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Some classes of systems of di	erence equations whose all well-de
ned solutions are periodic are presented in this note.

1. Introduction

�ere has been a great recent interest in studying di	erence
equations and systems of di	erence equations which do not
stem fromdi	erential ones (see, e.g., [1–19] and the references
therein). For some results on concrete systems of nonlinear
di	erence equations, see, for example, [1, 3–5, 9–12, 18, 19].
Some classical results in the topic can be found, for example,
in book [20].

Solution (�(1)� , . . . , �(�)� )�≥−�, of the system of di	erence
equations

�(1)� = �1 (�(1)�−1, . . . , �(1)�−�1 , . . . , �(�)�−1, . . . , �(�)�−��) ,
�(2)� = �2 (�(1)�−1, . . . , �(1)�−�1 , . . . , �(�)�−1, . . . , �(�)�−��) ,

...

�(�)� = �� (�(1)�−1, . . . , �(1)�−�1 , . . . , �(�)�−1, . . . , �(�)�−��) ,

(1)

where � ∈ N0 and � = max{�1, . . . , ��}, is called eventually
periodic with period 	, if there is an �1 ≥ −� such that

�(�)�+� = �(�)� , (2)

for every � = 1, �, and � ≥ �1. It is periodic with period	 if �1 = −�. Period 	 is prime if there is no 	̂ ∈ N,

	̂ < 	, which is a period. If all well-de
ned solutions of an
equation or a system of di	erence equations are eventually
periodic with the same period, then such an equation or
system is called periodic. For some results on the periodicity,
asymptotic periodicity and periodic equations or systems of
di	erence equations see, for example, [1–10, 12–14, 16–19] and
the related references therein.

In recent paper [19], the authors formulated four results
which claim that the following systems of di	erence equa-
tions are periodic with period ten:

��+1 = ����−1 (1 + ��) , ��+1 = ����−1 (1 + ��) , � ∈ N0;
(3)

��+1 = ����−1 (−1 + ��) , ��+1 = ����−1 (−1 + ��) , � ∈ N0;
(4)

��+1 = ����−1 (1 + ��) , ��+1 = ����−1 (−1 + ��) , � ∈ N0;
(5)

��+1 = ����−1 (−1 + ��) , ��+1 = ����−1 (1 + ��) , � ∈ N0.
(6)

First, we show that all the results in [19] follow from
knownones in the literature and also present some extensions
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of these results in the spirit of systems (3)–(6). To do this,
we will use a system of di	erence equations related to the
following, so called, Lyness di	erence equation:

��+1 = 1 + ����−1 , � ∈ N0. (7)

It is easy to see that every well-de
ned solution of (7) is
periodic with period 
ve. �e equation arises in frieze pat-
terns (for the original sources, see [21–23]).

Studying max-type equations and systems of di	erence
equations is another topic of a recent interest (see, e.g, [2, 3, 5–
7, 10, 11, 15–19]).

Some special cases of the following max-type di	erence
equation:

�� = max{ ����−� , ��−�} , � ∈ N0, (8)

where �, � ∈ N, and (��)�∈N0 ⊂ R, have been studied, for
example, in [2, 16]. Positive solutions of (8) are periodic in
many cases. However, if (��)�∈N0 is not a positive sequence, it
was shown in [2] that (8) can have unbounded solutions.

In [5], it was shown that all solutions of the following
max-type system of di	erence equations:

��+1 = max{���� , ��−1} , ���+1 = max{���� , ��−1} ,
� ∈ N0,

(9)

where �0, �−1, �0, �−1 ∈ (0, +∞) and (��)�∈N0 , (��)�∈N0
are positive two-periodic sequences, are eventually periodic
with, not necessarily prime, period two. �is was done by
direct calculation.

By using direct calculation, it can be easily shown that
positive solutions of the following max-type system of di	er-
ence equations:

��+1 = max{���� , ��−1} , ��+1 = max{���� , ��−1} ,
� ∈ N0,

(10)

where (��)�∈N0 and (��)�∈N0 are positive two-periodic
sequences, are also periodic.

Here, we give a noncalculatory explanation of the fact
by proving that positive solutions of the following max-type
system of di	erence equations:

�� = max{ ����−� , ��−�} , �� = max{ ����−� , ��−�} ,
� ∈ N0,

(11)

where �, � ∈ N, and (��)�∈N0 , (��)�∈N0 are positive periodic
sequences of a certain period, are also periodic. We also
present another extension of the result.

2. Some Extensions of Systems (3)–(6)

In this section, we present some periodic systems of di	er-
ence equations in the spirit of systems (3)–(6).

�eorem 1. Consider the following system of di�erence equa-
tions

�(1)�+1 = �−11 (1 + �2 (�
(2)
� )

�3 (�(3)�−1) ) ,
...

�(�−1)�+1 = �−1�−1(1 + �� (�
(�)
� )

�1 (�(1)�−1) ) ,

�(�)�+1 = �−1� (1 + �1 (�
(1)
� )

�2 (�(2)�−1) ) , � ∈ N0,

(12)

where � ∈ N\ {1}, and functions ��, � = 1, �, are continuous on
their domains; map the setR\{0} onto itself and, for each �xed� ∈ {1, . . . , �}, �� is simultaneously increasing or decreasing on
the intervals (−∞, 0) and (0, +∞).

en the following statements hold.

(a) If � ̸≡ 0 (mod 5), then every well-de�ned solution of
system (12) is periodic with period 5�.

(b) If � ≡ 0 (mod5), then every well-de�ned solution of
system (12) is periodic with period �.

Proof. From the conditions of the theorem, it follows that for

each � ∈ {1, . . . , �}, there is �−1� which continuously map the

set R \ {0} onto itself. Using the change of variables
�(�)� = �� (�(�)� ) , � = 1, �, (13)

system (12) is easily transformed into the next one

�(1)�+1 = 1 + �
(2)
��(1)�−1 , �(2)�+1 = 1 + �

(1)
��(2)�−1 , (14)

for � = 2,
�(1)�+1 = 1 + �

(2)
��(3)�−1 , �(2)�+1 = 1 + �

(3)
��(1)�−1 , �(3)�+1 = 1 + �

(1)
��(2)�−1 ,
(15)

for � = 3, and
�(1)�+1 = 1 + �

(2)
��(3)�−1 , �(2)�+1 = 1 + �

(3)
��(4)�−1 , . . . , �(�)�+1 = 1 + �

(1)
��(2)�−1 ,
(16)

for � ≥ 4. In [4], it was proved that, if � ̸≡ 0 (mod 5), then
every well-de
ned solution of systems (14)–(16) is periodic
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with period 5�, and, if � ≡ 0 (mod5), then every well-
de
ned solution of systems (14)–(16) is periodic with period�. Using this along with the fact

�(�)� = �−1� (�(�)� ) , � = 1, �, (17)

following from (13), the results in (a) and (b) follow.

�e following theorem is proved in a similar way. �ere-
fore, the proof will be omitted.

�eorem 2. Consider the following system of di�erence equa-
tions

�(1)�+1 = �−11 (1 + �� (�
(�)
� )

��−1 (�(�−1)�−1 )) ,

�(2)�+1 = �−12 (1 + �1 (�
(1)
� )

�� (�(�)�−1) ) ,
...

�(�)�+1 = �−1� (1 + ��−1 (�
(�−1)
� )

��−2 (�(�−2)�−1 ) ) , � ∈ N0,

(18)

where � ∈ N\ {1}, and functions ��, � = 1, �, are continuous on
their domains; map the setR\{0} onto itself and, for each �xed� ∈ {1, . . . , �}, �� is simultaneously increasing or decreasing on
the intervals (−∞, 0) and (0, +∞).

en the following statements hold.

(a) If � ̸≡ 0 (mod 5), then every well-de�ned solution of
system (18) is periodic with period 5�.

(b) If � ≡ 0 (mod5), then every well-de�ned solution of
system (18) is periodic with period �.

Now, we show that all the results on the periodicity of the
solutions of systems (3)–(6) in [19] follow from �eorems 1
and 2.

Corollary 3. Systems of di�erence equations (3)–(6) are all
periodic with period ten.

Proof. For the systems of di	erence equations (3)–(6), we use
the following changes of variables, respectively:

�� = 1�� , �� = 1
V�
, � ∈ N0;

�� = − 1�� , �� = − 1
V�
, � ∈ N0;

�� = − 1�� , �� = 1
V�
, � ∈ N0;

�� = 1�� , �� = − 1
V�
, � ∈ N0.

(19)

By using them, systems (3)–(6) are transformed into system
(14). By applying �eorem 1(a), ten-periodicity of all well-
de
ned solutions of system (14) follows, from which ten-
periodicity of all well-de
ned solutions of systems (3)–(6)
follows.

�e following four examples are natural extensions of
systems (3)–(6).

Example 4. If we use the following functions:

�1 (�) = 1�� , �2 (�) = 1�
 , (20)

where � and� are odd integers, we see that all the conditions
in�eorem 1 are applied with � = 2, so by using the theorem
we obtain that the system of di	erence equations

��+1 = 1��−1(
�
�1 + �
� )

1/�,

��+1 = 1��−1(
���1 + ���)

1/


,
(21)

� ∈ N0, is also periodic with period ten.

Example 5. For

�1 (�) = − 1�� , �2 (�) = − 1�
 , (22)

where � and � are also odd integers, all the conditions of
�eorem 1 are again satis
ed with � = 2. Using the theorem,
it follows that the system

��+1 = 1��−1(
�
�−1 + �
� )

1/�,

��+1 = 1��−1(
���−1 + ���)

1/


,
(23)

� ∈ N0, is ten-periodic.

Example 6. For

�1 (�) = 1�� , �2 (�) = − 1�
 , (24)

where � and � are odd integers, all the conditions of
�eorem 1 are also satis
edwith � = 2. Applying the theorem,
it follows that the system

��+1 = 1��−1(
�
�−1 + �
� )

1/�,

��+1 = 1��−1(
���1 + ���)

1/


,
(25)

� ∈ N0, is ten-periodic.

Example 7. Finally, for

�1 (�) = − 1�� , �2 (�) = 1�
 , (26)
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where � and� are odd integers and applying �eorem 1 with� = 2, we get that the system
��+1 = 1��−1(

�
�1 + �
� )
1/�,

��+1 = 1��−1(
���−1 + ���)

1/


,
(27)

� ∈ N0, is ten-periodic.

�emain results in [4] can be relatively easily extended to
a very general situation, which have been noticed by Iričanin
and Stević soon a�er publishing [4], and later also proved by
several other authors. Namely, the following result holds (see,
e.g., [1]).

�eorem 8. Assume that the following di�erence equation

�� = � (��−1, . . . , ��−�) , � ∈ N0, (28)

is periodic with period 	.
en the following system of di�erence equations

�(�)� = �(�(�(�))�−1 , �(�[2](�))�−2 , . . . , �(�[�](�))�−� ) ,
# = 1, �, � ∈ N0,

(29)

where $(#) = # + 1, for 1 ≤ # ≤ � − 1, $(�) = 1 and $[�](#) =$($[�−1](#)), � = 1, �, and $[0](#) = #, # = 1, �, is periodic with
period lcm(	, �) (the least common multiple of numbers 	
and �).

�eorem 8 can be used in constructing numerous peri-
odic cyclic systems of di	erence equations based on scalar
periodic di	erence equations, which, with some changes of
variables, give some other periodic cyclic systems of di	er-
ence equations.

3. Periodicity of Positive Solutions
of System (11)

In this section, we study positive solutions of system (11). By
gcd(�, �), we denote the greatest common divisor of natural
numbers � and �.
�eorem 9. Consider system (11). Assume that �, � ∈ N,
and (��)�∈N0 and (��)�∈N0 are positive � gcd(�, �)-periodic
sequences.en every positive solution of system (11) is periodic
with, not necessarily prime, period

	 = 2� gcd(�, �) . (30)

Proof. Let & = gcd(�, �).�enwehave that � = &�1 and � = &�1
for some �1, �1 ∈ N such that

gcd (�1, �1) = 1. (31)

Since every � ∈ N0 can be written as � = �& + #, for some� ∈ N0 and # = 0, & − 1, system (11) becomes

�
+� = max{ �
+��(
−�1)+� , �(
−�1)+�} ,

�
+� = max{ �
+��(
−�1)+� , �(
−�1)+�} ,
(32)

for every� ∈ N0 and # = 0, & − 1.
Using the next change of variables

�(�)� = ��+�, �(�)� = ��+�, (33)

where - ≥ −max{�1, �1}, # = 0, & − 1, in (32), we have that(�(�)� )�≥−max{�1 ,�1}, (�(�)� )�≥−max{�1 ,�1}, # = 0, & − 1, are & indepen-
dent solutions of the next systems

�� = max{� �+���−�1 , ��−�1} , �� = max{��+���−�1 , ��−�1} ,
(34)

which are systems of the form in (11) with �1 and �1 instead of� and �, and where the sequences (� �+�)�∈N0 and (��+�)�∈N0 ,# = 1, &, are �-periodic.
Hence, it is enough to prove the theoremwhen gcd(�, �) =1 and the sequences (��)�∈N0 , and (��)�∈N0 are positive �-

periodic.
Now note that from the equations in (11), we have that

�� ≥ ��−�, �� ≥ ��−�, for � ∈ N0. (35)

Further, by using the equations in (11), we also get

�� = max{ ����−� , ��−�} = max{ ����−� ,
��−���−�−� , ��−2�} ,

�� = max{ ����−� , ��−�} = max{ ����−� ,
��−���−�−� , ��−2�} ,

(36)

for � ≥ �.
Using relations (36), we get

�� = max{ ����−� ,
��−���−�−� , ��−2�}

= max{ ����−� ,
��−���−�−� ,

��−2���−2�−� ,
��−3���−3�−� , ��−4�} ,

�� = max{ ����−� ,
��−���−�−� , ��−2�}

= max{ ����−� ,
��−���−�−� ,

��−2���−2�−� ,
��−3���−3�−� , ��−4�} ,

(37)

for � ≥ 3�.
Now, note that, from the inequalities in (35), we have that

�� ≥ ��−2�, �� ≥ ��−2�, for � ≥ �. (38)
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Using (38) and �-periodicity of the sequences�� and ��,
we obtain

����−� =
��−2���−� ≤

��−2���−2�−� ,
��−���−�−� =

��−3���−�−� ≤
��−3���−3�−� ,

����−� =
��−2���−� ≤

��−2���−2�−� ,
��−���−�−� =

��−3���−�−� ≤
��−3���−3�−� .

(39)

Employing (39) into (37), we get

�� = max{ ��−2���−2�−� ,
��−3���−3�−� , ��−4�} = ��−2�,

�� = max{ ��−2���−2�−� ,
��−3���−3�−� , ��−4�} = ��−2�,

(40)

from which it follows that in this case the solutions of system
(11) are 2�-periodic. From all the above, the theorem follows.

By a slight modi
cation of the proof of �eorem 9, the
next result can be proved. We omit the proof.

�eorem 10. Consider the following system of di�erence
equations

�� = max{ ����−� , ��−�} , �� = max{ ����−� , /�−�} ,
/� = max{ 6�/�−� , ��−�} , � ∈ N0,

(41)

where �, � ∈ N, and (��)�∈N0 , (��)�∈N0 , and (6�)�∈N0 are pos-
itive � gcd(�, �)-periodic sequences. en, every positive solu-
tion of system (41) is periodic with, not necessarily prime,
period

	 = 3� gcd(�, �) . (42)
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