

On the performance variability of production cloud services

Citation for published version (APA):
Iosup, A., Yigitbasi, M. N., & Epema, D. H. J. (2011). On the performance variability of production cloud services.
In Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID
2011, Newport Beach CA, USA, May 23-26, 2011) (pp. 104-113). Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/CCGrid.2011.22

DOI:
10.1109/CCGrid.2011.22

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1109/CCGrid.2011.22
https://doi.org/10.1109/CCGrid.2011.22
https://research.tue.nl/en/publications/f94441fb-5274-4041-8ac7-14cddc863db2

On the Performance Variability of
Production Cloud Services

Alexandru Iosup
Parallel and Distributed Systems Group

Delft University of Technology,
Mekelweg 4, 2628 CD Delft

A.Iosup@tudelft.nl

Nezih Yigitbasi
Parallel and Distributed Systems Group

Delft University of Technology,
Mekelweg 4, 2628 CD Delft
M.N.Yigitbasi@tudelft.nl

Dick Epema
Parallel and Distributed Systems Group

Delft University of Technology,
Mekelweg 4, 2628 CD Delft
D.H.J.Epema@tudelft.nl

Abstract—Cloud computing is an emerging infrastructure
paradigm that promises to eliminate the need for companies
to maintain expensive computing hardware. Through the use
of virtualization and resource time-sharing, clouds address with
a single set of physical resources a large user base with diverse
needs. Thus, clouds have the potential to provide their owners the
benefits of an economy of scale and, at the same time, become an
alternative for both the industry and the scientific community to
self-owned clusters, grids, and parallel production environments.
For this potential to become reality, the first generation of
commercial clouds need to be proven to be dependable. In this
work we analyze the dependability of cloud services. Towards
this end, we analyze long-term performance traces from Amazon
Web Services and Google App Engine, currently two of the
largest commercial clouds in production. We find that the
performance of about half of the cloud services we investigate
exhibits yearly and daily patterns, but also that most services have
periods of especially stable performance. Last, through trace-
based simulation we assess the impact of the variability observed
for the studied cloud services on three large-scale applications,
job execution in scientific computing, virtual goods trading in
social networks, and state management in social gaming. We
show that the impact of performance variability depends on the
application, and give evidence that performance variability can
be an important factor in cloud provider selection.

I. INTRODUCTION
Cloud computing is emerging as an alternative to traditional

computing and software services such as grid computing and
online payment. With cloud computing resources and software
are no longer hosted and operated by the user, but instead
leased from large-scale data centers and service specialists
strictly when needed. An important hurdle to cloud adoption
is trusting that the cloud services are dependable, for example
that their performance is stable over long time periods. How-
ever, providers do not disclose their infrastructure characteris-
tics or how they change, and operate their physical resources in
time-sharing; this situation may cause significant performance
variability. To find out if the performance variability of cloud
services is significant, in this work we present the first long-
term study on the variability of performance as exhibited by
ten production cloud services of two popular cloud service
providers, Amazon and Google.
Ideally, clouds should provide services such as running a

user-given computation with performance equivalent to that of
dedicated environments with similar characteristics. However,
the performance characteristics of a cloud may vary over time

as a result of changes that are not discussed with the users.
Moreover, unlike current data centers and grids, clouds time-
share their resources, and time-shared platforms have been
shown [1] since the 1990s to cause complex performance
variability and even performance degradation.
Although it would be beneficial to both researchers and

system designers, there currently exists no investigation of
performance variability for cloud services. Understanding this
variability guides in many ways research and system design.
For example, it can help in selecting the service provider, de-
signing and tuning schedulers [2], and detecting and predicting
failures [3]. Tens of clouds [4], [5] started to offer services in
the past few years; of these, Amazon Web Services (AWS)
and Google App Engine (GAE) are two popular production
clouds [6]. A number of studies [6]–[8], [8]–[11], including
our previous work [11], investigate the performance of AWS,
but none investigate the performance variability or even system
availability for a period of over two months.
Our goal is to perform a comprehensive investigation of

the long-term variability of performance for production cloud
services. Towards this end, our main contribution is threefold:
1) We collect performance traces corresponding to ten
production cloud services provided by Amazon Web
Services and Google App Engine, currently two of the
largest commercial clouds (Sections III);

2) We analyze the collected traces, revealing for each ser-
vice both summary statistics and the presence or absence
of performance time patterns (Section IV and V);

3) We evaluate through trace-based simulation the impact
of the variability observed in the studied traces on three
large-scale applications that are executed today or may
be executed in the cloud in the (near) future: executing
scientific computing workloads on cloud resources, sell-
ing virtual goods through cloud-based payment services,
and updating the virtual world status of social games
through cloud-based database services.

II. PRODUCTION CLOUD SERVICES

Cloud computing comprises both the offering of infras-
tructure and software services [4], [6]. A cloud offering
infrastructure services such as computing cycles, storage space
or queueing services acts as Infrastructure as a Service (IaaS).

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CCGrid.2011.22

104

A cloud offering platform services such as a runtime envi-
ronment for compiled/interpreted application code operating
on virtualized resources acts as Platform as a Service (PaaS).
A third category of clouds, Software as a Service (SaaS),
incorporate the old idea of providing applications to users,
over the Internet.
To accommodate this broad definition of clouds, in our

model each cloud provides a set of services, and each service
a set of operations. In our terminology, a production cloud is a
cloud that operates on the market, that is, it has real customers
that use its services. Tens of cloud providers have entered
the market in the last five last years, including Amazon Web
Services (2006), ENKI (2003), Joyent (2004), Mosso (2006),
RightScale (2008), GoGrid (2008), Google App Engine (2008)
and recently Microsoft Azure(2010). From the clouds already
in production, Amazon Web Services and Google App Engine
are reported to have the largest number of clients [5] which
we describe in turn.

A. Amazon Web Services
Amazon Web Services (AWS) is an IaaS cloud comprising

services such as the Elastic Compute Cloud (EC2, performing
computing resource provisioning or web hosting operations),
Elastic Block Storage and its frontend Simple Storage Service
(S3, storage), Simple Queue Service (SQS, message queuing
and synchronization), Simple DB (SDB, database), and the
Flexible Payments Service (FPS, micro-payments). As op-
eration examples, the EC2 provides three main operations,
for resource acquisition, resource release, and resource status
query.
Through its services EC2 and S3, AWS can rent infras-

tructure resources; the EC2 offering comprises more than
10 types of virtual resources (instance types) and the S3
offering comprises 2 types of resources. Estimates based on the
numerical properties of identifiers given to provided services
indicate that Amazon EC2 rents over 40,000 virtual resources
per day [12], [13], which is two orders of magnitude more
than its competitors GoGrid and RightScale [13], and around
the size of the largest scientific grid in production.

B. Google App Engine
The Google App Engine (GAE) is an PaaS cloud comprising

services such as Java and Python Runtime Environments
(Run, providing application execution operations), the Data-
store (database), Memcache (caching), and URL Fetch (web
crawling). Although through the Run service users consume
computing and storage resources from the underlying GAE
infrastructure, GAE does not provide root access to these
resources, like the AWS.

III. METHOD
To characterize the long-term performance variability of

cloud services we first build meaningful datasets from per-
formance traces taken from production clouds, and then we
analyze these datasets and characterize the performance vari-
ability.

 0

 10000

 20000

Jan
2009

Feb
2009

Mar
2009

Apr
2009

May
2009

Jun
2009

Jul
2009

Aug
2009

Sep
2009

Oct
2009

Nov
2009

Dec
2009

S
a
m

p
le

 C
o
u
n
t

Date/Time

Fig. 1. Number of monthly data samples.

Our method is built around the notion of performance indi-
cators. We call a performance indicator the stochastic variable
that describes the performance delivered by one operation or
by a typical sequence of operations over time. For example,
the performance indicators for Amazon include the response
time of the resource acquisition operation of the EC2 service.

A. Performance Traces of Cloud Services
Data Source To characterize AWS and GAE we first ac-

quire data from the performance database created by Hyperic’s
CloudStatus team [14]. CloudStatus provides real-time values
and weekly averages of about thirty performance indicators
for AWS and GAE. In particular, it provides performance
indicators for five main services provided by AWS (EC2, S3,
SDB, SQS, and FPS) and for four main services provided by
GAE (Run, Datastore, Memcache, and URL Fetch). Cloud-
Status obtains values for the various performance indicators
by running performance probes periodically, with a sampling
rate of under 2 minutes. The CloudStatus probes can be reim-
plemented easily; we have repeated some of the CloudStatus
experiments in our previous work [11], [15], with similar
results. We conclude that using CloudStatus data reduces the
cost of our study, but does not reduce the applicability of the
results.
Data Sanitation We have acquired data from CloudStatus

through a sequence of web crawls (samples). The availability
and robustness of our crawling setup resulted in 253,174
useful samples, or 96.3% of the maximum number of samples
possible for the year. Figure 1 shows the number of samples
taken every month; during February, April, and September
2009 our crawling infrastructure did not manage to obtain
useful samples repeatedly (indicated by the reduced height
of the ”Sample Count” bars). Mostly during these month we
have lost 9,626 samples due to missing or invalid JSON data;
however, we have obtained 76–96% of the maximum number
of samples during these three months.

B. Method of Analysis
For each of the traces we extract the performance indicators,

to which we apply independently an analysis method with
three steps: find out if variability is present at all, find out the
main characteristics of the variability, and analyze in detail the
variability time patterns. We explain each step in the following,
in turn.
To find out if variability is present at all we select one month

of data from our traces and plot the values of the performance

105

indicator where a wide range of values may indicate variability.
The month selection should ensure that the selected month
does not correspond to a single calendar month (to catch some
human-scheduled system transitions), is placed towards the
end of the year 2009 (to be more relevant) but does not overlap
with December 2009 (to avoid catching Christmas effects).
To find out the characteristics of the variability we compute

six basic statistics, the five quartiles (Q0–Q4) including the
median (Q2), the mean, and the standard deviation. We also
compute one derivative statistic, the Inter-Quartile Range
(IQR, defined as Q3 − Q1). We thus characterize for each
studied parameter its location (mean and median), and its
variability or scale (the standard deviation, the IQR, and the
range). Either a relative difference between the mean and
the median of over 10 percent, or a coefficient of variation
above 1.10 indicate high variability and possibly a non-normal
distribution of values which impacts negatively the ability
to enforce soft performance guarantees. Similarly, a ratio
between the IQR and the median above 0.5 indicates that the
bulk of the performance observations have high variability, and
a ratio between range and the IQR above 4 indicates that the
performance outliers are severe.
Finally, to analyze the variability over time we investigate

for each performance indicator the presence of yearly (month-
of-year and week-of-year), monthly (day-of-month), weekly
(day-of-week and workday/weekend), and daily patterns (hour-
of-day). To this end, we first split for each time pattern
investigated the complete dataset into subsets, one for each
category corresponding to the time pattern. For example, to
investigate the monthly time pattern we split the complete
dataset into twelve subsets comprising the performance value
samples observed during a specific month. Then, we compute
for each subset the basic and derivative statistics performed
over the complete dataset in the second step, and plot them
for visual inspection. Last, we analyze the results and the plots,
record the absence/presence of each investigated time pattern,
and attempt to detect new time patterns.

C. Is Variability Present?
An important assumption of this work is that the perfor-

mance variability of production cloud services indeed exists.
We follow in this section the first step of our analysis method
and verify this assumption.
Towards this end, we present the results for the selection

of data from Sep 26 to Oct 26, 2009. For this month, we
present here only the results corresponding to one sample
service from each of the Amazon and Google clouds. Figure 2
shows the performance variability exhibited by the Amazon
EC2 service (top of the figure, one performance indicator)
and by the Google URL Fetch service (bottom of the figure,
six performance indicators) during the selected month. For
EC2, the range of values indicates moderate-to-high perfor-
mance variability. For URL Fetch, the wide ranges of the
six indicators indicate high variability for all URL Fetch
operations, regardless of the target URL. In addition, the
URL Fetch service targeting eBay web pages suffers from

 0

 20

 40

 60

 80

 100

 120

 140

 160

26-09
2009

03-10
2009

10-10
2009

17-10
2009

24-10
2009

D
e
la

y
 [
s
]

Date/Time

EC2 Res. Acquisition (hourly avg)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

26-09
2009

03-10
2009

10-10
2009

17-10
2009

24-10
2009

U
R

L
 F

e
tc

h
 [
m

s
]

Date/Time

api.facebook.com (hourly avg)
api.hi5.com (hourly avg)

api.myspace.com (hourly avg)
ebay.com (hourly avg)

s3.amazonaws.com (hourly avg)
api-3t.paypal.com (hourly avg)

Fig. 2. Performance variability for two selected cloud services during the
period Sep 26, 2009 to Oct 26, 2009: (top) for Amazon EC2, and (bottom)
for Google URL Fetch.

a visible decrease of performance around Oct 17, 2009. We
have also analyzed the results for the selected month for all
the other cloud services we investigate in this work, and
have experimented with multiple one-month selections that
follow the rules stated by our analysis method; in all cases we
have obtained similar results (for brevity reasons not shown).
To conclude, the effects observed in this section give strong
evidence of the presence of performance variability in cloud
services, and motivate an in-depth analysis of the performance
variability of both Amazon and Google cloud services.

IV. THE ANALYSIS OF THE AWS DATASET

In this section, we present the analysis of the AWS dataset.
Each service comprises several operations, and for each oper-
ation, we investigate the performance indicators to understand
the performance variability delivered by these operations.

A. Summary Statistics

In this section we follow the second step of our analysis
method and analyze the summary statistics for AWS; Table I
summarizes the results. Although the EC2 deployment latency
has low IQR, it has a high range. We observe higher range
and IQR for the performance of S3 measured from small
EC2 instances (see Section IV-C) compared to performance
measured from large and extra large EC2 instances. Similar to
EC2, SDB also has low IQR but a high range especially for
the update operations. Finally, FPS latency is highly variable
which has implications for the applications using this service
for payment operations as we present in Section VI-C.

106

TABLE I
SUMMARY STATISTICS FOR AMAZON WEB SERVICES’S CLOUD SERVICES.

Service Min Q1 Median Q3 Max Mean SD
EC2 [s]
Deployment Latency 57.00 73.59 75.70 78.50 122.10 76.62 5.17
S3 [MBps]

GET EU HIGH 0.45 0.65 0.68 0.70 0.78 0.68 0.30
GET US HIGH 8.60 15.50 17.10 18.50 25.90 16.93 2.39
PUT EU HIGH 1.00 1.30 1.40 1.40 1.50 1.38 0.10
PUT US HIGH 4.09 8.10 8.40 8.60 9.10 8.26 0.55

SDB [ms]
Query Response Time 28.14 31.76 32.81 33.77 85.40 32.94 2.39

Update Latency 297.54 342.52 361.97 376.95 538.37 359.81 26.71
SQS [s]

Lag Time 1.35 1.47 1.50 1.79 6.62 1.81 0.82
FPS [ms]

Latency 0.00 48.97 53.88 76.06 386.43 63.04 23.22

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

 1 5 9 13 17 21 25 29 33 37 41 45 49 53

D
e

la
y
 [

s
]

Time Reference (Week of 2009)

Quantiles
Median

Mean

Fig. 3. Amazon EC2: The weekly statistical properties of the resource
acquisition operation. The box and whiskers show min-Q1-Q3-max.

B. Amazon Elastic Compute Cloud (EC2)
CloudStatus.com reports the following performance indica-

tor for the EC2 service:
1) Deployment Latency - The time it takes to start an
m1.small instance, from the time startup is initiated to
the time that the instance is available.

Figure 3 shows weekly statistical properties of the EC2
Resource Acquisition operation. We observe higher IQR and
range for deployment latency from week 41 till the end of
the year compared to the remainder of the year probably due
to increasing user base of EC2. Steady performance for the
deployment latency is especially important for applications
which uses the EC2 for auto-scaling.

C. Amazon Simple Storage Service (S3)
CloudStatus.com reports the throughput of S3 where the

throughput is measured by issuing S3 requests from US-based
EC2 instances to S3 buckets in the US and Europe. ”High I/O”
metrics reflect throughput for operations on Large and Extra
Large EC2 instances.
The following performance indicators are reported:
1) Get Throughput (bytes/second) - Estimated rate at
which an object in a bucket is read (GET).

2) Put Throughput Per Second (bytes/second) - Esti-
mated rate at which an object in a bucket is written
(PUT).

Figure 4 (top) depicts the hourly statistical properties of the
S3 service GET EU HI operation. The range has a pronounced
daily pattern, with evening and night hours (from 7PM to 2AM
the next day) exhibiting much lower minimal transfer rates,

 0
 78

 156
 234
 312
 390
 468
 546
 624
 702
 780

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
h
ro

u
g
h
p
u
t
[K

B
p
s
]

Time Reference [Hour/Day]

Quantiles
Median

Mean

 0
 78

 156
 234
 312
 390
 468
 546
 624
 702
 780

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
h
ro

u
g
h
p
u
t
[K

B
p
s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

 0

 4

 8

 12

 16

 20

 24

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
h
ro

u
g
h
p
u
t
[M

B
p
s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

Fig. 4. Amazon S3: The hourly statistical properties of GET EU HI
operations (top), and the monthly statistical properties of the GET EU HI
operations (middle) and of GET US HI operations (bottom).

and the work day hours (from 8AM to 3PM) exhibiting much
higher minimal transfer rates.
Figure 4 (middle) shows the monthly statistical properties

of the S3 service GET EU HI operation. The operation’s
performance changes its pattern in August 2009: the last five
months of the year exhibit much lower IQR and range, and
have significantly better performance – the median throughput
increases from 660 KBps to 710 KBps.
Figure 4 (bottom) shows the monthly statistical properties

of the S3 service GET US HI operation. The operation
exhibits pronounced yearly patterns, with the months January,
September, and October 2009 having the lowest mean (and
median) performance. Figure 4 (bottom) also shows that there
exists a wide range of median monthly performance values,
from 13 to 19 MBps over the year.

D. Amazon Simple DB (SDB)
CloudStatus.com reports the following performance indica-

tors for the SDB service:
1) Query Response Time (ms) - The time it takes to exe-
cute a GetAttributes operation that returns 100 attributes.

2) Update Latency (ms) - The time it takes for the updates
resulting from a PutAttributes operation to be available
to a subsequent GetAttributes operation.

Figure 5 shows the monthly statistical properties of the SDB
Update operation. The monthly median performance has a
wide range, from 315 to 383 ms. There is a sudden jump
in range in June 2009; the range decreases steadily from
June to December to the nominal values observed in the first
part of the year. This is significant for applications such as
online gaming, in which values above the 99% performance
percentile are important, as unhappy users may trigger massive
customer departure through their social links (friends and
friends-of-friends).

107

 0

 53

 106

 159

 212

 265

 318

 371

 424

 477

 530

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
e
la

y
 [
m

s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

Fig. 5. Amazon SDB: The monthly statistical properties of the update
operation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

D
e
la

y
 [
s
]

Time Reference (Week of 2009)

Variable Performance

Removed Data
After This Point

Quantiles
Median

Mean

Fig. 6. Amazon SQS: The weekly statistical properties. The statistics for
the weeks 30–53 (not shown) are very similar to those for weeks 26–29.

E. Amazon Simple Queue Service (SQS)
CloudStatus.com reports the following performance indica-

tors for the SQS service:
1) Average Lag Time (s) - The time it takes for a posted
message to become available to be read. Lag time is
monitored for multiple queues that serve requests from
inside the cloud. The average is taken over the lag times
measured for each monitored queue.

Figure 6 depicts the weekly statistical properties of the
SQS service. The service exhibits long periods of stability
(low IQR and range, similar median performance week after
week), for example weeks 5–9 and 26–53, but also periods of
high performance variability, especially in weeks 2–4, 13–16,
and 20–23. The periods with high performance variability are
not always preceded by weeks of moderate variability. The
duration of a period with high performance variability can be
as short as a single week, for example during week 18.

F. Amazon Flexible Payment Service (FPS)
CloudStatus.com reports the following performance indica-

tors for the FPS service:
1) Response Time (s) - The time it takes to execute a
payment transaction. The response time does not include
the round trip time to the FPS service nor the time taken
to setup pay tokens. Since Amazon reports the response
time to the nearest second, payments that complete in
less than a second will be recorded as zero.

Figure 7 depicts the monthly statistical properties of the
FPS service. There is a sudden jump in the monthly median

 0

 38

 76

 114

 152

 190

 228

 266

 304

 342

 380

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
e
la

y
 [
s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

Fig. 7. Amazon FPS: The monthly statistical properties.

TABLE II
PRESENCE OF TIME PATTERNS OR SPECIAL PERIODS FOR THE AWS

SERVICES. A CELL VALUE OF Y INDICATES THE PRESENCE OF A PATTERN
OR A SPECIAL PERIOD.

Perf. Yearly Monthly Weekly Daily Special
Indicator (Month) (Day) (Day) (Hour) Period
Amazon AWS
EC2 Y
S3 Y Y Y Y
SDB Y Y
SQS Y
FPS Y

performance in September 2009, from about 50 to about 80
ms; whereas the median is relatively constant before and after
the jump. We also observe high variability in the maximum
performance values of the FPS service across months.

G. Summary of the AWS Dataset

The performance results indicate that all Amazon services
we analyzed in this section exhibit one or more time pat-
terns and/or periods of time where the service shows special
behavior, as summarized in Table II. EC2 exhibits periods
of special behavior for the resource acquisition operation
(Section IV-B). Both storage services of Amazon, SDB and
S3, present daily, yearly, and monthly patterns for different
operations (Section IV-D and Section IV-C). Finally, SQS
and FPS show special behavior for specific time periods
(Section IV-E and Section IV-F).

V. THE ANALYSIS OF THE GOOGLE APP ENGINE DATASET

In this section, we present the analysis of the Google App
Engine dataset. Each service comprises several operations, and
for each operation, we investigate the performance indicators
in detail to understand the performance variability delivered
by these operations.

A. Summary Statistics

In this section we follow the second step of our anal-
ysis method and analyze the summary statistics for GAE;
Table III summarizes the results. The GAE Python runtime
and Datastore have high range and IQRs leading to highly
variable performance. However, we observe relatively stable
performance for the Memcache service.

108

TABLE III
SUMMARY STATISTICS FOR GOOGLE APP ENGINE’S CLOUD SERVICES.

Service Min Q1 Median Q3 Max Mean SD

Python Runtime [ms] 1.00 284.14 302.31 340.37 999.65 314.95 76.39
Datastore [ms]

Create 1040 1280 1420 1710 5590 1600 600
Delete 1.00 344.40 384.22 460.73 999.86 413.24 102.90
Read 1.00 248.55 305.68 383.76 999.27 336.82 118.20

Memcache [ms]
Get 45.97 50.49 58.73 65.74 251.13 60.03 11.44
Put 33.21 44.21 50.86 60.44 141.25 54.84 13.54

Response 3.04 4.69 5.46 7.04 38.71 6.64 3.39
URL Fetch [ms]
s3.amazonaws.com 1.01 198.60 226.13 245.83 983.31 214.21 64.10

ebay.com 1.00 388.00 426.74 460.03 999.83 412.57 108.31
api.facebook.com 1.00 172.95 189.39 208.23 998.22 195.76 44.40

api.hi5.com 71.31 95.81 102.58 113.40 478.75 107.03 25.12
api.myspace.com 67.33 90.85 93.36 103.85 515.88 97.90 14.19

paypal.com 1.00 406.57 415.97 431.69 998.39 421.76 35.00

 0

 99

 198

 297

 396

 495

 594

 693

 792

 891

 990

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
e
la

y
 [
m

s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

Fig. 8. Google Run: The monthly statistical properties of running an
application in the Python Runtime Environment.

B. The Google Run Service
CloudStatus.com reports the following performance indica-

tor for the Run service:
1) Fibonacci (ms) - The time it takes to calculate the 27th
Fibonacci number in the Python Runtime Environment.

Figure 8 depicts the monthly statistical properties of the
GAE Python Runtime. The last three months of the year
exhibit stable performance, with very low IQR and narrow
range, and with steady month-to-month median. Similar to
the Amazon SDB service (see Section IV-D), the monthly
median performance has a wide range, from 257 to 388 ms.
Independently of the evolution of the median, there is a sudden
jump in range in March 2009; the maximum response time
(lowest performance) decreases steadily up to October, from
which point the performance becomes steady.

C. The Google Datastore Service
To measure create/delete/read times CloudStatus uses a

simple set of data which we refer to the combination of all
these entities as a ’User Group’. CloudStatus.com reports the
following performance indicators for the Datastore service:
1) Create Time (s) - The time it takes for a transaction
that creates a User Group.

2) Read Time (ms) - The time it takes to find and read
a User Group. Users are randomly selected, and the
user key is used to look up the user and profile picture
records. Posts are found via a GQL (Google Query
Language) ancestor query.

 0

 99

 198

 297

 396

 495

 594

 693

 792

 891

 990

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
e
la

y
 [
m

s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

Fig. 9. Google Datastore: The monthly statistical properties of the read
operation.

 0

 14

 28

 42

 56

 70

 84

 98

 112

 126

 140

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
e
la

y
 [
m

s
]

Time Reference [Month/Year]

Quantiles
Median

Mean

Fig. 10. Google Memcache: The monthly statistical properties of the PUT
operation.

3) Delete Time (ms) - The time it takes for a transaction
that deletes a User Group.

Figure 9 depicts the monthly statistical properties of the
GAE Datastore service read performance. The last four months
of the year exhibit stable performance, with very low IQR
and relatively narrow range, and with steady month-to-month
median. In addition we observe yearly patterns for the months
January through August. Similar to Amazon S3 GET opera-
tions, the Datastore service exhibits a high IQR with yearly
patterns (Section IV-C), and in contrast to S3, the Datastore
service read operations exhibit a higher range. Overall, the
Update operation exhibits a wide yearly range of monthly
median values, from 315 to 383 ms.

D. The Google Memcache Service
CloudStatus.com reports the following performance indica-

tors for the Memcache service:
1) Get Time (ms) - The time it takes to get 1 MB of data
from memcache.

2) Put Time (ms) - The time it takes to put 1 MB of data
in memcache.

3) Response Time (ms) - The round-trip time to request
and receive 1 byte of data from cache. This is analogous
to Get Time, but for a smaller chunk of data.

Figure 10 depicts the monthly statistical properties of the
Memcache service PUT operation performance. The last three
months of the year exhibit stable performance, with very low
IQR and relatively narrow range, and with steady month-
to-month median. The same trend can be observed for the

109

 0

 47

 94

 141

 188

 235

 282

 329

 376

 423

 470

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

D
e
la

y
 [
m

s
]

Time Reference [Hour/Day]

Quantiles
Median

Mean

Fig. 11. Google URL Fetch: The hourly statistical properties; target web
site is the Hi5 social network.

TABLE IV
PRESENCE OF TIME PATTERNS OR SPECIAL PERIODS FOR THE GAE

SERVICES. A CELL VALUE OF Y INDICATES THE PRESENCE OF A PATTERN
OR A SPECIAL PERIOD.

Perf. Yearly Monthly Weekly Daily Special
Indicator (Month) (Day) (Day) (Hour) Period
Google App Engine
Run Y Y
Datastore Y Y
Memcache
URL Fetch Y Y Y

Memcache GET operation. Uniquely for the Memcache PUT
operation, the median performance per month has an increas-
ing trend over the first ten months of the year, with the
response time decreasing from 79 to 43 ms.

E. The Google URL Fetch Service

CloudStatus.com reports the response time (ms) which is
obtained by issuing web service requests to several web sites:
api.facebook.com, api.hi5.com, api.myspace.com, ebay.com,
s3.amazonaws.com, and paypal.com.
Figure 11 depicts the hourly statistical properties of the

URL Fetch service when the target web site is the Hi5
social network. The ranges of values for the service response
times vary greatly over the day, with several peaks. We have
observed a similar pattern for other target web sites for which
a URL Fetch request is issued.

F. Summary of the Google App Engine Dataset

The performance results indicate that all GAE services we
analyzed in this section exhibit one or more time patterns
and/or periods of time where the service provides special
behavior, as summarized in Table IV. The Python Runtime
exhibits periods of special behavior and daily patterns (Sec-
tion V-B). The Datastore service presents yearly patterns and
periods of time with special behavior (Section V-C). The
Memcache service performance has also monthly patterns
and time patterns of special behavior for various operations
(Section V-D). Finally, the URL Fetch service presents weekly
and daily patterns, and also shows special behavior for specific
time periods for different target websites (Section V-E).

TABLE V
LARGE-SCALE APPLICATIONS USED TO ANALYZE THE IMPACT OF

VARIABILITY.

Section Application Used Service
Section VI-B Job execution GAE Run
Section VI-C Selling virtual goods AWS FPS
Section VI-B Game status management AWS SDB

GAE Datastore

VI. THE IMPACT OF VARIABILITY ON
LARGE-SCALE APPLICATIONS

In this section we assess the impact of the variability of
cloud service performance on large-scale applications using
trace-based simulations. Since there currently exists no ac-
cepted traces or models of cloud workloads, we propose sce-
narios in which three realistic applications would use specific
cloud services. Table V summarizes these applications and the
main cloud service that they use.

A. Experimental Setup
Input Data For each application, we use the real system

traces described in the section corresponding to the application
(column ”Section” in Table V), and the monthly performance
variability of the main service leveraged by the ”cloudified”
application (column ”Used Service” in Table V).
Simulator We design for each application a simulator that

considers from the trace each unit of information, that is, a
job record for the Job Execution scenario and the number of
daily unique users for the other two scenarios, and assesses the
performance for a cloud with stable performance vs variable
performance. For each application we select one performance
indicator, corresponding to the main cloud service that the
”cloudified” application would use. In our simulations, the
variability of this performance indicator, which, given as input
to the simulator, is the monthly performance variability ana-
lyzed earlier in this work. We define the reference performance
Pref as the average of the twelve monthly medians, and
attribute this performance to the cloud with stable perfor-
mance. To ensure that results are representative, we run each
simulation 100 times and report the average results.
Metrics We report the following metrics:
• For the Job Execution scenario, which simulates the
execution of compute-intensive jobs from grid and paral-
lel production environments (PPEs), we first report two
traditional metrics for the grid and PPE communities:
the average response time (ART), the average bounded
slowdown (ABSD) with a threshold of 10 seconds [16];
the ABSD threshold of 10 eliminates the bias of the
average toward jobs with runtime below 10 seconds. We
also report one cloud-specific metric, Cost, which is the
total cost for running the complete workload, expressed
in millions of consumed CPU-hours.

• For the other two scenarios, which do not have traditional
metrics, we devise a performance metric that aggregates
two components, the relative performance and the relative
number of users. We design our metric so that the lower
values for the relative performance are better. We define
the Aggregate Performance Penalty as APR(t) =

110

TABLE VI
JOB EXECUTION (GAE RUN SERVICE): THE CHARACTERISTICS OF THE

INPUT WORKLOAD TRACES.

Trace ID, Trace System
Source (Trace ID Number of Size Load
in Archive) Mo. Jobs Users Sites CPUs [%]
Grid Workloads Archive [17], 3 traces
1. RAL (6) 12 0.2M 208 1 0.8K 85+
2. Grid3 (8) 18 1.3M 19 29 3.5K -
3. SharcNet (10) 13 1.1M 412 10 6.8K -
Parallel Workloads Archive [18], 2 traces
4. CTC SP2 (6) 11 0.1M 679 1 430 66
5. SDSC SP2 (9) 24 0.1M 437 1 128 83

P (t)
Pref

×
U(t)
Umax

, where P (t) is the performance at time t,
Pref is the reference performance, U(t) is the number
of users at time t, and Umax is the maximum number
of users over the course of the trace; P (t) is a random
value sampled from the distribution corresponding to the
current month at time t. The relative number of users
component is introduced because application providers
are interested in bad performance only to the extent it
affects their users; when there are few users of the appli-
cation, this component ensures that the APR(t) metric
remains low for small performance degradation. Thus,
the APR metric does not represent well applications
for which good and stable performance is important at
all times. However, for such applications the impact of
variability can be computed straightforwardly from the
monthly statistics of the cloud service; this is akin to
excluding the user component from the APR metric.

B. Grid and PPE Job Execution

Scenario In this scenario we analyze the execution of
compute-intensive jobs typical for grids and PPEs on cloud
resources.
Input Traces We use five long-term traces from real grids

and PPEs as workloads; Table VI summarizes their charac-
teristics, with the ID of each trace indicating the system from
which the trace was taken; see [17], [18] for more details about
each trace.
Variability We assume that the execution performance for

the cloud with steady performance is equivalent to the perfor-
mance of the grid from which the trace was obtained. We also
assume that the GAE Run service can run the input workload,
and exhibits the monthly variability evaluated in Section V-B.
Thus, we assume that the cloud with variable performance
introduces for each job a random slowdown factor derived
from the real performance distribution of the service for the
month in which the job was submitted.
Results Table VII summarizes the results for the job ex-

ecution scenario. The performance metrics ART, ABSD, and
Cost differ by less than 2% between the cloud with stable
performance and the cloud with variable performance. Thus,
the main finding is that the impact of service variability is low
for this scenario.

TABLE VII
JOB EXECUTION (GAE RUN SERVICE): HEAD-TO-HEAD PERFORMANCE

OF WORKLOAD EXECUTION IN CLOUDS DELIVERING STEADY AND
VARIABLE PERFORMANCE. THE ”COST” COLUMN PRESENTS THE TOTAL
COST OF THE WORKLOAD EXECUTION, EXPRESSED IN MILLIONS OF

CPU-HOURS.

Cloud with
Stable Performance Variable Performance

ART ABSD Cost ART ABSD Cost
Trace ID [s] (10s) [s] (10s)
RAL 18,837 1.89 6.39 18,877 1.90 6.40
Grid3 7,279 4.02 3.60 7,408 4.02 3,64
SharcNet 31,572 2.04 11.29 32,029 2.06 11.42
CTC SP2 11,355 1.45 0.29 11,390 1,47 0.30
SDSC SP2 7,473 1.75 0.15 7,537 1.75 0.15

0

30

60

90

120

150

180

210

01-01
2009

01-02
2009

01-03
2009

01-04
2009

01-05
2009

01-06
2009

01-07
2009

01-08
2009

01-09
2009

01-10
2009

01-11
2009

01-12
2009

0.00

0.60

1.20

1.80

2.40

3.00

3.60

4.20

M
ill

io
n
s
 o

f
D

a
ily

 U
n
iq

u
e
 U

s
e
rs

A
g
g
re

g
a
te

 P
e
rf

o
rm

a
n
c
e
 P

e
n
a
lt
y

Date/Time

Amazon FPS (right vertical axis)
users (left vertical axis)

Fig. 12. Selling Virtual Goods in Social Networks (Amazon FPS):
Aggregate Performance Penalty when using Amazon FPS as the micro-
payment backend. (Data source for the number of FaceBook users:
http://www.developeranalytics.com/)

C. Selling Virtual Goods in Social Networks
Scenario In this scenario we look at selling virtual goods by

a company operating a social network such as FaceBook, or
by a third party associated with such a company. For example,
FaceBook facilitates selling virtual goods through its own API,
which in turn could make use of Amazon’s FPS service for
micro-payments.
Input Traces We assume that the number of payment

operations depends linearly with the number of daily unique
users, and use as input traces the number of daily unique users
present on FaceBook (Figure 12).
Variability We assume that the cloud with variable perfor-

mance exhibits the monthly variability of Amazon FPS, as
evaluated in Section IV-F.
Results The main result is that our APR metric can be

used to trigger and motivate the decision of switching cloud
providers. Figure 12 shows the APR when using Amazon’s
FPS as the micro-payment backend of the virtual goods
vendor. The significant performance decrease of the FPS
service during the last four months of the year, combined
with the significant increase in the number of daily users,
is well captured by the APR metric–it leads to APR values
well above 1.0, to a maximum of 3.9 in November 2009.
If the clients respond to high payment latency similarly to
other consumers of Internet newmedia [19], [20], that is,
they become unsatisfied and quit, our APR metric is a clear
indicator for the virtual goods vendor that the cloud provider

111

0

1

2

3

4

5

6

7

01-03
2009

01-04
2009

01-05
2009

01-06
2009

01-07
2009

01-08
2009

01-09
2009

01-10
2009

01-11
2009

01-12
2009

01-01
2010

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ill

io
n
s
 o

f
D

a
ily

 U
n
iq

u
e
 U

s
e
rs

A
g
g
re

g
a
te

 P
e
rf

o
rm

a
n
c
e
 P

e
n
a
lt
y

Date/Time

Amazon SDB (right vertical axis)
users (left vertical axis)

0

1

2

3

4

5

6

7

01-03
2009

01-04
2009

01-05
2009

01-06
2009

01-07
2009

01-08
2009

01-09
2009

01-10
2009

01-11
2009

01-12
2009

01-01
2010

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ill

io
n
s
 o

f
D

a
ily

 U
n
iq

u
e
 U

s
e
rs

A
g
g
re

g
a
te

 P
e
rf

o
rm

a
n
c
e
 P

e
n
a
lt
y

Date/Time

Google Datastore (right vertical axis)
users (left vertical axis)

Fig. 13. Game Status Maintenance for Social Games (Amazon SDB and
Google App Engine Datastore): Aggregate Performance Penalty (top) when
using Amazon SDB as the database backend; (bottom) when using Google
App Engine Datastore as the database backend. (Data source for the number
of Farm Town users: http://www.developeranalytics.com/)

should be changed.

D. Game Status Maintenance for Social Games
Scenario In this scenario we investigate the maintenance of

game status for a large-scale social game such as Farm Town
or Mafia Wars which currently have millions of unique users
daily. In comparison with traditional massively multiplayer
online games such as World of Warcraft and Runescape, which
also gather millions of unique players daily, social games have
very little player-to-player interaction (except for messaging,
performed externally to the game, for example through Face-
Book channels). Hence, maintaining the game status for social
gaming is based on simpler database operations, without the
burden of cross-updating information for concurrent players,
as we have observed for Runescape in our previous work [21].
Thus, this scenario allows us to compare a pair of cloud
database services, Amazon’s SDB and Google’s Datastore.
Input Traces Similarly to the previous scenario, we assume

that the number of operations, database accesses in this
scenario, depends linearly on the number of daily unique users.
We use as input trace the number of daily unique users for
the Farm Town social game (Figure 13).
Variability We assume, in turn, that the cloud with variable

performance exhibits the monthly variability of Amazon SDB
(Section IV-D) and of Google Datastore (Section V-C). The
input traces span the period March 2009 to January 2010;
thus, we do not have a direct match between the variability
data, which corresponds to only to months in 2009, and the

month January 2010 in the input traces. Since the Datastore
operations exhibit yearly patterns (Section V-F), we use in sim-
ulation the variability data of January 2009 as the variability
data for January 2010.
Results The main finding is that there is a big discrepancy

between the two cloud services, which would allow the appli-
cation operator to select the most suitable provider. Figures 13
depicts the APR for the application using the Amazon SDB
Update opeation (top) and for the application using the Google
Datastore Read operation (bottom). During September 2009–
January 2010, the bars depicting the APR of Datastore are
well below the curve representing the number of users. This
corresponds to the performance improvements (lower median)
of the Datastore Read performance indicator in the last part of
2009 (see also Figure 9). In contrast, the APR values for SDB
Update go above the users curve. These visual clues indicate
that, for this application, Datastore is superior to SDB over a
long period of time. An inspection of the APR values confirms
the visual clues: the APR for the last five depicted months
is around 1.00 (no performance penalty) for Datastore and
around 1.4 (40% more) for SDB. The application operator
has solid grounds for using the Datastore services for the
application studied in this scenario.

VII. RELATED WORK
Much effort has been put recently in assessing the perfor-

mance of virtualized resources, in cloud computing environ-
ments [7]–[11], [22]–[24] and in general [25]–[28]. In contrast
to this body of previous work, ours is different in scope: we
do not focus on the (average) performance values, but on their
variability and evolution over time. In particular, our work is
the first to characterize the long-term performance variability
of production cloud services.
Close to our work is the seminal study of Amazon S3 [8],

which also includes a 40 days evaluation of the service
availability. Our work complements this study by analyzing
the performance of eight other AWS and GAE services over
a year; we also focus on different applications. Several small-
scale performance studies of Amazon EC2 have been recently
conducted: the study of Amazon EC2 performance using the
NPB benchmark suite [9], the early comparative study of Eu-
calyptus and EC2 performance [10], the study of performance
and cost of executing a scientific workflow in clouds [7], the
study of file transfer performance between Amazon EC2 and
S3, etc. Our results complement these studies and give more
insight into the (variability of) performance of EC2 and other
cloud services.
Recent studies using general purpose benchmarks have

shown that virtualization overhead can be below 5% for
computation [25] and below 15% for networking [25], [27].
Similarly, the performance loss due to virtualization for par-
allel I/O and web server I/O has been shown to be below
30% [29] and 10% [30], respectively. Our previous work [11],
[15] has shown that virtualized resources in public clouds can
have a much lower performance than the theoretical peak,
especially for computation and network-intensive applications.

112

In contrast to these studies, we investigate in this work the
performance variability, and find several examples of perfor-
mance indicators whose monthly median’s variation is above
50% over the course of the studied year. Thus, our current
study complements well the findings of our previous work,
that is, the performance results obtained for small virtualized
platforms are optimistic estimations of the performance ob-
served in clouds.

VIII. CONCLUSION
Production cloud services may incur high performance

variability, due to the combined and non-trivial effects of
system size, workload variability, virtualization overheads, and
resource time-sharing. In this work we have set to identify the
presence and extent of this variability, and to understand its
impact on large-scale cloud applications. Our study is based
on the year-long traces that we have collected from CloudSta-
tus and which comprise performance data for Amazon Web
Services and Google App Engine services. The two main
achievements of our study are described in the following.
First, we have analyzed the time-dependent characteristics

exhibited by the traces, and found that the performance of the
investigated services exhibits on the one hand yearly and daily
patterns, and on the other hand periods of stable performance.
We have also found that many services exhibit high variation in
the monthly median values, which indicates large performance
changes over time.
Second, we have found that the impact of the performance

variability varies greatly across application types. For example,
we found that the service of running applications on GAE,
which exhibits high performance variability and a three-
months period of low variability and improved performance,
has a negligible impact for running grid and parallel produc-
tion workloads. In contrast, we found that and explained the
reasons for which the GAE database service, having exhibited
a similar period of better performance as the GAE running
service, outperforms the AWS database service for a social
gaming application.

REFERENCES
[1] R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, A. Vahdat, L. T. Liu,

T. E. Anderson, and D. A. Patterson, “The interaction of parallel and
sequential workloads on a network of workstations,” in SIGMETRICS,
1995, pp. 267–278.

[2] A. Iosup, O. O. Sonmez, S. Anoep, and D. H. J. Epema, “The perfor-
mance of bags-of-tasks in large-scale distributed systems,” in HPDC.
ACM, 2008, pp. 97–108.

[3] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K. Sahoo,
“Performance implications of failures in large-scale cluster scheduling,”
in JSSPP, 2004, pp. 233–252.

[4] D. Hilley, “Cloud computing: A taxonomy of platform and
infrastructure-level offerings,” Georgia Institute of Technology,
Tech. Rep. GIT-CERCS-09-13, Dec 2008. [Online]. Available:
www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf

[5] J. Maguire, J. Vance, and C. Harvey, “85 cloud computing vendors
shaping the emerging cloud,” Aug 2009, iTManagement Tech.Rep.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A Berkeley view of cloud
computing,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[7] E. Deelman, G. Singh, M. Livny, J. B. Berriman, and J. Good, “The
cost of doing science on the cloud: the Montage example,” in SC.
IEEE/ACM, 2008, p. 50.

[8] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for science grids: a viable solution?” in DADC ’08: Proceedings of
the 2008 international workshop on Data-aware distributed computing.
ACM, 2008, pp. 55–64.

[9] E. Walker, “Benchmarking Amazon EC2 for HP Scientific Computing,”
Login, vol. 33, no. 5, pp. 18–23, Nov 2008.

[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus open-source cloud-computing
system,” in CCGRID, 2009, pp. 124–131.

[11] S. Ostermann, A. Iosup, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “An early performance analysis of cloud computing services
for scientific computing,” in CloudComp, ser. LNICST, vol. 34, 2009,
pp. 115–31.

[12] RightScale, “Amazon usage estimates,” Aug 2009, [Online] Available:
blog.rightscale.com/2009/10/05/amazon-usage-estimates.

[13] G. Rosen, “Cloud usage analysis series,” Aug 2009, [Online] Available:
www.jackofallclouds.com/category/analysis.

[14] The Cloud Status Team, “Report on cloud performance and availability
status,” Jan. 2010, [Online] Available: www.cloudstatus.com.

[15] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” IEEE Trans. on Parallel and Distrib. Sys.,
2010, (accepted Sep 2010, in print).

[16] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and practice in parallel job scheduling,” in JSSPP,
ser. LNCS, vol. 1291. Springer-Verlag, 1997, pp. 1–34.

[17] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. Epema, “The Grid Workloads Archive,” FGCS, vol. 24, no. 7, pp.
672–686, 2008.

[18] The Parallel Workloads Archive Team, “The parallel workloads archive
logs,” Jan. 2010, [Online] Available: www.cs.huji.ac.il/labs/parallel/
workload/logs.html.

[19] K. T. Chen, P. Huang, and C. L. Lei, “Effect of network quality on
player departure behavior in online games,” IEEE TPDS, vol. 20, no. 5,
pp. 593–606, 2009.

[20] M. Claypool and K. T. Claypool, “Latency and player actions in online
games,” CACM, vol. 49, no. 11, pp. 40–45, 2006.

[21] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. H. J. Epema, and
T. Fahringer, “Efficient management of data center resources for mas-
sively multiplayer online games,” in SC, 2008, p. 10.

[22] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the
performance fluctuations of hpc workloads on clouds,” in CloudCom.
IEEE, 2010.

[23] N. Yigitbasi, A. Iosup, D. H. J. Epema, and S. Ostermann, “C-meter: A
framework for performance analysis of computing clouds,” in CCGRID,
2009, pp. 472–477.

[24] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis for re-
source provisioning of service-oriented applications,” in Proceedings of
the 3rd Workshop on Non-Functional Properties and SLA Management
in Service-Oriented Computing, Nov. 2009.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtu-
alization,” in SOSP. ACM, 2003, pp. 164–177.

[26] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne,
and J. N. Matthews, “Xen and the art of repeated research,” in USENIX
ATC, 2004, pp. 135–144.

[27] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the Xen virtual
machine environment,” in VEE. ACM, 2005, pp. 13–23.

[28] J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler, “Virtual machine
contracts for datacenter and cloud computing environments,” in Work-
shop on Automated control for datacenters and clouds (ACDC). ACM,
2009, pp. 25–30.

[29] W. Yu and J. S. Vetter, “Xen-based HPC: A parallel I/O perspective,”
in CCGrid. IEEE, 2008, pp. 154–161.

[30] L. Cherkasova and R. Gardner, “Measuring CPU overhead for I/O
processing in the Xen virtual machine monitor,” in USENIX ATC, 2005,
pp. 387–390.

113

