
On the Performance Potential of Different Types of
Speculative Thread-Level Parallelism

Arun Kejariwal† Xinmin Tian‡ Wei Li‡ Milind Girkar‡ Sergey Kozhukhov∗ Hideki Saito‡

Utpal Banerjee‡ Alexandru Nicolau† Alexander V. Veidenbaum† Constantine D. Polychronopoulos§
†Center for Embedded Computer Systems ‡Intel Compiler Labs ∗Intel Compiler Labs §Center for Supercomputing Research and Development

University of California at Irvine Intel Corporation Intel Corporation University of Illinois at Urbana-Champaign
Irvine, CA, USA Santa Clara, CA, USA Novosibirsk, Russia Urbana, IL, USA

ABSTRACT
Recent research in thread-level speculation (TLS) has pro-
posed several mechanisms for optimistic execution of difficult-
to-analyze serial codes in parallel. Though it has been shown
that TLS helps to achieve higher levels of parallelism, evalu-
ation of the unique performance potential of TLS, i.e., per-
formance gain that be achieved only through speculation, has
not received much attention. In this paper, we evaluate this
aspect, by separating the speedup achievable via true TLP
(thread-level parallelism) and TLS, for the SPEC CPU2000
benchmark. Further, we dissect the performance potential of
each type of speculation — control speculation, data depen-
dence speculation and data value speculation. To the best
of our knowledge, this is the first dissection study of its
kind. Assuming an oracle TLS mechanism — which cor-
responds to perfect speculation and zero threading overhead
— whereby the execution time of a candidate program re-
gion (for speculative execution) can be reduced to zero, our
study shows that, at the loop-level, the upper bound on the
arithmetic mean and geometric mean speedup achievable via
TLS across SPEC CPU2000 is 39.16% (standard deviation
= 31.23) and 18.18% respectively.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Measurement techniques; D.1.3 [Software]: Pro-
gramming Techniques—parallel programming

General Terms
Performance, Measurement

Keywords
Performance evaluation, speculative execution, control de-
pendence, data dependence, value dependence, DOALL loops

1. INTRODUCTION
Speculative execution model has been proposed as a means

of achieving higher levels of parallelism. Its roots can be
traced back to the early work in branch prediction [1] and its

This work was supported in part by the National Science Foundation under
grants NSF CCF-0311738 and CNS-0220069.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’06, June 28-30, Cairns, Queensland, Australia.
Copyright (c) 2006 ACM 1-59593-282-8/06/0006 ...$5.00.

use for global microcode compaction [2].1 Thereafter, based
on the speculative execution model, several techniques have
been proposed for extracting a higher degree of instruction-
level parallelism (ILP) [4]. With the emergence of multi-
threaded processors, researchers have proposed to use the
speculative execution model for extracting a higher degree
of thread-level parallelism (TLP) [5]. Three different types
of thread-level speculation (TLS) have been proposed to
further enhance the performance gain achievable via mul-
tithreading, viz., (a) control speculation (CS) [1]; (b) data
dependence speculation (DDS) [6]; and (c) data value spec-
ulation (DVS) [7] (these will be discussed further in Sec-
tion 2).

While TLS has several advantages such as latency toler-
ance [8], it comes at the cost of misspeculation; furthermore,
it also requires additional hardware resources.2 Clearly, in
case of parallel tasks such as iterations of a DOALL loop [9], it
is more profitable to execute them on different threads non-
speculatively (as there is nothing to speculate on). In such
cases TLS is not applicable or is not necessary. This gives
rise to a need to differentiate the performance gain achiev-
able via true TLP (which corresponds to threaded execution
of parallel tasks) from the one achievable via TLS. Lack of
this differentiation in the existing literature makes it difficult
to assess the true potential of TLS. Further, in prior works
the different types of TLS are not evaluated standalone, e.g.,
while evaluating a DVS scheme, support for CS and DDS is
implicitly assumed. In this paper, we remedy the above by
carefully dissecting the performance potential of true TLP
and TLS and of different types of TLS. Although TLS has
been proposed at both the loop level and the procedural
level, we shall restrict our evaluation of TLS to loops owing
to space limitations.

The main contributions of the paper are as follows:

o First, we present a loop-level characterization of the
entire SPEC CPU2000 benchmark suite. To our knowl-
edge, this is the first characterization of this suite. Un-
like previous attempts to characterize other applica-
tions which were simulation based, we obtain the loop
coverage, defined as the percentage of the total execu-
tion time spent in the loops, by first instrumenting the
code of each application with hardware performance

1A large amount of work has been done in the context
of speculative computation and related fields. Due to space
limitations, we shall only reference the early works of each
in this paper. However, a detailed set of references of each
is provided in [3]. Based on the context, pointers to the
sections, containing the relevant references, in [3] shall be
provided.

2The existing techniques for the three types of TLS re-
quire architectural/microarchitectural enhancements.



Figure 1: Thread-level Speculation Space

counters and then executing it on a real machine (2.8
GHz IntelR©Prescott Processor) with the reference data
sets.

o Second, we present a taxonomy of speculative exe-
cution wherein we cleanly separate different types of
speculation, e.g., with the help of code snippets from
SPEC CPU2000 we differentiate between DDS-Only
cases (i.e., cases in which only DDS is required for ex-
ploiting speculative TLP) from DDS+DVS cases (i.e.,
cases in which both DDS and DVS are required for ex-
ploiting speculative TLP). We believe that this classifi-
cation will help in the development of better evaluation
methodologies for future research in TLS.

o Third, using the Intel compiler and manual analysis,
we evaluate the extent of true TLP (at the loop-level)
in each application of SPEC CPU2000. This is par-
ticularly useful as it yields an upper bound (obtained
by filtering the above from the total loop coverage) on
the amount of speedup achievable by TLS.

o Fourth, we present an evaluation of the performance
potential of each type of speculation (independent of
the schemes being used for the same) in two ways:
standalone as well as in conjunction with other types
of speculation. To the best of our knowledge, such
a dissection is the first of its kind. Interestingly, in
some cases a particular type of TLS has higher perfor-
mance potential than CS+DDS+DVS. For example,
in 189.lucas DDS standalone has the highest perfor-
mance potential.

The rest of the paper is organized as follows: Section 2
presents the taxonomy of speculative execution. An overview
of the applications in SPEC CPU2000 is given in Section 3.
Evaluation of the performance potential of the different types
of thread-level speculation models is presented in Section 4.
Previous work is discussed in Section 5. Finally, in Section 6
we conclude with directions for future work.

2. TAXONOMY OF SPECULATIVE EXE-
CUTION

In this section, with the help of code snippets from appli-
cations in SPEC CPU2000, we discuss the different types of

TLS. The primary objective of this section is to distinguish
between the instances where a given type of speculation,
(say) CS, is useful standalone for speculative parallel execu-
tion vs. the instances where it is useful only when applied in
conjunction with other types of speculation, (say) CS+DDS
or CS+DVS or CS+DDS+DVS. For better understanding,
let us consider Figure 1 wherein the the overall thread-level
speculation space is represented by the bounding box. In
the figure, the regions corresponding to the CS/DDS/DVS-
Only labels represent the cases in which a program region
can be speculatively parallelized using a TLS approach of
the corresponding speculation type in a standalone fashion.
In contrast, the regions corresponding to the X+Y label,
where (X,Y) ∈ {(CS,DDS),(CS,DVS),(DDS,DVS)}, repre-
sent the cases in which a program region can be specula-
tively parallelized iff TLS approaches of both types, X and
Y, are applied. Similarly, the region corresponding to the
label CS+DDS+DVS represents the cases in which a pro-
gram region can be speculatively parallelized iff approaches
of all the three types of TLS are applied.

2.1 Control Speculation
Control speculation (or branch prediction) has been pro-

posed for long to exploit parallelism beyond basic blocks [1].
A large amount of work has been done in context of CS-
driven exploitation of higher levels of ILP for both VLIW
and superscalar processors (for related work, see [CM1]–
[CM11], [BP1]–[BP62] in [3]). Similarly, several schemes
have been proposed to use CS to achieve higher levels of
TLP (see [CS1]–[CS5] in [3]). Given a loop with condition-
als, the execution path is predicted for each iteration and
then the iterations are mapped on to the different threads.
A thread detects a control violation if the control flow of an
earlier thread causes it to be not executed at all (due to an
early exit) or on control misspeculation. For example, the
iterations of the loop shown in Figure 2 can be executed in
parallel on different threads with control speculation only,
as there does not exist any loop-carried dependence [10].
We classify such cases under the CS-Only category, refer to
Figure 1.

for (k=0; k<clb[i][j].occ; k++)
if (clb[i][j].u.io_blocks[k] == bnum)

break;

175.vpr: draw.c: 385

Figure 2: A candidate loop (with no loop-carried
dependence) for CS

However, CS alone does not facilitate full speculative par-

256.bzip2: bzip2.c: 2260

for (j=0; j<bbSize; j++) {

Int32 a2update = zptr[bbStart + j];
UInt16 qVal = (UInt16) (j >> shifts);
quadrant[a2update] = qVal;

if (a2update < NUM_OVERSHOOT_BYTES)
quadrant[a2update + last + 1] = qVal;

}

Figure 3: A candidate loop for CS+DDS



allel execution. For example, consider the loop shown in
Figure 3. CS is required in this case because the write to
quadrant is conditional. Also, CS in Figure 3 is different
from that of Figure 2 where it marks the loop exit condi-
tion. In Figure 3, the number of iterations is known but
there is a conditional inside. Observe the ambiguous depen-
dence on the write to the array quadrant. Clearly, the loop
cannot be executed in parallel based on CS-Only. One way
to parallelize the loop is via speculative synchronization, as
proposed by Martinez and Torrellas in [11]. However, this
would require additional hardware support and would incur
(potentially high) overhead. Alternatively, one could par-
allelize the loop by speculating on the dependence in each
iteration (DDS is discussed further later in subsection 2.2).
This would enable full speculative parallel execution of the
loop. We classify such cases under the CS+DDS category.

Although CS has advantages, the presence of a condi-
tional in a loop does not necessitate the use of CS. Using the
IntelR©compiler we found loops with conditionals which can
be executed in parallel (in a multithreaded fashion) without
CS. For example, let us consider the loop shown in Fig-
ure 4. On careful examination, one would note that the
loop obtained after applying reduction [12] on the variables
tmpOrMask and tmpAndMask is a DOALL loop.3 Clearly, there
is no need for thread-level CS in this case. However, con-
trol speculation may be still useful to boost the intra-thread
ILP (a discussion of this is beyond the scope of the pa-
per, see [CM1]–[CM11] in [3] for related work). We separate
such loops while evaluating the performance potential of CS-
Only, CS+DDS and CS+DVS categories.

177.mesa: vbxform.c: 579

for (i=0; i<n; i++) {

GLfloat ex = vEye[i][0], ey = vEye[i][1];
GLfloat ez = vEye[i][2], ew = vEye[i][3];
GLfloat cx = m0 * ex + m4 * ey + m8 * ez + m12 * ew;

GLfloat cz = m2 * ex + m6 * ey + m10 * ez + m14 * ew;
GLfloat cw = m3 * ex + m7 * ey + m11 * ez + m15 * ew;

GLfloat cy = m1 * ex + m5 * ey + m9 * ez + m13 * ew;

GLubyte mask = 0;
vClip[i][0] = cx;
vClip[i][1] = cy;
vClip[i][2] = cz;
vClip[i][3] = cw;
if (cx > cw) mask |= CLIP_RIGHT_BIT;
else if (cx < −cw) mask |= CLIP_LEFT_BIT;
if (cx > cw) mask |= CLIP_RIGHT_BIT;

else if (cz < −cw) mask |= CLIP_NEAR_BIT;

else if (cy < −cw) mask |= CLIP_BOTTOM_BIT;
if (cz > cw) mask |= CLIP_FAR_BIT;

if (mask) {
clipMask[i] |= mask;
tmpOrMask |= mask;

}

tmpAndMask &= mask;

}

Figure 4: An example DOALL loop with control flow

3Even though the variable tmpOrMask is updated inside
an if block, reduction can still be applied owing to the na-
ture of the OR operation.

2.2 Data Dependence Speculation
Several techniques have been proposed for code motion

which involve operations that may come from widely sepa-
rated places in the program (the early work in this context
relates to techniques proposed for global microcode com-
paction [2]). These code motions are restricted by data de-
pendencies, which have to be preserved to ensure the se-
mantic correctness of the transformed program. These de-
pendencies may be ambiguous when they involve indirect
(array) references or pointer references. For example, it is
unclear whether the iterations of the loop shown in Figure 5
can be executed in parallel because of potential aliasing be-
tween the writes to the array zptr in the different iterations.
We classify such cases, where there does not exist any control
dependence and there exist ambiguous data dependence(s),
under the DDS-Only category.

256.bzip2: bzip2.c: 2168

for (i=0; i<last; i++) {

c2 = block[i+1];
j = (c1 << 8) + c2;
c1 = c2;
ftab[j]−−;
zptr[ftab[j]] = i;

}

Figure 5: A candidate loop for DDS

Data dependence speculation corresponds to speculative
disambiguation of inter-thread memory dependences [6]. Many
schemes such as address prediction have been proposed for
the same [13] (also see [DDS1]–[DDS19] in [3]). This permits
load instructions to proceed speculatively without waiting
for their address operands. The predictability of data de-
pendences can be attributed to the locality in address values
[14]. Dependence collapsing [15], yet another approach for
data dependence speculation, eliminates data dependences
by combining a dependence among multiple instructions into
a single instruction. In each approach, if a misspeculation
is detected (by the hardware) then the offending specula-
tive thread is rolled back to the point of conflict and the
execution is resumed from there on the fly.

for (i=1; i<=cell_count; i++) {

300.twolf: ulap.c: 153

cellptr = carray[pairArray[block][i]];
cell_left = cellptr−>tileptr−>left;
cellptr−>cxcenter = left_edge − cell_left;
left_edge += cellptr−>tileptr−>right − cell_left + space;

}

Figure 6: A candidate loop for DDS+DVS

However, even in the absence of a control dependence,
DDS by itself does not guarantee maximal parallelization.
For example, let us consider the example shown in Figure 6.
On analysis one would observe there is an ambiguous de-
pendence, write to the cellptr->cxcenter, between the it-
erations of the loop. Even if this is eliminated via DDS,
the iterations of the loop cannot be executed in parallel as
there exists a true data dependence, write and read to the



256.bzip2: bzip2.c: 1076

for (i=minLen; i<=maxLen; i++) {
vec += (base[i+1]−base[i]);
limit[i] = vec−1;
vec <<= 1;

}

Figure 7: A candidate loop for DVS

variable left edge, between the different iterations. One
way to parallelize the loop is to speculate on the value of
left edge in each iteration. We classify such cases under
the DDS+DVS category.

2.3 Data Value Speculation
Data value speculation has been proposed as a means to

achieve parallelism beyond the dataflow limit determined
by the data dependences. DVS collapses true data depen-
dences [16] by predicting at run-time the result (or the out-
come value) of instructions before they are executed and
feeding the instructions that depend upon these values with
the predicted values [7]. Thus, DVS facilitates the parallel
execution of true data dependent instructions. Several rea-
sons such as data redundancy, run-time program constants
have been reported for the predictability of data values [17].
Based on the notion of value locality [17], DVS has been
proposed in primarily three different forms: (a) load value
prediction (this should not be confused with load address
prediction); (b) computational value prediction; and (c) re-
turn value (of a procedure) prediction (this should not be
confused with return address prediction). In [18], Sazeides
and Smith classify the value predictors in two classes: com-
putational such as the stride predictor and context-based
predictors such as a repeated sequence predictor and a non-
stride predictor. For example, let us consider the loop shown
in Figure 7 which has a recurrence on the variable vec. As a
consequence, the iterations of the loop cannot be executed in
parallel. Since we know for sure that the recurrence exists,
(in other words, there exists a definite data dependence)
DDS is not applicable in this case. In absence of a con-
ditional, CS is also not applicable. We classify such cases
under the DVS-Only category. The loop can be parallelized
by predicting the value of vec in iteration i, for each i.

253.perlbmk: mg.c: 1810

for (i=1; i<PL_origarc; i++) {
if (PL_origargv[i] == s+1

#ifdef OS2
|| PL_origarv[i] == s+2

#endif
)

{
++s;
s += strlen(s);

else
}

}
break;

Figure 8: A candidate loop for CS+DVS

DVS can potentially yield higher levels of parallelism when
used in conjunction with DDS (refer to Figure 6 for an ex-
ample) and CS. Let us consider the example shown in Fig-
ure 8. From the figure we note that prediction of the value
of s, for each i, in conjunction with CS enables parallel ex-
ecution of the loop. Observe that there are no ambiguous
dependence(s) in the loop; therefore, DDS is not applicable.
We classify such cases under the CS+DVS category.

The existing literature does not clearly distinguish the
DVS-Only and DDS+DVS categories of speculative execu-
tion. To clarify, we say that DVS is applicable iff there
exists a definite data dependence between two instructions,
as it does for the write to the variable vec in the different
iterations of the loop shown in Figure 7. The dependence
may be determined at either compile time or at run-time.

Lastly, our analysis shows that there exist program regions
(loops in the current context) which require application of
CS, DDS as well as DVS for speculative parallelization. One
such example is shown in Figure 9. Clearly, there is a need
for CS because of, for example, write to the recurrence vari-
able bits is under a conditional. Indirect reference to the
arrays tree and bl count necessitates DDS. Lastly, the re-
currence on the variables opt len and static len calls for
DVS. Thus, in this case all three types of speculation are
required. We classify such cases under the CS+DDS+DVS
category.

164.gzip: trees.c: 506

for (h=heap_max+1; h<HEAP_SIZE; h++) {
n = heap[h];
bits = tree[tree[n].Dad].Len + 1;
if (bits > max_length) bits = max_length, overflow++;
tree[n].Len = (ush)bits;
if (n > max_code) continue;

xbits = 0;
if (n >= base) xbits = extra[n−base];
f = tree[n].Freq;
opt_len += (ulg)f * (bits + xbits);
if (stree) static_len += (ulg)f * (stree[n].Len + xbits);

}

bl_count[bits]++;

Figure 9: A candidate loop for CS+DDS+DVS

3. AN OVERVIEW OF SPEC CPU2000
In this section, we present a brief overview of the ap-

plications in SPEC CPU2000 [19]. It consists of 12 inte-
ger and 14 floating point benchmarks. The size (in lines of
code) of each application and their brief description is pre-
sented in Table 1. The benchmark suite is representative
of a wide spectrum of application domains. It includes pro-
grams from the fields of chemistry, weather forecasting, me-
chanical engineering, physics. In addition, it also consists of
general-purpose applications such as data compression and
a C compiler. As shown in next section, the loop coverage
and the coverage profile of the different applications vary
significantly from each other. This behavior indeed pro-
vides a very good platform for evaluating the (loop-level)
performance potential of TLS on applications with different
performance characteristics.



Benchmark Lines of
Code

Language Description

Integer Benchmarks
164.gzip 8602 C Compression

175.vpr 17733 C FPGA Circuit Placement and Routing

176.gcc 239912 C C Programming Language Compiler

181.mcf 2457 C Combinatorial Optimization

186.crafty 21156 C Game Playing: Chess

197.parser 11391 C Word Processing

252.eon 41076 C++ Computer Visualization

253.perlbmk 85262 C PERL Programming Language

254.gap 71390 C Group Theory, Interpreter

255.vortex 67245 C Object-oriented Database

256.bzip2 4649 C Compression

300.twolf 20459 C Place and Route Simulator

Floating Point Benchmarks
168.wupwise 2184 Fortran 77 Physics / Quantum Chromodynamics

171.swim 435 Fortran 77 Shallow Water Modeling

172.mgrid 489 Fortran 77 Multi-grid Solver: 3D Potential Field

173.applu 3980 Fortran 77 Parabolic / Elliptic Partial Differential Equations

177.mesa 61323 C 3-D Graphics Library

178.galgel 15334 Fortran 90 Computational Fluid Dynamics

179.art 1270 C Image Recognition / Neural Networks

183.equake 1513 C Seismic Wave Propagation Simulation

187.facerec 2409 Fortran 90 Image Processing: Face Recognition

188.ammp 13483 C Computational Chemistry

189.lucas 2999 Fortran 90 Number Theory / Primality Testing

191.fma3d 60122 Fortran 90 Finite-element Crash Simulation

200.sixtrack 47252 Fortran 77 High Energy Nuclear Physics Accelerator Design

301.apsi 7488 Fortran 77 Meteorology: Pollutant Distribution

Table 1: Description of benchmarks in SPEC CPU2000

4. PERFORMANCE CHARACTERIZATION
In this section, we first present a loop-level characteriza-

tion of the SPEC CFP2000 and SPEC CINT2000 applica-
tions. Next, we present a thorough evaluation of the (loop-
level) performance potential of TLS. Although several stud-
ies have been done in the past evaluating the benefit of TLS
[20, 21, 22], they have the following limitations:

p First, previous limit studies correspond to a loose up-
per bound on the performance potential of TLS. This
in part can be attributed to the inaccurate coverage
analysis which in itself is an artifact of the limitations
of the compiler used. Instead, we used the highly op-
timizing IntelR©compiler to obtain a better loop cover-
age.

p Second, all the previous studies were simulation based.
Thus, their results do not correspond to a real ma-
chine. In contrast, we carried our experiments on a
real machine, see Table 2 for the system configura-
tion. This is important due to fact that state-of-the-art
processors such as the IntelR©Prescott processor have
several hardware accelerators, e.g., vector computa-
tion units. For example, intra-register vectorization of

the following loop (taken from 164.gzip:deflate.c:545)
yields a speedup of 8% on the entire application (which
directly relates to a decrease in the coverage of the
loop) on PentiumR©(P4) Processor as compared to the
default optimized version (O2) [23].

for (n=0; n<HASH_SIZE; n++){

m = head[n];

head[n] = (Pos) (m >= WSIZE? m-WSIZE : NIL);

}

A coverage analysis oblivious of such accelerators, as
in prior works, skews the coverage of the loops (on
the higher side) which in turn results in inaccurate
assessment of the performance potential of TLS.

Processor IntelR©Prescott Processor, 2.8 GHz

Memory 2 GB

L2 Cache 1 MB

Compiler Flags -O3 -Qansi alias -Q loop prof=1 -QxP -Qipo -Fa

OS Windows Server 2003 Enterprise Edition, 32-bit

Table 2: Experimental Setup



Integer Benchmarks
164.gzip 175.vpr 176.gcc 181.mcf 186.crafty 197.parser 252.eon 253.perlbmk 254.gap 255.vortex 256.bzip2 300.twolf

# of loops 103 331 1984 40 364 579 80 680 846 132 176 565

% Execution
Time

16.65 48.3 33.59 46.4 42.5 39.1 32.44 45.74 16.8 11.95 54.13 43.1

Floating Point Benchmarks
168.wupwise 171.swim 172.mgrid 173.applu 177.mesa 178.galgel 179.art

# of loops 17 52 47 59 155 941 67

% Execution
Time

98.5 98.9 95.9 98.4 44.4 89.1 78.1

183.equake 187.facerec 188.ammp 189.lucas 191.fma3d 200.sixtrack 301.apsi

# of loops 47 123 122 92 643 587 287

% Execution
Time

88.8 49.9 59.1 96.3 56.9 71.1 76

Table 3: Total number of innermost loops executed (after optimization) and their coverage, for each
application in SPEC CPU2000

p Third, given that applications and architectures have
evolved over time, it is difficult to assess the benefit of
TLS based on the previous studies as they used SPEC
CPU95 [24] benchmark which have been retired for
quite some time and have data sets that are too small
for today’s systems. Instead, we carried our evaluation
on SPEC CPU2000 benchmark which is considered to
be representative of modern applications and on the
IntelR©Prescott processor.

4.1 Loop-Level Analysis
In this subsection, we present results about the loop cov-

erage, defined as the percentage of the total execution time
spent in the loops, and the coverage profile for each appli-
cation in SPEC CPU2000. For above, the code generator of
the IntelR©compiler was modified for automatic insertion of
hardware performance counters. The point of insertion of
these counters (amongst the different phases of the compi-
lation process) has a direct effect on the coverage analysis.
This is due to the fact that insertion of these counters early
in the compilation process can potentially disable some of
the optimizations. Therefore, it is critical to make sure that
these counters are inserted only during the code generation
phase. In our experiments, we account for the overhead in-
curred due to the insertion of these counters. A detailed dis-
cussion of our instrumentation support is beyond the scope
of the paper.

Further, unlike previous works [25, 26] wherein the in-
struction count was a measure to characterize the loops, we
use the actual execution time spent in the loops as our cov-
erage metric. This is important in order to assess the true
performance gain achievable by parallelizing a loop via TLS.

4.1.1 Coverage
We compiled the applications listed in Table 1 using the

IntelR©compiler and ran them on a IntelR©Prescott processor
(see Table 2 for the system configuration). Each application
was run with the reference data set(s). As listed in Table 4,
some applications have multiple data sets. In such cases, the
coverage of a loop was computed as a weighted average over
all the data sets. Care should be taken when computing the
above as the number of loops executed may differ from one

data set to another. This is due to the fact that a loop may
be executed for one data set and not for another. The total
loop coverage is computed as follows: first, tick%, defined as
the total time spent in a given loop, is determined for each
loop. Next, the self%, defined as the execution time spent
in a loop excluding the time spent in any function or any
other loop that may be embedded in it, is determined for
each loop. Finally, the self% of all the loops is summed to
obtain the total loop coverage for a given application.

Table 3 presents the number of innermost loops and their
coverage for the applications in SPEC CPU2000. From the
table, we observe that only 1 out of 14 SPEC CFP2000
applications has a loop coverage less than 50%. On the
other hand, only 1 out of 12 applications, viz., 256.bzip2,
in SPEC CINT2000 has a loop coverage over 50%. Based

Integer Benchmarks

Benchmark Number of
data sets

Benchmark Number of
data sets

164.gzip 5 175.vpr 2

176.gcc 5 181.mcf 1

186.crafty 1 197.parser 1

252.eon 3 253.perlbmk 7

254.gap 1 255.vortex 3

256.bzip2 3 300.twolf 1

Floating Point Benchmarks

Benchmark Number of
data sets

Benchmark Number of
data sets

168.wupwise 1 171.swim 1

172.mgrid 1 173.applu 1

177.mesa 1 178.galgel 1

179.art 2 183.equake 1

187.facerec 1 188.ammp 1

189.lucas 1 191.fma3d 1

200.sixtrack 1 301.apsi 1

Table 4: Number of input (reference) data sets per
application in SPEC CPU2000



Integer Benchmarks
164.gzip 175.vpr 176.gcc 181.mcf 186.crafty 197.parser 252.eon 253.perlbmk 254.gap 255.vortex 256.bzip2 300.twolf

# of loops 82 210 1513 30 301 350 72 613 733 128 100 384

% Execution
Time

87.6 98.6 38.1 98.9 48 56.6 48.9 51.3 28.7 15.1 85.5 69.8

Floating Point Benchmarks
168.wupwise 171.swim 172.mgrid 173.applu 177.mesa 178.galgel 179.art

# of loops 18 27 25 29 150 575 24

% Execution
Time

98.5 99 99.7 99.8 52.5 99.3 99.9

183.equake 187.facerec 188.ammp 189.lucas 191.fma3d 200.sixtrack 301.apsi

# of loops 28 57 109 67 504 285 161

% Execution
Time

99.7 84.9 97.6 99.8 68.2 99.3 88.8

Table 5: Total number of outermost loops executed (after optimization) and their coverage, for each
application in SPEC CPU2000

on our preliminary analysis using the Intel’s VTune Perfor-
mance Analyzer [27], the low loop coverage can be in part
attributed to the time spent in library calls and recursion.
For example, in 176.gcc, approximately 30% of the total
execution time is spent in the (unoptimized) memcpy library
call. From above, we learn that for such applications it is
critical to develop better approaches to handle recursion and
to tune the libraries. A detailed analysis of the time spent
in non-loop code is beyond the scope of this paper and is
a subject of future work. Surprisingly, the loop coverage is
far lower than what we had expected (based on what has
been reported for the retired SPEC benchmarks). This is
due to the aggressive loop optimizations performed by the
IntelR©compiler such as full and partial vectorization.

Note that the number of loops (listed in Table 3) for each
application is not the same as the number of loops at the
source level. This can be primarily attributed to the fol-
lowing reasons: (i) Prior to counting the loops at the code
generation phase, the loops (at the source level) undergo a
large set of transformations (using the IntelR©compiler) such
as loop blocking, loop fusion, distribution, et cetera. (ii)
Also, the loop counts listed in Table 3 are their dynamic
counts. In other words, for a given data set, only those
loops are counted which are actually executed. For exam-
ple, loops within a function which is never executed are not
counted.

Another interesting thing to note is that a large num-
ber of loops does not imply a large loop coverage: compare
the number of loops and their coverage for 176.gcc and
197.parser. Similarly, a large loop (in terms of lines of
code) does not imply a large coverage. Furthermore, the
coverage of a loop is subject to other factors such as the set
of optimizations applied and the performance of the cache.

Table 5 presents the number of outermost loops and their
coverage for the applications in SPEC CPU2000. The ‘#
of loops’ count in both Table 3 and Table 5 include the
singly-nested loops. This is because a loop nest is not de-
fined in case of singly-nested loops. From Table 5, we ob-
serve that only 2 applications in SPEC CFP2000 have a
loop coverage less than 75%. In contrast, only 4 applica-
tions, viz., 164.gzip, 175.vpr, 181.mcf and 256.bzip2,
in SPEC CINT2000 have a loop coverage over 75%. As ex-

pected, in most applications the coverage of outermost loops
is larger than that of the innermost loops. For example,
in 164.gzip the coverage of the outermost loops is 87.6%
whereas the coverage of the innermost loops is only 16.65%.
Clearly, in such cases parallelization of outermost loops is
a must in order to achieve higher levels of parallelism. On
the other hand, in applications such as 186.crafty the cov-
erage of the outermost loops is almost the same as that of
the innermost loops. In such cases of parallelization of the
innermost loops might be preferable from compilation-time
perspective. This is due to the fact that parallelization of
non-perfect loop nests (if possible at all) calls for complex
control and data dependence analysis which has a direct
(adverse) impact on the compilation time. To our surprise,
in applications such as 254.gap and 255.vortex, the cover-
age of even the outermost loops is very low. As mentioned
earlier, this can be attributed in part to the time spent in
recursion and library calls. This provides a valuable guid-
ance to the researchers to focus on optimization of non-loop
code.

4.1.2 Coverage Profile
Figure 10 shows the coverage profile of the innermost loops

in the SPEC CINT2000 (due to space limitations, we do not
include the coverage profile of the outermost loops in SPEC
CINT2000 and of the loops in SPEC CFP2000). Only loops
with a coverage of more than 0.1% are shown in each graph.
Unlike the conventional wisdom, we observe that in many
applications the loop coverage is well distributed over several
loops. For example, in 176.gcc, 90% of the total coverage
of the innermost loops is spread over 100 loops. From this
we learn that in order to achieve significant speedups, one
would have to do well across the whole application. Like-
wise, we observe that in applications such as 255.vortex

the maximum coverage of a single loop is very limited, less
than 4% in case of 255.vortex. For such applications, the
benefit of employing TLS it not obvious due to the (high)
misspeculation overhead. This needs to be explored and is
a subject of future work.

4.2 Auto-parallelization
As mentioned earlier, it is critical to determine the speedup



% Execution time of all loops in 164.gzip

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 11 21 31 41 51 61 71 81 91 101
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 175.vpr

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 26 51 76 101 126 151 176 201 226 251 276 301 326
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 176.gcc

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 201 401 601 801 1001 1201 1401 1601 1801
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 181.mcf

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 186.crafty

0

1

2

3

4

5

6

7

8

9

10

1 26 51 76 101 126 151 176 201 226 251 276 301
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 197.parser

0

2

4

6

8

10

12

14

16

18

20

1 51 101 151 201 251 301 351 401 451
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 252.eon

0.00

2.00

4.00

6.00

8.00

10.00

1 11 21 31 41 51 61 71

Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 253.perlbmk

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

1 51 101 151 201 251 301 351 401 451 501 551 601 651
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 254.gap

0

0.5

1

1.5

2

2.5

3

1 101 201 301 401 501 601 701 801
Loop Number 

%
 E

xe
cu

tio
n 

tim
e

% Execution time of all loops in 255.vortex

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 26 51 76 101 126
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 256.bzip2

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 26 51 76 101 126 151 176

Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

% Execution time of all loops in 300.twolf

0

1

2

3

4

5

6

1 51 101 151 201 251 301 351 401 451 501 551
Loop Number

%
 E

xe
cu

tio
n 

Ti
m

e

Figure 10: Coverage profiles of the innermost loops in the different applications of SPEC CINT2000

achievable from true TLP in order to assess an upper bound
on the speedup achievable via TLS. For this, we breakdown
the loop coverage into DOALL type and Non-DOALL type, as
illustrated in Figure 11. The loops corresponding to the
DOALL sector can be parallelized via simple multithreading,
i.e., without any speculation. The sector corresponding to
the Non-DOALL loops constitutes the TLS space. We analyze
the latter in the next subsection to determine the perfor-
mance potential of different types of speculation.

We used the IntelR©compiler to auto-parallelize the loops.
The compiler performs a large set of optimizations via proce-
dural inlining, advanced inter-procedural analysis for maxi-
mal parallelization. Further, we carried manual analysis (at
the source level) of some of the loops which the compiler
could not parallelize. For example, we found a few DOALL

loops in 183.equake and 179.art which the compiler could
not parallelize. Such loops can be easily parallelized via
existing parallelizing compiler technology (not supported in

the compiler as of now) or via, for example, OpenMP [12]
pragmas such as — #pragma omp parallel for — which
mandate the compiler to parallelize the corresponding loop,
thereby alleviating the limitations of the compiler. Since
these loops are inherently parallel and do not require any ad-
ditional architectural or microarchitectural support for par-

Speculation Space
Thread−level

DOALL
Non

DOALL

Figure 11: Breakdown of Loop Coverage



Figure 12: DOALL, Non-DOALL breakdown of the coverage of innermost loops in SPEC CPU2000

Figure 13: DOALL, Non-DOALL breakdown of the coverage of outermost loops in SPEC CPU2000

allelization, we include the coverage of such loops as part of
the DOALL loop coverage. Note that no algorithmic changes
were made during the manual analysis. Only (about) 10%
of the total number of loops were parallelized manually.

Given a nested loop of depth n, where the depth of the
outermost and innermost loop are 1 and n respectively, the
coverage of DOALL and Non-DOALL loops is determined as
follows:

i) First, if there exists a DOALL loop (say, L) and a Non-DOALL

loop with depths k and k + 1, 1 ≤ k < n − 1, respec-
tively, then we include the tick% of L in the DOALL loop
coverage. We ignore all the loops embedded inside L

as there is no need for speculative parallelization of the
inner (w.r.t. L) loops. On the other hand, if the loop at
depth k + 1 is a DOALL loop, then we include the self%
of L in the DOALL loop coverage.

ii) Second, if there exists a Non-DOALL loop (say, L) which
is not embedded inside a DOALL loop, then we include
the self% of L in the Non-DOALL loop coverage. A DOALL

loop embedded inside L contributes to the DOALL loop
coverage.

The coverage of DOALL loops thus obtained is a tighter
lower bound than achievable from only compiler-driven auto-
parallelization. Therefore, the Non-DOALL sector in Figure 11
corresponds to an upper bound on the performance gain
achievable (at the loop-level) via TLS. In fact, the upper

bound is quite loose in nature as the current DOALL loop cov-
erage does not capture the inherent parallelism of Non-DOALL
loops. For instance, let us consider a Non-DOALL loop with n
iterations, wherein there exists a true dependence between
the ith and the (i + k)th iteration, for each 1 ≤ i ≤ n − k.
The above loop can be transformed into a doubly nested loop
wherein the inner loop is a DOALL loop and the outer loop
is a Non-DOALL loop with true dependence between consec-
utive iterations. Clearly, the inner loop can be parallelized
without any speculation. Such inherent parallelism must be
accounted for to obtain a tight upper bound on the perfor-
mance potential of TLS.

The aforementioned breakdown for the innermost and out-
ermost loops in SPEC CINT2000 and SPEC CFP2000 is
shown in Figures 12 and 13 respectively. Assuming an ora-
cle TLP and TLS mechanisms whereby the execution time
of the loops can be reduced to zero, the arithmetic mean
and geometric mean speedup achievable is shown in Table 7.

Arith. Std. Geo.

Mean Dev. Mean

Innermost Loops 28.56% 21.53 13.32%

Outermost Loops 39.16% 31.23 18.18%

Table 7: Upper bound on the loop-level speedup
achievable via TLS across SPEC CPU2000



Benchmark
CS-Only

(%)
DDS-Only

(%)
DVS-Only

(%)
CS+DDS

(%)
CS+DVS

(%)
DDS+DVS

(%)
CS+DDS+DVS

(%)

Integer Benchmarks
164.gzip 0.1 0.1 4.21 0.2 2.83 3.61 3.83

175.vpr 0.52 0.1 0.1 0.1 20.33 0.1 18.45

176.gcc 3.8 0.16 1.4 0.1 0.1 0.1 27.1

181.mcf 27 0.1 0.1 0.1 0.1 0.1 13.4

186.crafty 1.34 0.1 0.1 0.1 3.61 0.1 25.33

197.parser 1.59 0.1 0.1 0.1 9.41 0.1 16.89

252.eon 0.1 0.1 0.1 0.1 9.07 0.1 22.84

253.perlbmk 10.18 0.1 0.1 0.1 1.26 0.1 28.64

254.gap 0.1 0.1 0.1 0.1 4.9 0.1 1.6

255.vortex 0.1 0.1 0.1 0.1 3.27 0.1 6.55

256.bzip2 0.47 6.19 0.1 0.1 30.59 0.1 3.7

300.twolf 2.1 0.1 0.1 1.96 2.1 0.1 33.4

Geometric Mean 0.83 0.15 0.17 0.14 2.8 0.13 12.04

Floating Point Benchmarks
168.wupwise 0.1 0.1 0.1 0.1 0.1 0.1 78.2

171.swim 0.1 0.1 0.1 0.1 0.1 0.1 0.1

172.mgrid 0.2 0.2 0.2 0.2 0.1 0.2 0.2

173.applu 0.1 0.1 0.1 0.1 0.1 0.1 0.1

177.mesa 0.1 0.1 0.1 0.1 0.1 0.1 36.5

178.galgel 0.1 0.1 0.1 0.1 0.1 0.1 8.6

179.art 0.1 0.1 0.1 0.1 0.1 0.1 0.1

183.equake 0.1 0.1 0.1 0.1 0.1 0.1 0.1

187.facerec 0.1 0.1 0.1 0.1 0.1 0.1 31.8

188.ammp 9.4 7.6 0.1 0.1 12.3 0.1 20.4

189.lucas 0.1 61.6 0.1 0.1 0.1 0.1 0.1

191.fma3d 0.1 0.1 0.1 0.1 0.1 0.1 30.3

200.sixtrack 0.1 0.1 0.1 0.1 0.1 0.1 0.1

301.apsi 0.1 14.5 17.8 0.1 0.1 0.1 3.6

Geometric Mean 0.16 0.32 0.15 0.1 0.15 0.11 1.52

Table 6: Performance dissection of different types of speculation for SPEC CINT2000 and SPEC CFP2000

Of course, in practice reducing the loop coverage to zero is
not feasible. The actual speedup that can be achieved via
TLP and TLS is much lower. Interestingly, in an ideal case
speculative parallelization of outermost loops would yield a
modest 4.86% higher (geometric mean) speedup than what
can be achieved via speculative parallelization of innermost
loops.

From Figures 12 and 13 we make the following observations:

a) In all the SPEC CINT2000 applications the coverage
of Non-DOALL loops is more than the coverage of DOALL
loops. The coverage of the Non-DOALL innermost loops
varies from a minimum of 9.5% for 254.gap to a maxi-
mum 45.64% for 186.crafty. Whereas the coverage of
Non-DOALL outermost loops varies from a minimum of
15% for 255.vortex to a maximum of 96% for 181.mcf.
The low coverage of the DOALL loops can be attributed to
the presence of control and data dependences and to the
limitations of set of parallelizing loop transformations ap-
plied and the phase ordering of compiler optimizations.
The upper bound on the geometric mean speedup achiev-

able via speculative parallelization of Non-DOALL inner-
most and outermost loops is 29.13% and 49.73% respec-
tively.

b) In SPEC CFP2000, we observe that in 7 out of 14 ap-
plications the coverage of DOALL innermost loops is more
than that of Non-DOALL innermost loops. Interestingly,
in these 7 applications the latter have a negligible cov-
erage, which results in a modest upper bound on the
geometric mean speedup (= 6.81%) achievable via TLS
in SPEC CFP2000. In case of DOALL outermost loops, the
upper bound on the geometric mean speedup achievable
via TLS is 7.67%. On the other hand, we observe that
DOALL innermost loops have a coverage of more than 15%
for all applications except in 177.mesa and 188.ammp.
This yields a high upper bound on the geometric mean
speedup (= 38.66%) achievable via true TLP in SPEC
CFP2000. This upper bound is even higher (= 56.77%)
in case of outermost loops.

Overall, one has to also consider that the speedup achiev-
able through TLS is limited by a number of factors. The
Non-DOALL loop coverage of 29.13% can be sped up by a fac-



tor of 2 using two threads iff 100% parallel efficiency (defined
as the ratio of achievable speedup and number of threads)
can be achieved or using four threads with a 50% parallel
efficiency. Such high efficiency is very difficult to achieve in
practice. Therefore, an overall speedup of 1.17× that TLS
is capable of in these two cases is very optimistic.

4.3 Thread-level Speculation
Lastly, we present a dissection of the performance poten-

tial of the different types of TLS. To evaluate the above, we
analyzed the Non-DOALL innermost and outermost loops us-
ing the IntelR©compiler and via manual analysis at the source
level. Due to space limitations we present the dissection only
for the innermost loops. Nonetheless, the dissection of the
outermost loops has similar characteristics as that of the
innermost loops.

Since the total number of Non-DOALL loops is very large,
for each application we considered only the top (w.r.t. the
individual coverages) loops accounting for a total of 90% of
the coverage of the Non-DOALL innermost loops. In Table 6
we present the dissection of the performance potential of
each type of TLS. The columns in Table 6 correspond to
the different types of TLS, as illustrated in Figure 1. An
entry in a given cell of the table signifies the percentage of
the total execution time of the corresponding application
that can be parallelized with the corresponding TLS type.
Assuming an oracle mechanism for the TLS type, the entry
in a given cell also corresponds to an upper bound on the
performance potential of the TLS type. For example, 3.8%
of the total execution time of 176.gcc can be parallelized
with only control speculation. Similarly, 6.19% of the total
execution time of 256.bzip2 can be parallelized with only
data dependence speculation; in other words, DDS-Only has
a performance potential of 6.19% for 256.bzip2. The num-
ber 0.1 only signifies that the performance potential of the
corresponding TLS type for the given application is negligi-
ble. It should not be interpreted by its numerical value (as
this does not correspond to all the Non-DOALL loops).

Contrary to our expectation that CS+DDS+DVS would
have the highest performance potential, we observe that in
some cases CS-Only, DDS-Only and DVS-Only have the
highest potential as in 181.mcf, 189.lucas and 301.apsi

respectively. However, from the perspective of the entire
suite, we note that CS-Only, DDS-Only and DVS-Only have
a marginal performance potential, see the row correspond-
ing to the geometric mean in Table 6. Amongst the differ-
ent combinations, only CS+DDS+DVS seems to have some
benefit, which in itself is limited to 12.04% (assuming an or-
acle TLS mechanism). From our analysis, we conclude that
although TLS does have benefits (as established by prior
work), the uniquely achievable gain via TLS is somewhat
small.

5. PREVIOUS WORK
Task-level speculative computation has been long pro-

posed as a means for extracting higher levels of parallelism
[28]. The origin of the task-level speculative computation
can be traced back to the early works in functional pro-
gramming (for a detailed reference of previous work in this
context, see [EW1]–[EW9] in [3]). Speculative computa-
tion, as defined by Burton in [28], is a computation that
is started before it is known to be required. The key idea
is to speculatively execute tasks in parallel; on misspecula-

tion, the tasks are aborted and a recovery mechanism is used
to restore the machine state. With the emergence of multi-
threaded processors [29] (also see [MP1]–[MP3] in [3]), many
researchers have proposed the use of threads for exploiting
speculative parallelism in both hardware and software [30,
31, 32, 33]. This provides opportunities to find parallelism
among larger, non-sequential regions [34] of a program’s ex-
ecution, unlike a superscalar processor in which parallelism
extraction is restricted to a group of instructions fitting in
a hardware instruction window. Unlike parallelization for
traditional multiprocessors which requires conservative syn-
chronization for preserving program semantics, TLS can po-
tentially achieve higher levels of parallelism by exploiting dy-
namic parallelism. Furthermore, TLS is not limited to the
programmer’s (via use of explicit directives as in OpenMP
[12]) or the compiler’s ability [35, 36] to find parallel tasks in
a given program. Several architectures have been proposed
for exploiting speculative thread-level parallelism (TLP) [30,
31] (for a detailed listing of other speculative architectures
see [MP4]–[MP13] in [3]). Such architectures provide sup-
port for multiple hardware contexts and execution roll-back
in case of either a control or a data misspeculation. In addi-
tion, they provide mechanisms to forward values produced
by one thread to another. They primarily differ in how pro-
grams are partitioned into different threads: some rely on
the compiler to split the program into threads while the
others rely on hardware-based techniques.

Several schemes have been proposed for CS, DDS and
DVS (see [CS1]–[CS5], [DDS1]–[DDS19] and [DVS1]–[DVS35]
in [3] for an extended list of references). In [37], Tubella and
González proposed CS technique based on dynamic loop de-
tection wherein the history of the past executed loops is
used to speculate the future dynamic instruction sequence.
In [38], Huang et al. proposed a compiler technique for dy-
namic memory disambiguation wherein the disambiguator
creates an additional copy of the code that is dependent on
the memory references. In one copy of the code, the ad-
dresses of the two references are assumed to be the same. In
the other copy of the code, the two references are assumed
to be different. In both copies, operations that do not have
side effects are executed speculatively. Those that do are
guarded by the result of comparing the two addresses. In
[7], introduced the concept of data value prediction. While
the principal objective of branch prediction is to increase the
number of candidate instructions and help to efficiently fill
the pipeline empty slots, data value prediction aims to en-
able the processor to execute instructions beyond the limit
of true-dependence data dependences. Although the previ-
ous work present the benefit of the proposed techniques, the
true impact of TLS, independent of the technique employed
for a given type of speculation, has not been addressed so
far.

Several limits of parallelism studies have been been done
in the past, see ([LoP1]–[LoP14]) in [3]. In [39], Steffan and
Mowry explored the potential for using thread-level data
speculation to facilitate automatic parallelization. Amongst
all the prior works, only [20, 21] address TLS in this re-
gard. However, these have the following limitations: (a)
these studies were simulation-based which makes it difficult
to assess the benefit of TLS on real machines; (b) these stud-
ies used SPEC95 for their evaluation (which has been retired
for quite some time); and (c) more importantly, they do not
dissect the performance potential of different types of TLS.



6. CONCLUSION
Prior work in speculative multithreading has claimed that

TLS bears significant potential to boost performance. How-
ever, to our surprise, our analysis and evaluation of TLS
(excluding true TLP) on SPEC CPU2000 shows that TLS
has a limited arithmetic mean speedup potential of 39.16%
(standard deviation = 31.23) and a geometric mean speedup
potential of 18.18% at the loop level. Most strikingly, none
of the prior works filter out the performance gain uniquely
achieved by true-TLP (which corresponds to threaded ex-
ecution of truly parallel tasks such as the iterations of a
DOALL loop while assessing the impact of TLS. Our results
show that in many applications non-speculative TLP has
a much larger potential than TLS. Lastly, we presented a
dissection of the performance potential of different types of
TLS, both standalone and in conjunction with other types
of speculation. Our analysis shows that amongst the dif-
ferent combinations CS+DDS+DVS has the highest, albeit
modest, geometric mean speedup potential of 12.04% at the
loop level. Interestingly, we found that the total loop cov-
erage in many integer applications is quite low. For such
applications, this observation provides a valuable guidance
to the researchers to focus on optimization of non-loop code.

Several techniques have been proposed based on branch
prediction, predication et cetera to achieve higher levels of
ILP. Likewise, many approaches have been proposed based
on compiler-driven data and instruction prefetching [40, 41].
As future work, we plan to evaluate the performance poten-
tial of TLS beyond what is achievable via the techniques
mentioned above. In essence, we would like to assess the
ILP vs TLP/TLS trade-off.

7. ACKNOWLEDGMENTS
The first author would like to thank Ilya Cherny (Intel,

Novosibirsk, Russia) for his help in providing instrumenta-
tion support in the Intel compiler used for obtaining the loop
coverage of the applications in SPEC CPU2000. The first
author will also like to thank Prof. Mario Furnari, Istituto
di Cibernetica Eduardo Caianiello, Pozzuoli, Italy, for let-
ting know about the work done in speculative computation
in context of functional programming.

8. REFERENCES
[1] A. Liles Jr. and B. Wilner. Branch prediction mechanism.

IBM Technical Disclosure Bulletin, 22(7):3013–3016,
December 1979.

[2] J. A. Fisher. The Optimization of Horizontal Microcode
Within and Beyond Basic Blocks: An Application of
Processor Scheduling Beyond Basic Blocks. PhD thesis,
New York University, 1979.

[3] A. Kejariwal and A. Nicolau. Reading list of performance
analysis, speculative execution. http://www.ics.uci.edu/
∼akejariw/SpeculativeExecutionReadingList.pdf.

[4] J. A. Fisher. Trace Scheduling: A technique for global
microcode compaction. IEEE Transactions on Computers,
C-30(7):478–490, July 1981.

[5] L. Rauchwerger and D. Padua. The LRPD test:
Speculative run-time parallelization of loops with
privatization and reduction parallelization. In Proceedings
of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, pages 218–232, La
Jolla, CA, 1995.

[6] A. Nicolau. Run-time disambiguation: coping with
statically unpredictable dependencies. IEEE Transactions
on Computers, 38(5):633–678, 1989.

[7] F. Gabbay and A. Mendelson. Speculative execution based
on value prediction. Technical Report EE Department TR

# 1080, Technion–Israel Institute of Technology, November
1996.

[8] H. Wang, P. Wang, R. D. Weldon, S. M. Ettinger, H. Saito,
M. Girkar, S. S-W. Liao, and J. P. Shen. Speculative
precomputation: Exploring the use of multithreading for
latency. In Intel Technology Journal, February 2002.

[9] S. Lundstrom and G. Barnes. A controllable MIMD
architectures. In Proceedings of the 1980 International
Conference on Parallel Processing, St. Charles, IL, August
1980.

[10] U. Banerjee. Dependence Analysis for Supercomputing.
Kluwer Academic Publishers, Boston, MA, 1988.

[11] J. Martinez and J. Torrellas. Speculative synchronization:
Programmability and performance for parallel codes. IEEE
Micro, 23(6):126–134, December 2003.

[12] OpenMP Specification, version 2.5. http:
//www.openmp.org/drupal/mp-documents/spec25.pdf.

[13] T. N. Vijaykumar, S. Gopal, J. E. Smith, and G. Sohi.
Speculative versioning cache. IEEE Transactions on
Parallel and Distributed Systems, 12(12):1305–1317, 2001.

[14] K. M. Lepak, G. B. Bell, and M. H. Lipasti. Silent stores
and store value locality. IEEE Transactions on Computers,
50(11):1174–1190, 2001.

[15] R. R. Oehler and R. D. Groves. IBM RISC system/6000
system architecture. IBM Journal of Research and
Development, 34(1):23–36, January 1990.

[16] G. Estrin and R. Turn. Automatic assignment of
computations in a variable structure computer system.
IEEE Transactions on Electronic Computers,
EC-12(5):755–773, December 1963.

[17] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value
locality and load value prediction. SIGPLAN Notices,
31(9):138–147, 1996.

[18] Y. Sazeides and J. E. Smith. Limits of data value
predictability. International Journal of Parallel
Programming, 27(4):229–256, 1999.

[19] SPEC CPU2000. http://www.spec.org/cpu2000.
[20] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of

speculative thread-level parallelism. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 303–313, Newport Beach,
CA, October 1999.

[21] P. Marcuello and A. González. A quantitative assessment of
thread-level speculation techniques. In Proceedings of the
14th International Parallel and Distributed Processing
Symposium, pages 595–604, Cancun, Mexico, May 2000.

[22] F. Warg and P. Stenström. Limits on speculative
module-level parallelism in imperative and object-oriented
programs on cmp platforms. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 221–230, 2001.

[23] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian.
Automatic detection of saturation and clipping idioms. In
Proceedings of the 15th International Workshop on
Languages and Compilers for Parallel Computing, pages
61–74, 2002.

[24] SPEC CPU95. http://www.spec.org/cpu95/.
[25] Makoto Kobayashi. Dynamic characteristics of loops. IEEE

Transactions on Computers, 33(2):125–132, 1984.
[26] J. Larus. Loop-level parallelism in numeric and symbolic

programs. IEEE Transactions on Parallel and Distributed
Systems, 4(7):812–826, 1993.

[27] IntelR©VTuneTMPerformance Analyzer 8.0 for Linux.
http://www.intel.com/cd/software/products/asmo-na/
eng/vtune/vlin/index.htm.

[28] F. W. Burton. Speculative computation, parallelism and
functional programming. IEEE Transactions on
Computers, 34(12):1190–1193, 1985.

[29] R. H. Halstead Jr. and T. Fujita. MASA: A multithreaded
processor architecture for parallel symbolic computing. In
Proceedings of the 15th Annual International Symposium
on Computer architecture, pages 443–451, Honolulu,
Hawaii, 1988.

[30] M. Franklin and G. S. Sohi. The expandable split window
paradigm for exploiting fine-grain parallelism. In
Proceedings of the 19th International Symposium on

http://www.ics.uci.edu/~akejariw/SpeculativeExecutionReadingList.pdf
http://www.ics.uci.edu/~akejariw/SpeculativeExecutionReadingList.pdf
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.spec.org/cpu2000
http://www.spec.org/cpu95/
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/vlin/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/vlin/index.htm


Computer Architecture, pages 58–67, Gold Coast,
Australia, May 1992.

[31] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
414–425, Ligure, Italy, 1995.

[32] D. Bruening, S. Devabhaktuni, and S. Amarasinghe.
Softspec: Software-based speculative parallelism. In
Proceedings of the 3rd ACM Workshop on
Feedback-Directed and Dynamic Optimization, 2000.

[33] P. H. Wang, J. D. Collins, H. Wang, D. Kim, B. Greene,
K.-M. Chan, A. B. Yunus, T. Sych, S. F. Moore, and J. P.
Shen. Helper threads via virtual multithreading. IEEE
Micro, 24(6):74–82, 2004.

[34] R. Gupta and M. L. Soffa. Region scheduling: An approach
for detecting and redistributing parallelism. IEEE
Transactions on Software Engineering, 16(4):421–431,
1990.

[35] A. Bhowmik and M. Franklin. A general compiler
framework for speculative multithreaded processors. IEEE
Transactions on Parallel and Distributed Systems,
15(8):713–724, 2004.

[36] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau,
and J. Torrellas. POSH: A TLS compiler that exploits
program structure. In Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2005.

[37] J. Tubella and A. González. Control speculation in
multithreaded processors through dynamic loop detection.
In Proceedings of the 4th International Symposium on
High-Performance Computer Architecture, pages 14–23,
Las Vegas, NV, February 1998.

[38] A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative
disambiguation: A compilation technique for dynamic
memory disambiguation. In Proceedings of the 21th
International Symposium on Computer Architecture, pages
200–210, Chicago, IL, 1994.

[39] J. Steffan and T. Mowry. The potential for using
thread-level data speculation to facilitate automatic
parallelization. In Proceedings of the 4th International
Symposium on High-Performance Computer Architecture,
pages 2–13, February 1998.

[40] A. C. Klaiber and H. M. Levy. Architecture for
software-controlled data prefetching. In Proceedings of the
18th International Symposium on Computer Architecture,
pages 43–63, May 1991.

[41] D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. In Proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), pages
40–52, Santa Clara, CA, April 1991.


	1 Introduction
	2 Taxonomy of Speculative Execution
	2.1 Control Speculation
	2.2 Data Dependence Speculation
	2.3 Data Value Speculation

	3 An Overview of SPEC CPU2000
	4 Performance Characterization
	4.1 Loop-Level Analysis
	4.1.1 Coverage
	4.1.2 Coverage Profile

	4.2 Auto-parallelization
	4.3 Thread-level Speculation

	5 Previous Work
	6 Conclusion
	7 Acknowledgments
	8 REFERENCES -5pt 

