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ON THE PHASE DIAGRAM FOR MICROPHASE SEPARATION OF
DIBLOCK COPOLYMERS: AN APPROACH VIA A NONLOCAL

CAHN–HILLIARD FUNCTIONAL∗

RUSTUM CHOKSI† , MARK A. PELETIER‡ , AND J. F. WILLIAMS†

Abstract. We consider analytical and numerical aspects of the phase diagram for microphase
separation of diblock copolymers. Our approach is variational and is based upon a density functional
theory which entails minimization of a nonlocal Cahn–Hilliard functional. Based upon two parame-
ters which characterize the phase diagram, we give a preliminary analysis of the phase plane. That is,
we divide the plane into regions wherein a combination of analysis and numerics is used to describe
minimizers. In particular we identify a regime wherein the uniform (disordered state) is the unique
global minimizer; a regime wherein the constant state is linearly unstable and where numerical sim-
ulations are currently the only tool for characterizing the phase geometry; and a regime of small
volume fraction wherein we conjecture that small well-separated approximately spherical objects are
the unique global minimizer. For this last regime, we present an asymptotic analysis from the point
of view of the energetics which will be complemented by rigorous Γ-convergence results to appear in
a subsequent article. For all regimes, we present numerical simulations to support and expand on
our findings.
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1. Introduction. A diblock copolymer is a linear-chain molecule consisting of
two subchains joined covalently to each other. One of the subchains is made of NA

monomers of type A and the other consists of NB monomers of type B. Below a
critical temperature, even a weak repulsion between unlike monomers A and B in-
duces a strong repulsion between the subchains, causing the subchains to segregate.
A macroscopic segregation where the subchains detach from one another cannot occur
because the chains are chemically bonded. Rather, a phase separation on a mesoscopic
scale with A- and B-rich domains emerges (see Figure 1). The observed mesoscopic
domains, illustrated in Figure 2, are highly regular periodic structures including lamel-
lae, spheres, cylindrical tubes, and double gyroids (see, for example, [4, 51, 16, 21]).

The usefulness of block copolymer melts is exactly this remarkable ability for
self-assembly into particular geometries. For example, this property can be exploited
to create materials with designer mechanical, optical, and magnetic properties [4,
21]. Therefore, from a theoretical point of view, one of the main challenges is to
predict the phase geometry/morphology for a given set of material parameters (i.e.,
the creation of the phase diagram). There are three dimensionless material parameters
involved in the microphase separation: (i) χ, the Flory–Huggins interaction parameter

measuring the incompatibility of the two monomers; (ii) N = NA + NB, the index of

polymerization measuring the number of monomers per macromolecule; and (iii) f ,
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ON THE PHASE DIAGRAM FOR DIBLOCK COPOLYMERS 1713

Fig. 1. Top: a diblock copolymer macromolecule. Bottom: microphase separation of diblock
copolymers.

the relative molecular weight measuring the relative length of the A-monomer chain
compared with the length of the whole macromolecule, i.e., f = NA/N . The one
relevant dimensional parameter is the Kuhn statistical length, l, which can be thought
of as the average monomer space size. We will concern ourselves with a system
of diblock copolymers of fixed relative molecular weight f and where the A and B
monomers have the same Kuhn statistical length.

In the vast physics literature on block copolymers, the state of the art for the-
oretically predicting the phase diagram is via the self-consistent mean field theory

(SCMFT) [26, 16, 42]. Here one simulates the interactions of the incompatible A
and B monomers via (self-consistent) external fields acting separately on the distinct
monomer chains. This transforms the formidable task of integrating contributions to
the partition function from many-chain interactions to the computation of the con-
tribution of one polymer in a self-consistent field. An approximation is then used
to write the partition function and Gibbs free energy explicitly in terms of coupled

order parameters—the macroscopic monomer densities and the external fields which
generate them: The coupling is via a modified diffusion equation derived from the
Feynman–Kac integration theory. With the adoption of an ansatz (assumed symme-
try) for the phase structure with one or two degrees of freedom, and respective basis
functions of the Laplacian which share the symmetry, one can then minimize the free
energy. Comparing the minimum energies for the different ansatzes yields the phase
diagram (cf. [26]). In this mean field theory, where thermal fluctuations are ignored,
one finds that the parameter dependence is based solely on the products χ N and f .
Figure 2(left) shows the results of such a calculation showing the predicted structure
for different values of χ N and f , while Figure 2(right) enables a comparison with
experimental observations for polyisoprene-styrene diblocks by Khandpur et al. [25].

As was shown in [12], linearization of the dependence of the monomer density on
the external fields (via the modified diffusion equations) yields a density functional
theory, first proposed by Ohta and Kawasaki [30] (see also [28, 29]). This density
functional theory entails minimization of a nonlocal Cahn–Hilliard-like free energy
defined over one order parameter (the relative monomer difference). Here, the stan-
dard Cahn–Hilliard free energy is supplemented with a nonlocal term, reflecting the
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Fig. 2. (a) SCMFT phase diagram of Matsen and Schick (cf. [26]) for microphase separation of
diblock copolymers: The relative molecular weight f is denoted by fA and the phases are labeled L for
lamellar, G for gyroid, C for hexagonally packed cylinders, S for spheres, and CPS for close packed
spheres. (b) Experimental phase diagram for polyisoprene-styrene by Khandpur et al. [25]. PL
stands for perforated lamellar. Reprinted with permission from F. S. Bates and G. H. Fredrickson,
Physics Today, Volume 52, Issue 2, pp. 32–38, 1999. c©1999, American Institute of Physics.

first-order effects of the connectivity of the monomer chains:

(1.1)

∫

Ω

(ε2

2
|∇u|2 +

(1 − u2)2

4

)
dx+

σ

2

∫

Ω

∫

Ω

G(x, y) (u(x) − m) (u(y) − m) dx dy,

where G denotes the Green’s function of −△ on a cube Ω ⊂ R
3 with periodic boundary

conditions. Regions where u is approximately equal to 1 (respectively, −1) represent
pure A (respectively, B) monomer-rich phases, and thus m = 2f − 1. We minimize
(1.1) over all u with mass average set to m. We refer to the above functional as a
nonlocal Cahn–Hilliard functional, but it is also referred to as the Ohta–Kawasaki

functional.
In this article, our aim is towards an understanding of the phase diagram via

minimization of this functional. More precisely, for given values of ε, σ, and m, we
minimize the functional over all u, with prescribed mass average m, and focus on char-
acterizing geometrical characteristics of the minimizers as a function of the parameters
ε, σ, and m. As a simply nonlocal perturbation to a well-studied problem in the cal-
culus of variations, this is a natural variational problem to consider—independent of
any direct application. Indeed, one can simply view the problem as a mathematical
paradigm for the modeling of (quasi-)periodic pattern formation, induced by compet-
ing short-range (the first two terms) and long-range (the nonlocal term) interactions
[41]. Hence, seeking to characterize minimizers (either global or local) for given values
of ε, σ, and m is both natural and fundamental.

Nevertheless, our interests are also directly tied to the application to the phase
diagram of a diblock copolymer melt. The simplicity of the Ohta–Kawasaki theory
is that it entails minimization of a free energy which can be directly studied, both
analytically and numerically, without a priori assumptions for the basic symmetry of
the minimizing microstructure (which is necessary for simulations of the SCMFT).
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The vast majority of symmetries which have been considered in the SCMFT are
related to known constant mean curvature surfaces (i.e., surfaces with minimal area
subject to a volume constraint) which have been experimentally observed in phase
boundaries in diblock copolymers [4, 26]. Note that not only does this limit the
consideration of structures which have yet to be observed, but actual minimizers in
either theory will not, in general, have phase boundaries with exactly constant mean
curvature: Because of the connectivity of the monomer chains, one would expect
that the phase separation is not determined solely by interfacial energy. While, as
we shall see, simulations based upon minimizing (1.1) also suggest minimizers have
phase boundaries which resemble constant mean curvature surfaces, one readily sees
from (1.1) that the nonlocal term will have an effect on the structure of the phase
boundary (see Remark 4.3 and [14]). Surely, this is also the case with the SCMFT.

On the other hand, based upon the approximation and truncations used in the
derivation [12], one could, and should, be skeptical as to whether or not the essen-
tial physics is preserved in the intermediate to strong segregation regime, where the
interface thickness is relatively small. However, we wish to point out that all of the
phases which have been (numerically) predicted purely from the SCMFT [26, 52] can
be (numerically) generated from the minimization of (1.1), and the latter theory is
ansatz-independent (see [47, 48, 46, 53] and section 4.3). Hence, it would seem that
one need only keep a rather crude approximation of the polymer A- and B-chain in-
teractions, in order to determine the basic qualitative geometry. Three-dimensional
simulations for (2.6) were begun by Teramoto and Nishiura in [47, 48] simulating
double gyroids and have also been explored in the context of the basic phases and the
Fddd phase by Yamada et al. in [53, 54]. However, to our knowledge, no thorough
phase diagram calculation has been done via the gradient theory approach of (2.6)
and, in particular, none within the context of the material parameters χ N and f .
We emphasize that the latter is crucial in order to make any direct comparison to
experiments.

With these comments in mind our long-term program is twofold:

(i) To explore analytically the extent to which one can describe global minimiz-
ers of (1.1) for different regimes of the ε, σ, m parameter space. In particular,
what are the natural regimes to consider? When the ground state (global
minimizer) is analytically difficult to access (which is indeed the case for the
majority of the phase plane), explore the extent to which numerical simu-
lations can be used to describe the general energy landscape of (1.1)—with
regard to both local and global minimizers.

(ii) To explore the extent to which this variational problem can be used to create
a phase diagram, which is not only qualitatively similar to both the SCMFT
phase diagram of [26] (Figure 2, left) and the experimental one (Figure 2,
right—see also [25, 40, 21]) but also quantitatively similar close to the order-
disorder transition. In particular, one must be able to relate all results to the
two fundamental parameters χ N and f .

The aim of this article is to provide a preliminary step towards these goals. In
particular, we identify two parameters γ := 1/(ε

√
σ) and m, analogous to χ N and f

in the SCMFT, which are relevant for the phase diagram. We divide the (m, γ) plane
into several regions (see Figure 3).

Region I. In the region defined by m ∈ (−1, 1) and γ ≤ 2
1−m2 , we prove in

section 3 that the uniform state (often referred to as the disordered state) is the
unique global minimizer.
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m

γ

I

II

III III

IV IV

1−1

Fig. 3. Rough sketch of regions of the m × γ plane for minimizers of (2.2) on a large domain
(cf. Remark 2.1). The bottom curve is γ = 2

1−m2 , below which we prove that the disordered state

is the unique global minimizer. The top curve shows the linear stability of the disordered state;
that is, for γ > 2

1−3m2 the disordered state is unstable. The middle curve divides the regime
2

1−3m2 > γ > 2
1−m2 into regions where we find, numerically, that the disordered state is the

minimizer (Region IV) and where it is not the minimizer (Region III).

Region II. Section 4 addresses the region defined by m ∈ (−1/
√

3, 1/
√

3) and
γ ≥ 2

1−3m2 , which forms the central part of the phase diagram. It is the region
wherein the constant state is linearly unstable (see section 4.1); thus, whatever the
global minimizer is, it must have some structure (i.e., not be uniform). In this re-
gion one expects to see the basic phase structures of the experimental and SCMFT
diagrams of Figure 2: lamellar, cylindrical, spherical, double-gyroid (see section 4.3
for a discussion of the Fddd phase). Unfortunately, there is little one can rigorously
prove about global minimizers, and even the rigorous study of local minimizers is
usually based upon some ansatz. Hence, numerical simulations are currently the only
tool to determine geometric properties of the minimizer. While a thorough numerical
investigation of Region II is in progress, we give a sample of typical final-state simula-
tions showing lamellar, cylindrical, double-gyroid, and spherical phase patterns. We
also find perforated lamellar phases similar to those observed in the experiments on
polyisoprene-styrene by Khandpur et al. [25].

Regions III and IV. In section 5, we address the remaining region in the (m, γ)-
parameter plane, indicated by III and IV in Figure 3. In this region, the constant
state is linearly stable; however, a basic scaling argument (presented in section 5.2)
shows that small well-separated spheres have lower energy than the constant state for
sufficiently large γ. In section 5.1, we present the results of a numerical investigation
of the region for γ < 25. In particular, we determine a transition curve that separates
order (Region III) from disorder (Region IV). In section 5.3, we describe analytical
support for well-separated spherical phases in Region III via an asymptotic analysis
of the energy when m tends to ±1. This analysis forms the basis of a rigorous Γ-
convergence study currently underway which will appear elsewhere (cf. [10, 11]).

Throughout this article, we will adopt periodic boundary conditions. See Re-
marks 4.2 and 4.3 for a brief discussion on this choice, the role of the boundary
conditions, and other possible choices.

2. The nonlocal Cahn–Hilliard functional and modified Cahn–Hilliard
equation. Let Ω ⊂ R

3 denote the three-dimensional flat torus of diameter L; i.e.,
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adopting periodic boundary conditions, we may take Ω =
[
−L

2 , L
2

]3
. We fix m ∈

(−1, 1) and minimize (1.1), i.e.,

(2.2) Eε,σ(u) :=
ε2

2

∫

Ω

|∇u|2 dx +

∫

Ω

1

4
(1 − u2)2 dx +

σ

2

∫

Ω

|∇v|2 dx,

over all u ∈ {u ∈ H1(Ω, [−1, 1]) | −
∫
Ω

u = m.}. Here u represents the (macroscopic) rel-
ative monomer density (i.e., relative density of the A monomers minus that of the B);
ε represents the interfacial thickness (suitably rescaled) at the A and B monomer
intersections; and v is related to u via the boundary value problem

(2.3) −△ v = u − m,

with periodic boundary conditions for v on ∂Ω. Note that the last term of (2.2) is
the H−1 norm squared of the function u(x) − m, i.e.,

∫

Ω

|∇v|2 dx =

∫

Ω

∫

Ω

G(x, y) (u(x) − m) (u(y) − m) dx dy = ‖u − m‖2
H−1(Ω),

where G denotes the Green’s function of −△ on the torus Ω (see Appendix B for
details).

Following [12], one finds that, up to leading order, the quantities ε, σ, and m are
related to the dimensionless parameters χ N and f as follows:1

(2.4) ε2 ∼ l2

f (1 − f)χ
, σ ∼ 1

f2(1 − f)2 l2 χ N2
, m = 2f − 1,

where l is the Kuhn statistical length. The fundamental product χ N is therefore
related to σ and ε via

(2.5) χ N ∼ 1

f3/2 (1 − f)3/2 ε
√

σ
.

We assume that the evolution is given by a gradient flow for the free energy (2.2).
As we explain in Appendix B, a convenient inner product with respect to which we
compute this gradient flow is H−1 (the same as for the Cahn–Hilliard equation), and
this computation gives the following modified Cahn–Hilliard equation: Solve

(2.6)
∂u

∂t
= △

(
−ε2△u − u + u3

)
− σ(u − m)

on the torus Ω. Setting σ = 0 yields the well-known Cahn–Hilliard equation (or, more
precisely, the Cahn–Hilliard equation with constant mobility). Note that the last term
comes from the nonlocal term in (2.2): Using the H−1 norm as the inner product in
computing the gradient reduces the nonlocality to a zeroth-order perturbation of the
Cahn–Hilliard equation. As with the Cahn–Hilliard equation, (2.6) preserves the total
mass average −

∫
Ω

u of the solution, provided the initial data u0 satisfies −
∫
Ω

u0 = m.
Otherwise, one readily sees that the mass average will adjust to m exponentially fast.

1Explicit constants inherent in (2.4) and (2.5) are derived in [12]. However, they are based upon
the form of the interaction Hamiltonian used for the SCMFT. This choice of a first-order interaction
Hamiltonian gives rise to a double-well energy of the form

W (u) =

{
(1−u2)

4
if |u| ≤ 1,

+∞ otherwise,

not W (u) = 1/4(1 − u2)2 used for (2.2) and (2.6).
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2.1. The fundamental dependence on ε
√

σ. For the purposes of determin-
ing the phase diagram of (2.2), one can reduce the characterization of phase space to
two parameters: ε

√
σ and m. To see this, we may rescale the functional (2.2) via

x̃ =
√

σ x, Ω̃ =
√

σ Ω, ε̃ = ε
√

σ,

to find

(2.7) ε̃2

∫

Ω̃

|∇x̃ u|2 dx̃ +

∫

Ω̃

1

4
(1 − u2)2 dx̃ +

∫

Ω̃

|∇x̃ ṽ|2 dx̃,

where ṽ solves

−△x̃ ṽ = u − m on Ω̃.

Equivalently, we may rescale (2.6) as follows:

ũ = u − m, x̃ =
√

σ x, L̃ =
√

σ L, t̃ = σ t, ε̃ = ε
√

σ.

This leads to

(2.8)
∂ũ

∂t̃
= −ε̃2 △2

x̃ ũ + △x̃

(
ũ3 + 3mũ2 − (1 − 3m2)ũ

)
− ũ,

solved on the torus Ω̃ = [− L̃
2 , L̃

2 ]3.
One can also recognize the sole dependence on ε̃ in the basic scaling laws asso-

ciated with minimizers of (2.2) outside the weak segregation regime (i.e., when the
interfacial boundary thickness is sufficiently small). To this end we fix a value of
m ∈ (−1, 1) and focus on scalings in ε and σ. Following [8], the minimum energy

(per unit volume) associated with (2.2) scales like ε2/3 σ1/3 = (ε
√

σ)
2/3

. On the other
hand, one can, at least formally (rigorously in dimension n = 1; cf. [27]), see that
there are two length scales for minimizers: an intrinsic length for the phase patterns

of order
(

ε
σ

)1/3
, and an interfacial thickness of order ε. It is the ratio of these length

scales which controls the degree of the phase separation, i.e.,

(2.9)
( ε

σ

)1/3

ε−1 =
1

(ε
√

σ)
2/3

.

Here again the combination ε
√

σ emerges.
Since the relevant regimes are for small ε̃, we introduce the parameter

γ :=
1

ε̃
=

1

ε
√

σ
.

Note that according to (2.4) and (2.5), we have γ ∼ χ N.

Remark 2.1. Let us provide a few comments on the role of the domain size L
(respectively, L̃). Minimizers of (2.2) or (2.7) possess an intrinsic length scale which

is independent of the domain size L (respectively, L̃). This of course is assuming the

domain size is much larger than this intrinsic length which scales like
(

ε
σ

)1/3
for (2.2)

and ε̃1/3 for (2.7). Note that

ε̃1/3 =
√

σ
( ε

σ

)1/3
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for (2.7). As for the precise nature of the geometry, numerics suggest that for L
sufficiently large, the effect on the geometry of the phase boundary is minimal (see
further section 4.3 and Remark 4.3). Thus, we will take the point of view that for
the purposes of determining the geometry of the minimizing structure, the role of
L is negligible as long as it is sufficiently large. However, this is not to say that in
performing numerics on the gradient flow (2.6) or (2.8) across the phase plane the
choice of domain size does not warrant careful attention—see section 4.3.

3. Region I: A rigorous result for disorder. From Figure 2 one might expect
that when m is close to ±1 and/or σ is large (i.e. γ is small), then u ≡ m is a global
minimizer of (2.2). This constant state is often referred to as the disordered state. We
have the following sufficient condition for disorder which holds in any space dimension
and for any L.

Theorem 3.1. For any m ∈ (−1, 1), the constant state u ≡ m is the unique

global minimizer of (2.2) if

(3.10) 1 − m2 ≤ 2 ε
√

σ or γ ≤ 2

1 − m2
.

Proof. Setting W (u) = (1 − u2)2/4, choose c(m) > 0 such that for u ∈ [−1, 1],

W (u) ≥ W̃ (u) := W (m) + W ′(m) (u − m) − c(m)

2
(u − m)2.

Letting E(u) denote the energy in (2.2), we have for any u ∈ H1(Ω, [−1, 1]) with
−
∫
Ω

u = m,

E(u) ≥ W (m)Ln +
ε2

2

∫

Ω

|∇u|2 dx − c(m)

2

∫

Ω

(u − m)2 dx +
σ

2

∫

Ω

|∇v|2 dx

= W (m)Ln +
∑

|k|�=0

(
ε2

2

|2π k|2
L2

− c(m)

2
+

σ

2

L2

|2π k|2

)
|ûk|2,(3.11)

where for k ∈ Z3, ûk are the Fourier coefficients for u on the cube Ω =
[
−L

2 , L
2

]3
with

respect to normalized basis functions. The sum on the right-hand side of (3.11) is
positive if

(3.12)
ε2

2

|2π k|2
L2

− c(m)

2
+

σ

2

L2

|2π k|2
≥ 0

for all |k| = 1, 2, . . . . Minimizing this expression with respect to |k|2 (treating it as a
continuous variable), we find

|k|4 =
σ L4

ε2 (2π)4
,

and hence (3.12) holds if

c(m) ≤ 2 ε
√

σ.

In this case, the constant state u ≡ m is the unique global minimizer. One readily
checks (see Figure 4) that the optimal choice of c(m) is

c(m) = 1 − m2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1720 RUSTUM CHOKSI, MARK A. PELETIER, AND J. F. WILLIAMS

Fig. 4. Plot of W (u) and W̃ (u) for m = 0.5.

We note that this argument fails for the pure Cahn–Hilliard case (σ = 0); in
particular, the sample size L will not scale out. However, it is certainly not optimal
(except at m = 0): Numerical results in section 5.1 indicate that the true order-
disorder transition lies strictly above the curve γ = 2/(1 − m2). These numerical
results will be used to define the interface between Regions III and IV of Figure 3.

4. Region II: Linear instability of the constant state and simulations.

4.1. Linear instability of the constant state. Following the rescalings of
section 2.1, we examine the linear stability of the constant state u ≡ m for (2.6).
Linearizing (2.8) about the homogeneous solution ũ ≡ 0 gives

∂w

∂t̃
= Lw := −ε̃2△̃2w − (1 − 3m2)△̃w − w.

Substituting the ansatz

w = eλt+ik·x,

one finds

λ = −ε̃2|k|4 + (1 − 3m2)|k|2 − 1.

Hence one finds positive values of λ if

(4.13) 1 − 3m2 > 0 or |m| <
1√
3

(0.215 < f < 0.785)

and, moreover, if

(4.14) (1 − 3m2)2 > 4 ε̃2 or (1 − 3m2) > 2 ε
√

σ.

Thus in terms of γ, we find the boundary of linear stability to be

(4.15) γ =
2

1 − 3m2
.

4.2. Rigorous results. It is natural to seek rigorous results on the structure of
a global minimizer of (2.2) in Region II. Sadly, very little can be proven in dimension
three. Heuristically, one expects the competition between the first two terms of (2.2)
and the nonlocal term to result in a periodic-like structure with an intrinsic scale
determined entirely by ε and σ. Within a period cell, a phase boundary of approximate
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width ε would have a geometry close to being area-minimizing (the effect of the first
two terms in (2.2)). As we shall see, numerical simulations confirm these heuristics.

The periodicity of minimizers is the focus of [3]. Here one considers the sharp
interface version of (2.2), wherein the interfacial thickness is sent to zero in relation
to σ such that the size of the intrinsic length scale remains positive. The periodicity
and intrinsic length scale are addressed by proving weaker statements on the spatial
uniformity of the energy distribution of minimizers. While hardly optimal, these
results confirm that global minimizers must possess a certain uniformity of structure
with respect to the intrinsic length scale. In [43], the methods of [3] have recently
been expanded to produce analogous results for minimizers of the full functional (2.2).

The study of local minimizers is perhaps more tractable. In a series of papers
(for example, [32, 33, 34, 35, 36]) Ren and Wei study the spectral stability of certain
ansatzes—lamellae, spheres, cylinders. For the latter two, they work within a radially
symmetric domain. Interestingly, they are also able to prove the stability of certain
wriggled lamellar and circular structures. However interesting, these results are not
easily tied to fixed values of the parameters, and, in particular, it is difficult to address
which of the geometries has the lowest energy. Work, in a similar spirit, but with
different techniques in two dimensions, has recently been carried out in [7]. In [13], a
full global treatment is given for the second variation of the sharp interface version of
(2.2). The formula is then applied to some simple ansatzes.

To further emphasize the difficulty of characterizing global or local minimizers,
note that, even if one imposes periodicity on admissible patterns as a hard constraint
reflecting the effect of the nonlocal term and considers the remaining perimeter prob-
lems, one is still confronted with fundamental difficulties. Indeed, this reduction leads
to the periodic Cahn–Hilliard and isoperimetric problems for which many questions
remain open in three space dimensions [14, 37, 38].

4.3. Simulations. The most feasible approach for characterizing global or even
local minimizers in Region II is via numerical simulations of (2.6). Here we present
some representative steady state simulations starting from random initial data, which
depict all the phases observed in both the SCMFT and experimental studies summa-
rized in Figure 2. They are presented in Figure 5, where we show the u = m level
sets of the steady state simulations. Figure 5 shows typical solutions for a variety
of parameter values. In particular, we have stripes, cylinders, perforated lamellae,
double gyroids, and spheres. We give two more illustrative views of the double-gyroid
simulation in Figures 6(a) and (b), where for the purpose of visualization, we have
shown several period cells and slightly modified the choice of level set. The perforated
lamellae for m = 0.45, γ = 10 and m = 0.5, γ = 20 are structurally very similar and
are presented from different perspectives. The perforated lamellar phase was observed
in experiments on polyisoprene-styrene by Khandpur et al. [25] and consists of lamel-
lar layers with orthogonal perforations of tubes. We give two more illustrative views
of the perforated lamellar simulation in Figures 6(c) and (d). Note that we have also
included spherical simulations outside of Region II (m = 0.5, γ = 5 and m = 0.7,
γ = 20). In fact they lie in Region III, which will be the focus of section 5.

One phase which we have yet to capture is the so-called Fddd phase (an inter-
connected orthorhombic network with space group 70) which is distinct from the
perforated lamellar phase [52, 53, 45]. Recently, the SCMFT has been used to show
that this phase is stable (i.e., energy minimizing amongst the competitors) in a small
parameter region [52]. It has also been captured by PDE simulations, similar to (2.6),
in [53].
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(a) γ = 5, m = 0 (b) γ = 10, m = 0 (c) γ = 20, m = 0.1

(d) γ = 5, m = 0.2 (e) γ = 10, m = 0.3 (f) γ = 20, m =
0.3

(g) γ = 5, m = 0.3 (h) γ = 10, m = 0.45 (i) γ = 20, m = 0.5

(j) γ = 5, m = 0.5 (k) γ = 10, m = 0.48 (l) γ = 20, m = 0.75

Fig. 5. The u = m level sets of steady state simulations of (2.6) with random initial data.
In all cases we have chosen ε = 0.04 and taken L = π/2 on the left and L = π for the other two
columns.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE PHASE DIAGRAM FOR DIBLOCK COPOLYMERS 1723

(a) Double gyroid, m = 0.2, γ = 5 (b) Detail of one part of (a)

(c) Overhead view of a perforated
lamellar solution, m = 0.45 and γ = 10

(d) Same as (c), viewed from a perpen-
dicular direction

Fig. 6. Views of double-gyroid and perforated lamellar solutions.

It is important to stress that all numerical simulations outside of Region I can be
considered only as potentially locally stable or even metastable states. Solutions to the
one-dimensional Cahn–Hilliard equation are known to show metastability where the
linearized evolutionary operator about stripe-like profiles can have unstable eigenval-
ues of size O(e−c/ε) [44]. This means that transient solutions can appear stationary for
times O(ec/ε). Figure 5 has two solutions not expected to be minimizers: In (0.3, 20),
not all the cylinders are of uniform size, and in (0.1, 20), we expect the oscillations in
the stripes with γ = 20 to eventually diminish.

We also note that, in order to capture fully the symmetry of the phase boundary,
one needs to take L sufficiently large. For example, because of finite-size effects the
array of cylinders for γ = 10 is on a rectangular rather than hexagonal grid which we
believe to be generic. This is also the case for the perforated lamellae of Figure 6(c),
where we expect a hexagonal configuration of the connecting tubes, and for all the
spherical simulations for which we expect BCC symmetry.

We also performed experiments for the same parameters but different initial data
(or several runs with random initial data). For certain parameters, we found different
steady state configurations for different initial data—for example, both single and
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Fig. 7. Energy of stationary profiles as a function of m for γ = 5 (top), 10 (middle), and 20
(bottom). The dashed lines are preliminary estimates of the phase boundaries.

double gyroids. In this case, a comparison of the free energies was made and the
minimizer chosen—for example, the double gyroid had lower energy than the single
gyroid. We summarize our steady state simulations throughout Region II (and III)
in Figure 7, where we plot the energy of the final stationary states as a function of
m for various values of γ. These phase boundaries should be regarded only as rough
estimates (see section 6 for further comments). A full phase diagram based upon
simulations of the phase boundary is in progress. Here one will perform detailed
calculations of certain geometric characteristics like the Euler characteristic [1, 46]
and pay careful attention to choosing the sample size L sufficiently large so as to
capture the true symmetries of the steady state structures.

A detailed phase diagram starting purely from random initial data requires con-
siderable computational time. The PDE is numerically stiff in time, has spatial struc-
tures varying over many orders of magnitude, and exhibits metastability where clearly
nonoptimal structures can persist for long times. To overcome some of these issues
we typically employed some form of simulated annealing by adding random noise or
by taking occasional large steps based on linearization of the current profile. Because
of the size and nonlinearity of the problem direct minimization algorithms proved
infeasible.

One would ideally compute a phase diagram which is not only qualitatively similar
to both the SCMFT phase diagram of [26] (Figure 2, left) and the experimental one
(Figure 2, right—see also [25, 40, 21]) but also quantitatively similar, at least close to
the order-disorder transition. In particular, one must be able to exactly relate values
of γ, m to a value for χ N . This requires a calibration of the constant implicit in (2.5),
for example, by fitting the order-disorder transitions in m × γ space to match either
SCMFT calculations or experimental data.

We conclude this section with a few important remarks.

Remark 4.1. Let us be a bit more specific as to what we mean by the gyroid

and double gyroid. The minimal surface gyroid dates back to Alan Schoen in 1970
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[23]. This triply periodic surface with triple junctions has constant mean curvature
analogues for a variety of volume fractions [23, 18, 19, 20]. The bicontinuous double
gyroid consists of two separate single gyroid networks and has a symmetry associated
with space group Ia3̄d, whereas the single gyroid is associated with subgroup I4132
[19]. Both surfaces can be viewed on the website of the Scientific Graphics Project [49],
where one can also find explicit characterizations in terms of level sets of elementary
functions, in fact, eigenfunctions of the Laplacian. At this preliminary stage, our
basis for claiming that certain of our steady state simulations yield gyroids is twofold:
(i) they visually resemble these surfaces; (ii) for the appropriate parameters, we also
performed runs where we set as initial conditions the actual gyroids and double gyroids
[49] and saw little change in the topological nature of the final states.

Remark 4.2. The previous remark and, in fact, all the phases we have noted
are directly related to constant mean curvature surfaces. It is important to note
that interfaces associated with minimizers of (2.2) will not, in general, have exactly
constant mean curvature: Even in the small volume fraction regime, one will not have
exactly spherical domains. This is simply due to the effect of the nonlocal term, whose
effect on the phase boundary can be seen via the sharp interface version of (2.2) and
the consequences of the vanishing first variation and the positive second variation (cf.
[14]). Numerics, however, certainly suggest that this perturbation from CMC is very
small.

Remark 4.3. Let us further elaborate here on the boundary conditions. Taking
the physical domain to be the torus is convenient but perhaps also misleading: The
resulting self-imposed periodicity is not the periodicity we wish to capture in self-
assembly structures of block copolymers. For instance, on a sufficiently small domain
one may find a rectangular rather than hexagonal packing despite its higher energy.
The competition of the terms in the energy sets an intrinsic length scale for minimizing
structures, and it is periodic phase separation on this scale that we wish to model.
If we were to work on an arbitrary domain which was sufficiently large with respect
to this intrinsic scale and adopted (say) Neumann boundary conditions, we would
still expect similar periodic-like structures far away from the boundary. On the other
hand, general boundary conditions will most probably effect the exact nature of the
phase boundaries. This was previously alluded to in regard to the effect of the nonlocal
term on the phase boundary in the case working on a finite torus, and as in this case,
one would expect that away from the boundary this effect is small (with respect to
the overriding symmetry properties). Thus, one might very well observe gyroid-like

structures away from the boundary in the case of an arbitrary domain. It would be
interesting to investigate this numerically with, for example, finite element methods
on general domains.

5. Regions III and IV.

5.1. Numerical calculations of the Region III/IV (order-disorder) bound-
ary. We now focus on the part of the phase plane defined by

{
(m, γ)

∣∣∣∣ 1 > |m| ≥ 1√
3

}

and

{
(m, γ)

∣∣∣∣ |m| <
1√
3

and
2

(1 − m2)
< γ <

2

(1 − 3m2)

}
.
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For these parameters, the constant state is linearly stable; however, as we shall see
in sections 5.2 and 5.3, a simple scaling argument and an asymptotic analysis of the
energy lead one to the conclusion that small (well-separated) spherical structures have
lower energy than the constant state. First, we numerically determine the transition
from order to disorder, defining Regions III and IV. In the numerical experiments
starting from random initial conditions, we typically set L = π, used N = 64 Fourier
modes, and took ∆t = .001. Figure 8 presents the bifurcation diagram for the region
m ∈ (0, 1), γ ∈ (2, 25) showing the different solution regions. To estimate the curve
separating Regions III and IV we proceeded as follows. An initial regular array
was performed from which the curve was estimated. New points were then added
near the predicted curve and it was recomputed. We repeated this procedure until
the curve could be reliably estimated. For this experiment, the initial data were
evolved until either the energy was lower than the disordered state or the solution was
sufficiently close to the disordered state. From the basis of our numerical experiments,
we conjecture that in Region IV, the constant state is the unique global minimizer:
In particular, the Region I/IV interface is artificial and the numerically computed
boundary of Figure 8 reflects the true order-disorder transition (ODT) curve.

Fig. 8. Numerical bifurcation diagram in three dimensions. The o’s indicate runs which con-
verged to states with lower energy than the disordered state. The ×’s mark simulations which tended
to the disordered profile. The solid line marks the best fit separating these regions. The top and
lower curves are γ = 2

1−3m2 and γ = 2
1−m2 , respectively.

5.2. Scaling argument for order. We showed in (4.15) that the regime of
|m| > 1/

√
3 gave rise to local stability of the constant, disordered state. However,

for very small 1 − |m| and the strong segregation regime (small ε
√

σ or large χ N), a
simple scaling argument shows that one can have phases of small spheres with lower
energy. Here and in the next section, we are interested in a regime of large γ, with m
close to −1, wherein the number of spheres remains O(1). To this end, we will need
an asymptotic expansion of the nonlocal energy (i.e., the last term in (1.1) or (2.2))
related to a periodic array of N very small balls of total mass fraction 1/2(1 + m)
(see Figure 9) in the limit where m tends to −1 and N is fixed. Let F (x) correspond
to a periodic array of cubes/squares of size l consisting of a central sphere/disc of
diameter a (i.e., F = 1 inside the small spheres and −1 outside)—see Figure 9. Then

∥∥∥∥F −−
∫

Ω

F

∥∥∥∥
2

H−1(Ω)

= N

∥∥∥∥∥F −−
∫

[0,l]3
F

∥∥∥∥∥

2

H−1([0,l]3)

∼ N

∥∥∥∥∥g −−
∫

[0,l]3
g

∥∥∥∥∥

2

H−1([0,l]3)

,
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Fig. 9. Periodic array of small spheres of diameter a.

where g defined on one cell [0, l]3 is the analogue of F with the sphere of diameter a
replaced with a cube of side length a (see Figure 13).

Proposition 5.1. There exists a constant C such that
∥∥∥∥∥g −−

∫

[0,l]3
g

∥∥∥∥∥

2

H−1([0,l]3)

≤ C a5.

The proof is standard, but for completeness we present it in Appendix B.2

Turning now to the energy scalings, we assume an ansatz structure of a periodic
array of N small balls of total mass fraction m (see Figure 9) with very narrow
interfaces of width ε. We compute the energy with respect to the leading order in
ε, σ and volume fraction f = (m + 1)/2 and then compare with the energy of the
uniform state. We consider a cubic domain Ω consisting of N cells of size l; hence
|Ω| = N l3 and f = a3/l3. Here we are not interested in constants and make the
standard assumption (cf. [6]) that for ε small, we may replace

ε2

2

∫

Ω

|∇u|2 dx +

∫

Ω

1

4
(1 − u2)2 dx

with ε times the perimeter of the interfaces. We compute the energy (2.2) of such a
structure:

E(a, f) ∼ ε N a2 + σ N a5

∼ |Ω| f
( ε

a
+ σ a2

)
.

Optimizing in a, we find

aopt ∼
( ε

σ

)1/3

and hence
E(aopt, f)

|Ω| f ∼ ε2/3 σ1/3.

On the other hand, the uniform state u ≡ m = 2f − 1 satisfies

E(m)

|Ω| f =
1

|Ω| f

∫

Ω

W (u) dx ∼ f.

2In two dimensions one has
∥∥∥∥∥g −−

∫

[0,l]2
g

∥∥∥∥∥

2

H−1([0,l]2)

≤ C a4 log(l/a).
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Hence for γ sufficiently large, a periodic array of well-separated small sphere-like
patterns has lower energy than the uniform state.

5.3. Asymptotic analysis of the energy in Region III. The scaling analysis
of the previous subsection suggests that far up in Region III, small periodic arrange-
ments of spheres (i.e., the spherical phase) have lower energy than the constant state.
It is natural to explore this regime from the asymptotics of the energy. That is, we
consider a limit wherein γ → ∞ and f → 0 while keeping the number of phases,
loosely referred to as particles, O(1), and derive first- and second-order effective en-
ergies whose energy landscapes are simpler and more transparent. These effective
energies are defined over Dirac delta point measures and can be characterized as fol-
lows: At the highest level, the effective energy is entirely local; i.e., the energy focuses
separately on the energy of each particle. At the next level, we see a Coulomb-like
interaction between the particles. It is this latter part of the energy which we expect
enforces a periodic array of masses. Proving this is a nontrivial matter: The closest
related result we know is in [50].

There is a natural framework in which to rigorously establish these effective en-
ergies, that of Γ-convergence [6] in the space of measures equipped with the weak
star topology. The details are too extensive to present here: They appear for the
sharp interface functional (cf. (5.18) below) in [10] and are in preparation for the full
functional [11]. However, it is relatively straightforward to formally capture these
two levels of effective energies in the sharp interface limit. We present this in three
dimensions.

Our starting point is the assumption that for η small, minimizers must have a
basic structure of small separated particles (see Figure 10) which, after rescaling, tend
to Dirac delta point measures. Recall that the energy has the form

(5.16) Eε,σ(u) :=
ε2

2

∫

Ω

|∇u|2 dx +

∫

Ω

W (u) dx +
σ

2

∥∥u − −
∫
Ω u

∥∥2

H−1
,

where W (u) := (1− u2)2/4. We wish to consider the limiting behavior as both ε → 0
and m = −

∫
Ω u → −1 but the number of period cells remains O(1). In order to capture

something nontrivial in this limit—as the volume fraction m tends to −1 (f tends to
0) all the mass vanishes—we must pay careful attention to rescalings. To this end,
let us not first a priori constrain the volume fraction of u. Rather let us perform a
natural rescaling involving a limiting small parameter which will equivalently have
the effect of sending the volume fraction to zero. To this end, we choose a new small
parameter η and rescale as follows:

(5.17) v :=
1

2η
(u + 1), σ =

ε

η
, W̃ (v) := v2(1 − ηv)2,

so that the wells of W̃ are at 0 and 1/η, and the energy Eε,σ can be written as

Eε,σ(u) = 2εη Eε,η(v) := 2εη

{
εη

∫

Ω

|∇v|2 +
2η

ε

∫

Ω

W̃ (v) +
∥∥v − −

∫
Ω v

∥∥2

H−1

}
.

The introduction of η and the above rescaling have the effect of naturally facilitating
the convergence to a sum of delta point measures. Moreover, we may consider a limit
where both

η −→ 0 and f =
1

2

(
−
∫

Ω

u + 1

)
−→ 0
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Fig. 10. Description of vη representing an array of separated particles.

but with f/η fixed. This will allow for the extra degree of freedom that as η → ∞,
the distribution of mass f/η across the point measures may not be uniform.

As in section 5.2 we consider the strong segregation or sharp interface limit (cor-
responding to ε → 0), in which

εη

∫

Ω

|∇v|2 +
2η

ε

∫

Ω

W̃ (v) ≈ c0

∫

Ω

|∇v|,

provided v ∈ {0, 1/η}, with c0 = 21/2
∫ 1

0 W (s) ds. This limit is rigorously justified
by the well-known Modica–Mortola theorem of Γ-convergence (see, for example, [6]).
This prompts the definition

(5.18) Fη(v) := c0

∫

Ω

|∇v| +
∥∥v − −

∫
Ω v

∥∥2

H−1
, provided v ∈ BV (Ω, {0, 1/η}).

The argument of section 5.2 involving small spheres shows that the minimum energy
of Fη scales like η−1/3. Thus the energy tends to infinity as η → 0 (note that the H−1

norm of a delta function is infinite in dimension n = 3). We now wish to investigate the
asymptotics of the η1/3 Fη(v) as η → 0. We remark that this problem shares many
common characteristics with the asymptotic analysis of the well-known Ginzburg–

Landau functional which models magnetic vortices in superconductors [5, 2, 22].
The limiting behavior of the energy is best illustrated by studying a sequence vη

associated with a finite collection of disjoint particles. Let vη =
∑nη

i=1 vi
η, where each

vi
η is of the form vi

η = η−1χEi
η
, and the sets Ei

η are connected with a smooth boundary

(see Figure 10). We define the mass of each connected component as

αi
η =

∫

Ω

vi
η =

1

η
|Ei

η|.

As η → 0 we assume the following convergence (weak-∗ convergence in the sense of
measures):

(5.19) vη −→
∑

i

αi δxi , where αi
η → αi and xi ∈ Ω.

By adding a constant we can assume that G is the Green’s function for −∆ on
the torus Ω satisfying

∫

Ω

G(x, y) dy = 0 ∀x ∈ Ω,

so that we find the simpler form

∥∥v − −
∫
Ω v

∥∥2

H−1
=

∫

Ω

∫

Ω

G(x, y) v(x) v(y) dx dy.
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Note that G is bounded from below. The energy Fη(vη) of (5.18) then splits into two
pieces:

η1/3Fη(vη) = η1/3
∑

i

{
c0

∫

Ω

|∇vi
η| +

∫

Ω

∫

Ω

G(x, y) vi
η(x) vi

η(y) dx dy

}

+ η1/3
∑

(i,j): i�=j

∫

Ω

∫

Ω

G(x, y) vi
η(x) vj

η(y) dx dy

= η1/3
∑

i

Fη(vi
η)

+ η1/3
∑

(i,j): i�=j

∫

Ω

∫

Ω

G(x, y) vi
η(x) vj

η(y) dx dy.(5.20)

As η tends to zero, the second term vanishes, since by (5.19)

∑

(i,j): i�=j

∫

Ω

∫

Ω

G(x, y) vi
η(x) vj

η(y) dx dy −→
∑

(i,j): i�=j

αiαjG(xi, xj).

The first term in (5.20) is O(1) as η → 0 and is essentially the sum of the energies
of each of the particles; i.e., there is no interaction between the blobs, and thus
the leading-order behavior is entirely local. Hence as η tends to zero, we expect an
effective energy defined over weighted Dirac point measures which will see only the
limiting mass factor αi. In fact, it will be a sum of individual energies, consisting of
the perimeter and the H−1 norm (now defined over all of R

3), which are defined for
characteristic functions of mass αi.

On the other hand, (5.20) and (5.19) suggest that if one subtracts this first-order
effective energy from η1/3Fη(vη), divides the difference by η1/3, and lets η tend to 0,
the result converges to a Coulomb-like interaction energy over all distinct pairs of the
points xi, i.e., an effective energy of the form

∑

(i,j): i�=j

αi αj G(xi, xj),

defined over point measures
∑

i αi δxi . As we have said, these statements are made
precise in the context of Γ-convergence in [10].

5.4. Two related works. We briefly discuss here two recent and related works
concerning minimizers of (2.2) in Region III. In [36] Ren and Wei prove the existence
of sphere-like solutions to the Euler–Lagrange equation of (2.2) and further investigate
their stability. The regimes for which these solutions exist overlap with Region III.
They also show that the centers of sphere-like solutions are close to global minimizers
of an effective energy defined over point masses which includes both a local energy
defined over each mass and a Green’s function interaction term which sets the location
of the approximate spheres. Thus while the nature of their result and methods used
are different from ours, their results are in the same spirit.

In [17], Glasner and the first author explore the dynamics of small spherical phases
for a gradient flow of the sharp interface version of (2.2) with small volume fraction.
Here one finds, confirmed by simulations of (2.6), that there is a separation of time
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scales for the dynamics: Small particles both exchange material as in usual Ost-
wald ripening and migrate because of an effectively repulsive nonlocal energetic term.
Coarsening via mass diffusion occurs only while particle radii are small, and they even-
tually approach a finite equilibrium size. Migration, on the other hand, is responsible
for producing self-organized patterns. By constructing approximations based upon an
ansatz of spherical particles similar to the classical LSW (Lifshitz–Slyozov–Wagner)
theory, one derives a finite-dimensional dynamics for particle positions and radii. For
large systems, kinetic-type equations which describe the evolution of a probability
density are constructed. A separation of time scales between particle growth and
migration allows for a variational characterization of spatially inhomogeneous quasi-
equilibrium states.

Heuristically this matches our findings of (a) a first-order energy which is local and
essentially driven by perimeter reduction, and (b) a Coulomb-like interaction energy,
at the next level, responsible for placement and self-organization of the pattern. It
would be interesting if one could make these statements precise via the calculation of
gradient flows and their connection with Γ-convergence [39].

6. Discussion. We have made a preliminary study of characterizing minimizers
of (2.2) throughout the m × γ plane. In doing so, we have laid the foundation for a
very rich variational problem based upon a physical problem of contemporary inter-
est. Besides numerical simulations, Region I is the only region wherein a complete
characterization of the ground state is possible. Region III allows for an energetic
asymptotic analysis which will be complemented with rigorous Γ-convergence results
(cf. [10] and [11]). These results give not only rigorous support to sphere-like global
minimizers in an asymptotic regime of the phase plane but also give a decomposition
of the relative effects of the different terms in the energy. They are also very much
in the same spirit as recent work on the asymptotics of the Ginzburg–Landau energy
and the structure of magnetic vortices in Type-II superconductors.

However mathematically interesting and attractive, these asymptotic results will
not yield any precise information for particular (finite) values of m and γ. Thus for
the purposes of the phase diagram, our primary tool will continue to be numerical
simulations. Formal asymptotics for the bifurcation of lamellar and spherical phases
is in preparation, and this will help in the numerical creation of a full phase diagram
which can be compared with the SCMFT and experimental diagrams of Figure 2.
Note that we have already been able to simulate all but one (the Fddd phase) of the
phases observed in the experimental phase diagram. This included the perforated
lamellar phase which was not seen as a stable (globally minimizing) phase in the
SCMFT calculations.

Although the numerical experiments show the boundary between Regions III
and IV begins at γ > 2 we believe that this curve actually emerges from (0, 2). In
fact, preliminary formal asymptotics suggest that all boundary curves emerge from
this point. A more detailed analysis of this is forthcoming. Moreover, based upon
numerical simulations, we also believe that it is this curve which is the true ODT curve;
that is, below this curve the uniform state in the unique global minimizer, and hence
Region I and IV, are, in effect, one region. Numerical experiments in Region III are
consistent with the analysis we presented in sections 5.2 and 5.3, suggesting minimizers
are spherical. Note that this spherical regime extends into Region II.

One might be tempted, at this stage, to extrapolate from Figure 7 and include a
preliminary sketch of the full phase diagram, qualitatively comparable to the SCMFT
diagram of Figure 2. We resist this temptation: A detailed numerical phase diagram



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1732 RUSTUM CHOKSI, MARK A. PELETIER, AND J. F. WILLIAMS

is in progress wherein many more runs will be performed to far greater resolution and
wherein we include a detailed geometrical analysis of the level sets of the steady states.
Moreover, via (2.4), (2.5), and a certain calibration of constants, we will hopefully be
able to compare, close to the order-disorder transition, our results with the SCMFT
and the experimental results of Figure 2.

Finally we note that with the exception of Theorem 3.1, our focus has been on
the physically relevant spatial dimension n = 3. Mathematically, it is natural to ask
about the phase diagram of (2.2) in other dimensions, especially as the nature of the
Green’s function for the third term is highly sensitive to the dimension. In dimension
n = 1, essentially one has a full understanding of the phase diagram, with the only
structure phases being periodic (cf. [27, 31]). In dimension n = 2, whereas the range of
possible minimizers is quite small (lamellae and periodic arrays of disks are the natural
candidates), we are again faced with the fact that very little is rigorously known about
global minimizers—there has certainly been much work on local minimizers and the
stability of the basic candidate structures, e.g., [32, 34, 7]. For Region III, we carry
out the same asymptotic investigation in two dimensions in [10, 11]. Here we see
some fundamental differences with respect to three dimensions which are reflected in
both the scalings of the reduced functionals (cf. (5.18)) and the effective first- and
second-order energies. Numerically, two dimensions present an interesting test case for
overcoming metastability issues and directly simulating both the spherical (disks) and
lamellar phase in their respective positions of the phase plane starting with random
initial conditions. The metastability issues alluded to in section 4.3 are also present
in two dimensions. Hence for a full evaluation of parameter space, direct simulation
of (2.6) is insufficient, as one will often get stuck in a metastable state which certainly
has larger energy than the global (and perhaps many local) minimizers. Approaches
based upon artificially driving the evolution out of undesired metastable states are
needed, and (2.6) in two dimensions provides a good test case for such methods. Any
method to do this is physically reasonable, as the temporal dynamics of the PDE
are not of primary interest. Rather, we are foremost interested in the stationary
states which minimize (1.1). Once efficient and reliable methods to do this have been
developed for two dimensions we will be able to perform the detailed phase diagram
in three dimensions.

Appendix A. Details of the numerical simulations. All computations were
performed in MATLAB using both fourth-order exponential time differencing Runge–
Kutta (ETDRK) [24] and a pseudospectral spatial discretization. Sample codes are
available at http://www.math.sfu.ca/∼jfwillia. Periodic boundary conditions were
imposed and initial data was typically defined by ui = ri + m, i = 1, . . . Nn, with
ri selected uniformly from the interval (−1 − m, 1 − m) with mean zero. This initial
data was then evolved until ‖ut‖ < TOL1 or E(u(·, t)) < E(m)− TOL2 for specified
tolerances. Although steady state was not reached if only the second condition was
met, we are certain that the solution has evolved to a lower energy state than the
disordered profile u ≡ m.

A test of the two-dimensional code was performed by randomly sampling values
of (m, γ) from (0, 1)× (2, 20) and taking initial data as m + r with r randomly drawn
from the uniform distribution on (−.2, .2). The data was evolved until either

max(u(·, t)) − min(u(·, t)) < .001 or ||ut|| < .0001.

The results of the experiment are presented in Figure 11. These results clearly demon-
strate that the method respects the linear stability of the disordered state. Also the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE PHASE DIAGRAM FOR DIBLOCK COPOLYMERS 1733

Fig. 11. Linear stability of u ≡ m. The ×’s mark solutions where max(u(·, tfinal)) −
min(u(·, tfinal)) > .001 and the �’s where max(u(·, tfinal)) − min(u(·, tfinal)) < .001. The solid

line is γ = 2
1−3m2 at which the linear stability of the disordered state changes. The three circles

mark those runs which were categorized incorrectly using these tolerances. All three of these cases
are very close to the stability curve and can be attributed to the numerical accuracy of the method
and the tolerances.

Fig. 12. Typical energy decay. Ω = [−π/4, π/4]3, ε = .04, γ = 25, and m = 0.35. It is
important to note that while the solution changed significantly over the entire time interval, the
energy hardly changed at all after an initial transient.

code decreases the energy (Figure 12).

Appendix B. The H
−1 norm. Let Ω denote the three-dimensional flat torus

of unit volume. Consider the Hilbert space

H :=

{
f ∈ L2(Ω)

∣∣∣∣
∫

Ω

f dx = 0

}
,

equipped with the following inner product. For f, f̃ ∈ H , let v, ṽ denote the functions
in H satisfying

−△v = f and −△ṽ = f̃ on Ω,
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and define
〈
f, f̃

〉
H

:=

∫

Ω

∇v · ∇ṽ dx.

Thus the norm in H is

(B.21) ‖f‖2
H =

∫

Ω

|∇v|2.

In Fourier space, denoting the kth Fourier coefficient of by û(k), we have

‖f‖2
H =

∑

|k|�=0

|û(k)|2
|2πk|2 .

The norm (B.21) is also the norm of the dual space of H1
0 (the functions in H1 with

zero average) with respect to the standard pairing. That is, letting C∞
0 (Ω) denote

the space of C∞ functions on the torus Ω with zero average,

‖f‖2
H = sup

ψ∈C∞

0
(Ω)

( ∫
Tn f ψ

)2

‖∇ψ‖2
L2(Ω)

.

Whereas it has become standard folklore that the Cahn–Hilliard equation can
be interpreted as a gradient flow with respect to H−1, this is surprisingly written
down in very few places (e.g., the notes of Fife [15]). Since this calculation is rather
straightforward, let us show how to derive (2.6) as a gradient flow of (2.2) with respect
to the H inner product. To this end, let us assume all functions are smooth (including
ones in H). Let δ > 0. We define gradHEε,σ(u) to be an element of H such that for
all

W (t) : [0, δ) → H,

with W (0) = u, we have

d

dt
Eε,σ(W (t))

∣∣∣∣
t=0

=

〈
gradHEε,σ(u),

∂W

∂t

∣∣∣∣
t=0

〉

H

.

In particular, for any w ∈ H , we have

d

dt
Eε,σ(u + tw)

∣∣∣∣
t=0

= 〈gradHEε,σ(u), w〉H .

Thus if u(x, t) follows the flow

(B.22) ut = −gradHEε,σ(u),

we have

d

dt
Eε,σ(u(x, t)) =

〈
gradHEε,σ(u),

∂u

∂t

〉

H

= −‖gradHEε,σ(u)‖2
H ≤ 0.

Let us compute gradHEε,σ(u) ∈ H . To this end, let u be such that −
∫
Ω u = m. We

compute the gradient with respect to parallel space u + H . Thus for w ∈ H and
t ∈ [0, δ), consider for u + tw, and let v, ṽ ∈ H solve

−△v = u − m and −△ṽ = w in Ω.
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We find

d

dt
Eε,σ(u + tw)

∣∣∣∣
t=0

=

∫

Ω

(
u3 − u − ε2△u

)
w + σ∇v · ∇ṽ dx

=

∫

Ω

(
u3 − u − ε2△u

)
(−△ṽ) + σ∇v · ∇ṽ dx

=

∫

Ω

∇
(
−ε2△u − u + u3 + σ v

)
· ∇ṽ dx

=

〈
−△

(
−ε2△u − u + u3 + σ v

)
, w

〉

H

.

Thus

gradHEε,σ(u) = −△
(
−ε2△u − u + u3 + σ v

)

= −△
(
−ε2△u − u + u3

)
+ σ(u − m),

and (B.22) gives

∂u

∂t
= △

(
−ε2△u − u + u3

)
− σ(u − m).

For completeness, we supply a proof of Proposition 5.1 which is similar to the
result for the H−1/2 norm presented in [9].

Proof of Proposition 5.1. We adopt the standard notion of using f�g and f ∼= g
to denote, respectively, f ≤ C g and f = C g for some constant C. Without loss of
generality we may rescale g to take values 0 and 1 instead of −1 and 1, respectively.
Let

ĝ(k) =

∫

[0,l]3
g(x) e−2πi x·k

l

denote the kth Fourier coefficient of g(x) on [0, l]3. Let h(x) = g(lx) and α = a/l (see

Figure 13), and let ĥ(k) be the Fourier coefficients of h(x) on [0, 1]3, i.e., with respect
to the basis e2πix·k. We have

ĝ(k) = l3 ĥ(k).

Focusing on ĥ(k), we have (by a convenient translation within [0, 1]3)

|ĥ(k)|2 ∼=
∣∣∣∣
∫ α

0

e−2πik1x dx

∣∣∣∣
2 ∣∣∣∣

∫ α

0

e−2πik2y dy

∣∣∣∣
2 ∣∣∣∣

∫ α

0

e−2πik3z dz

∣∣∣∣
2

∼= 1

k2
1

∣∣e−2πik1α − 1
∣∣2 1

k2
2

∣∣e−2πik2α − 1
∣∣2 1

k3
3

∣∣e−2πik3α − 1
∣∣2

=
sin2 πk1α

k2
1

sin2 πk2α

k2
2

sin2 πk3α

k2
3

�
α2

1 + α2k2
1

α2

1 + α2k2
2

α2

1 + α2k2
3

.
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Fig. 13. Rescaled versions of functions g and h in the proof of Proposition 5.1.

Thus

∥∥∥∥∥g −−
∫

[0,l]3
g

∥∥∥∥∥

2

H−1([0,l]3)

∼=
∑

|k|�=0

|ĝ(k)|2
l |k|2

= l5
∑

|k|�=0

|ĥ(k)|2
|k|2

� l5
∑

|k|�=0

1

|k|2
α2

1 + α2k2
1

α2

1 + α2k2
2

α2

1 + α2k2
3

� l5
∫ ∞

0

∫ ∞

0

∫ ∞

0

1√
x2

1 + x2
2 + x2

3

α2

1 + α2x2
1

α2

1 + α2x2
2

α2

1 + α2x2
3

dx1 dx2 dx3

� l5 α5

∫ ∞

0

∫ ∞

0

∫ ∞

0

1√
x2

1 + x2
2 + x2

3

1

1 + x2
1

1

1 + x2
2

1

1 + x2
3

dx1 dx2 dx3

� a5.
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