ON THE PERMANENT AND MAXIMAL CHARACTERISTIC ROOT OF A NONNEGATIVE MATRIX

RICHARD A. BRUALDI ${ }^{1}$

One of the many theorems that M. Marcus and M. Newman prove in [3] is, when it is restricted to nonnegative matrices, that: if A is an $n \times n$ positive semidefinite symmetric irreducible nonnegative matrix, then

$$
\lim _{m \rightarrow \infty}\left(\operatorname{per}\left(A^{m}\right)\right)^{1 / m}=r^{n}
$$

where r denotes the maximal (positive) characteristic root of A. Here per $\left(A^{m}\right)$ denotes the permanent of A^{m}. We assume that the reader is familiar with the terminology and results of the classical Perron-Frobenius-Wielandt theory of nonnegative matrices, the requisite parts of which can be found in [1, Chapter XIII].

The purpose of this note is to prove the following extension of the result quoted above.

Theorem. Let A be an $n \times n$ nonnegative irreducible matrix and suppose A has a nonzero permanent. Let r be the maximal characteristic root of A. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\operatorname{per}\left(A^{m}\right)\right)^{1 / m}=r^{n} . \tag{1}
\end{equation*}
$$

We first prove two lemmas.
Lemma 1. Let B be an $n \times n$ nonnegative matrix with maximal characteristic root ρ. Then

$$
\operatorname{per}(B) \leqq \rho^{n} .
$$

Proof. ${ }^{2}$ First assume A is positive (or irreducible). Then ρ is positive and has an associated characteristic vector $x=\left(x_{1}, \cdots, x_{n}\right)$, all of whose coordinates are positive. From $B x=\rho x$, it follows that

$$
\sum_{j=1}^{n} b_{i j} x_{j}=\rho x_{i}, \quad i=1, \cdots, n
$$

and hence

[^0]$$
\prod_{i=1}^{n}\left(\sum_{j=1}^{n} b_{i j} x_{j}\right)=\rho^{n} \prod_{i=1}^{n} x_{i}
$$

This may be written as

$$
\operatorname{per}(B) \prod_{i=1}^{n} x_{i}+\beta=\rho^{n} \prod_{i=1}^{n} x_{i}
$$

where $\beta \geqq 0$ and the result follows. The complete lemma now follows by continuity.

Lemma 2. Let A be an $n \times n$ nonnegative primitive matrix with maximal characteristic root r. Then (1) holds.

Proof. If m is a positive integer, then using Lemma 1 and the fact that A^{m} is nonnegative, we may write

$$
\prod_{i=1}^{n} a_{i i}^{(m)} \leqq \operatorname{per}\left(A^{m}\right) \leqq\left(r^{m}\right)^{n}
$$

where $a_{i j}^{(m)}$ denotes the (i, j) entry of A^{m}. Thus we have

$$
\begin{equation*}
\prod_{i=1}^{n}\left(a_{i i}^{(m)}\right)^{1 / m} \leqq \operatorname{per}\left(A^{m}\right)^{1 / m} \leqq r^{n} \tag{2}
\end{equation*}
$$

But it is well known (see [2, p. 128] or [1, p. 81]) that for a primitive matrix A,

$$
\lim _{m \rightarrow \infty}\left(a_{i j}^{(m)}\right)^{1 / m}=r
$$

Taking limits in (2), we obtain (1).
Proof of theorem. Let h denote the index of imprimitivity of A, that is, the number of characteristic roots of A of modulus r. Then [$1, \mathrm{p} .81-82$] there is a permutation matrix P such that

$$
P^{T} A^{h} P=\operatorname{diag}\left(A_{1}, A_{2}, \cdots, A_{h}\right)
$$

where each $A_{i}, 1 \leqq i \leqq h$, is an $n_{i} \times n_{i}$ primitive matrix with maximal characteristic root r^{h}. Observe that if k is a positive integer, then

$$
\left(P^{T} A^{h} P\right)^{k}=P^{T} A^{h k} P=\operatorname{diag}\left(A_{1}^{k}, A_{2}^{k}, \cdots, A_{h}^{k}\right)
$$

Since the permanent of a matrix is invariant under permutations, we have

$$
\left(\operatorname{per}\left(A^{h k}\right)\right)^{1 / h k}=\left[\left(\operatorname{per}\left(A_{1}^{k}\right)\right)^{1 / k} \cdots\left(\operatorname{per}\left(A_{h}^{k}\right)\right)^{1 / k}\right]^{1 / h}
$$

Since each A_{i} is a primitive matrix, it follows by Lemma 2, that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\operatorname{per}\left(A^{h k}\right)\right)^{1 / h k}=\left(\prod_{i=1}^{h}\left(r^{h}\right)^{n_{i}}\right)^{1 / h}=r^{n} . \tag{3}
\end{equation*}
$$

Now let m be an arbitrary positive integer and write

$$
m=h p_{m}+q_{m} ; \quad p_{m} \geqq 0, \quad 0 \leqq q_{m}<h .
$$

Then

$$
A^{m}=A^{h p_{m}} A^{q_{m}}
$$

where $A^{q_{m}}=I$ if $q_{m}=0$. Thus since all matrices are nonnegative

$$
\operatorname{per}\left(A^{m}\right) \geqq \operatorname{per}\left(A^{h p_{m}}\right) \operatorname{per}\left(A^{q_{m}}\right) .
$$

From (3) it follows immediately that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\operatorname{per}\left(A^{h p_{m}}\right)\right)^{1 / h p_{m}}=r^{n} . \tag{4}
\end{equation*}
$$

But then using (4) we obtain

$$
\begin{gathered}
\lim _{m \rightarrow \infty}\left(\ln \left(\operatorname{per}\left(A^{h p_{m}}\right)\right)^{1 / h p_{m}}-\ln \left(\operatorname{per}\left(A^{h p_{m}}\right)^{1 / m}\right)\right) \\
=\lim _{m \rightarrow \infty} \frac{q_{m}}{m} \ln \left(\operatorname{per}\left(A^{\left.h p_{m}\right)}\right)^{1 / h p_{m}}=0 .\right.
\end{gathered}
$$

Hence

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left(\operatorname{per}\left(A^{h p_{m}}\right)\right)^{1 / h p_{m}}}{\left(\operatorname{per}\left(A^{h p_{m}}\right)\right)^{1 / m}}=1 . \tag{5}
\end{equation*}
$$

Now (4) and (5) together imply

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\operatorname{per}\left(A^{h p_{m}}\right)\right)^{1 / m}=r^{n} . \tag{6}
\end{equation*}
$$

Now by assumption per $(A)>0$. If per $(A) \geqq 1$, then

$$
\operatorname{per}\left(A^{q_{m}}\right) \geqq(\operatorname{per}(A))^{q_{m}} \geqq 1, \text { for all } m \text {; }
$$

while if per $(A)<1$, then

$$
\operatorname{per}\left(A^{q_{m}}\right) \geqq(\operatorname{per}(A))^{q_{m}} \geqq \operatorname{per}(A)^{h-1}, \text { for all } m \text {. }
$$

If $r \geqq 1$, then by Lemma 1

$$
\operatorname{per}\left(A^{q_{m}}\right) \leqq\left(r^{n}\right)^{q_{m}} \leqq r^{n(h-1)}, \quad \text { for all } m \text {; }
$$

while if $r \leqq 1$, then

$$
\operatorname{per}\left(A^{q_{m}}\right) \leqq\left(r^{n}\right)^{q_{m}} \leqq 1, \text { for all } m .
$$

Thus in any case there are positive constants c_{1} and c_{2} such that

$$
c_{1} \leqq \operatorname{per}\left(A^{q m}\right) \leqq c_{2}
$$

for all positive integers m. From this it now follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\operatorname{per}\left(A^{q m}\right)\right)^{1 / m}=1 . \tag{7}
\end{equation*}
$$

Passing to the limit in the inequality

$$
\left(\operatorname{per}\left(A^{h p_{m}}\right)\right)^{1 / m}\left(\operatorname{per}\left(A^{q_{m}}\right)\right)^{1 / m} \leqq\left(\operatorname{per}\left(A^{m}\right)\right)^{1 / m} \leqq r^{n},
$$

and using (6) and (7), we obtain the desired result.
The condition that A have a nonzero permanent cannot in general be omitted. The irreducible matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

has the property that per $\left(A^{k}\right)=0$ for k odd and per $\left(A^{k}\right)>0$ for k even. It is easy to verify that A has maximal characteristic root $2^{1 / 2}$ and index of imprimitivity 2. It follows from (3) that if $\lim _{m \rightarrow \infty}\left(\operatorname{per}\left(A^{m}\right)\right)^{1 / n}$ exists, it must be $2^{3 / 2}$. Hence the limit does not even exist.

Finally we remark that our theorem does constitute an extension of the result of Marcus and Newman mentioned in the beginning. For, if A is a positive semidefinite symmetric irreducible nonnegative matrix, then the entries on the main diagonal of A must be positive. Otherwise A has a zero row and thus is not irreducible. Hence the permanent of such a matrix is positive.

References

1. F. R. Gantmacher, The theory of matrices, Vol. II, Chelsea, New York, 1959.
2. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, 1964.
3. M. Marcus and M. Newman, Inequalities for the permanent function, Ann. of Math. (2) 75 (1962), 47-62.

University of Wisconsin

[^0]: Received by the editors March 18, 1966.
 ${ }^{1}$ The research of the author was partially supported by NSF grant no. GP-3993.
 ${ }^{2}$ This is a slight variation of a proof originally shown the author by Morris Newman.

