note though that the results in this paper
extend beyond Spotify’s technology. In fact, our approach can be applied to
similar types of distributed key-value stores and other services that rely on
them, such as video streaming, as long as the assumptions in Section 3 hold.
For instance, depending on the size of the system and the object space, our
model can suggest the suitable object allocation policy, either the popularity-
aware (if the ratio of the number of objects and the number of servers is small)
or the random policy (if the ratio is large, see Equation 9).

As for future work, we plan to develop a subsystem that continuously esti-
mates the model parameters at runtime, taking into account that the resources
of the storage servers may be used by other processes than object retrieval, for
instance, for maintainence or system reconfiguration. Based on such a capabil-
ity, we envision an online performance management system for a distributed
key-value store like the Spotify storage system.
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Zürich.

Viktoria Fodor received her M.Sc. and Ph.D. degrees in computer engineering from the
Budapest University of Technology and Economics in 1992 and 1999, respectively. In 1999
she joined KTH Royal Institute of Technology, where she now acts as associate professor in
the Laboratory for Communication Networks. Her current research interests include network
performance evaluation, protocol design, sensor and multimedia networking.


