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MANIFOLDS ACQUIRING GENERAL SINGULARITIES
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ALAN LANDMAN

ABSTRACT.    We consider a holomorphic family  i^,!.eD  of projective alge-

braic varieties   V    parametrized by the unit disc   D = \t e C:   |¡| <   lS  and where

Vt   is smooth for  t p 0  but   V~ may have arbitrary singularities.   Displacement

of cycles around a path   t = t^e1     (0  £ 6 s 277)  leads to the Picard-Lefschetz

transformation    T:   H*{VtQ, Z) ~~ Hx{Vt~, Z) on the homology of a smooth   K(q.

We prove that the eigenvalues of   T  are roots of unity and obtain an estimate

on the elementary divisors of   T.   Moreover, we give a global inductive proce-

dure for calculating   T  in specific examples,  sevetal of which are worked out

to illustrate the method.

1.   Introduction.

A. Let W and  W    be algebraic varieties and f:  W —' W    a rational map.   For

t £ W ,  let  V  = f  it) be the corresponding fibre.
In general, there exists an algebraic subset S of  W    such that  W - f~   is) is

a fibre space over  W   — S via /.   This induces a representation of the fundamental

group  77,(U/   - S, t) as a group of homeomorphisms of   V .   Hence,  n^{W   - S, t)

acts as a group of linear transformations on the homology  H^iV ).

This leads to the following problem:

Given a loop in  W   — S, describe the corresponding transformation.

B. As it stands, this problem is too general.   We will make the following

simplifying assumptions:

(1.1) W is projective and nonsingular.

(1.2) W    is a projective, nonsingular curve   C.   This means that the fibres

Vt ate divisors on  W,  i.e., their components may have multiplicities greater than 1.

Assumption (1.2) is useful because in many cases  77Aw   - S, t)  is generated

by  77,(C - C O S, t), where   C is a general curve in  W    containing  /,  e.g., a
plane section relative to some projective embedding of W . When  W    is a projective

space, this was shown by Zariski [8].
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90 ALAN LANDMAN

(1.3) / is defined on all of  W,  i.e., there is no base locus.   (This is not es-

sential and will be weakened later on.)

With these assumptions, Bertini's theorem tells us that all the   V    are non-

singular except for those  t belonging to a certain finite subset of  C.   These ex-

ceptional points form the set  S mentioned above.

(1.4) The loop g in which we are interested is a simple closed curve con-

taining just one point p of  S.

The action on homology induced by g depends only on the nature of the sin-

gularities of  V .   When  V    has only ordinary double points, Picard [6] and Lef-

schetz [4] gave a formula for expressing the transformation.   This is why we call

the action in more general situations the Picard-Lefschetz transformation (or

just the P-L transformation).

(1.5) V    has only normal crossings, i.e., its underlying algebraic set is the

union of nonsingular hypersurfaces of  W meeting transversally (cf. part 9B).

C.   We begin by describing Lefschetz's method for obtaining the homology of

an algebraic variety by means of hyperplane sections.   This is applied to each

fibre   V     fot t  neat p,  to yield the following results:

(1.6) Theorem I.    The eigenvalues of the P-L transformation are roots of

unity.

More precisely, we have

(1.7) Theorem I . Let m., • • • , ttz be the multiplicities of the components

of V . Then each eigenvalue of the P-L transformation is an m Ah root of unity

for some   i = 1, • • • , r.

(1.8) Theorem II.    The elementary divisors of the P-L transformation are

all of degree < dim W.

More precisely, we have

(1.9) Theorem II .    Let s  be the maximum number of components of V    which

have a point in common.   Then the elementary divisors of the P-L transformation

are all of degree < s.

We conclude by examining the P-L transformation in some specific cases.

2.   The 0-dimensional case.

A.   When  W itself is a curve, so that the   V   ate   0-dimensional, the P-L

transformation can be described through the classical theory of algebraic func-

tions of one variable.

Let x £ W and let  z   be a local coordinate at x in  W.   Let  t be a local

coordinate at fix) in  C,  so that near x the function / is given by
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ON THE PICARD-LEFSCHETZ TRANSFORMATION 91

< + l +(2.1) t =f{z) = cxzm + c2zn

where  c. f 0 and m  is the multiplicity of  x as a component of  VQ = /"   ijix)).

The power series (2.1) can be inverted to yield the Puiseux series

(2.2) z = {l/cl)tl/m + ••■

which is a power series in t       .   Hence, when  t  is near   0,   V(  consists of ttz

points near x  and these points permute cyclically as  t  makes one circuit about  0.

Note that the fibre   VQ consists of normal crossings and the P-L transforma-

tion satisfies the theorems stated in part 1C.

B.   The homology of the curve  W can be determined in a classical way by

means of the pencil   V .

For simplicity, let us assume that the parameter curve   C  is actually the

projective line   P  .   There will be a finite set   R  in  W at which / ramifies, i.e.,

points where the  722  of (2.1) is  > 1.   Let S = f{R).   Then  t £ S if and only if  V
is singular, i.e.,   V   = m^x,+••• + m x ,  where the  x.  are distinct points of  U;,

the   ttz. are positive integers and at least one  772.  is  > 1.   The behavior of the

points of W neat the  x. was mentioned above.

From the continuity of algebraic functions, we deduce the following:

(2.3) /:  W - f~   iS)     ' P    - S  is a fibre space with fibre any nonsingular   V .

(2.4) If g :  [O, 1]     ' P     is a continuous map of the unit  interval into  P

such that g[(J, 1) C  P    - S and if y £ f   (g(0)),  then there is a unique map g :

[0, l] —» W such that  f °g  = g  and g (O) = y.
(2.4) implies that there is a continuous map  T    from  f~   igiÓ)) to /_1(g(l)).

In particular,  77,(P1 - S, p) acts on  HQif~1{p)).

(2.5) In case gil) £ S and /" '(gU)) = w,*, + • • •  + m x ,  then   T    is onto

and   T~   (x.)  consists of 722. points.

This leads us to two important concepts.   The first is that of vanishing cycle
(along g), which is just an element  d of   H Q{f~ :{g{0))) suchthat   T  id) = 0 in

^0'/     OjvLu).   In the case at hand, the vanishing cycles are generated by those
of the form y, - V-,  where   T  (y, ) = T  (y_).1 2 g y I g -' 2

Next, we have the concept of the cylinder generated by a cycle  d in

H0^~   (g(0)))-   We simply keep track of the cycle in each fibre over g[0, l].   This

cylinder,   denoted   Did, g), is a 1-chain which, with appropriate orientation, has
boundary d - T  id).

In the special case where  d vanishes along  g,   dDid, g) = d and we can

speak of the cone generated by d.   It is an element of the relative group

^(ff.f'igfO))).
(2.6) Pick a base-point p  in   P     and let  \g \ be simple paths from p to the

points of  S meeting only at  p.   Then   H,(W, V  )  is generated by the cones over
the  g .
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92 ALAN LANDMAN

In particular, if we assume that the singular fibres are as simple as possible,

viz., of the form  2x. + x2 + • • ■ + x    (the  x . being distinct points of  W),  then

there is exactly one vanishing cycle d. fot each g ..   d   will be of the form  u{ —

v.,  where   u., v. ate points in   V..   Hence,z' 2'       2 r P

(2.7) id., d.) = 2,  where  (   ,    )  is the Kronecker intersection pairing in

If we replace g. by the corresponding loop around its endpoint in   S,  this

loop induces the identity transformation on  V    except that  u. and  v¿ ate inter-

changed.   This can be expressed as

(2.8) The P-L transformation is given by the formula  b —» b - ib, d.)d.,  fot
b £ HAV).u     p

3.   The Lefschetz theorems.
A. The P-L transformation we seek can be considered a local problem.    That

is, we have a pencil  V    on  W and we wish to examine its (homology) behavior

near one (singular) member.   This was described in part 2A when  W  is a curve.

But there is also a global theory analogous to (2.6) in which the pencil de-

termines the homology of the ambient  W.   This was developed by Lefschetz [4]

and is described below.   Using his global construction of homology in a given

dimension (that of the   V ), we can determine the (local) P-L transformation in
the dimension one higher.

B. At this point we mention some topological facts which generalize (2.3)

and (2.4).
We have our pencil of divisors   V    given as the fibres under the rational map

/:  W —> C,  where   C is a curve.   If   dim W > 1,  the first new phenomenon we meet

is that  / may not be defined on all of  W,   i.e., there may be a base locus   B  of

codimension  2  in  W which is common to all the   V .   For the purposes of the

present section, this will be more of a help than a hindrance (see part 11 for

more on pencils with base).

Each fibre   V    has a tubular neighborhood in   W,  i.e., a neighborhood of

which it is a deformation retract, and if /    is near enough to  /,  then   V ,  will be

in that neighborhood.   Hence, there is an associated map g , :   V »—> V    unique

up to homotopy.   If  V    is nonsingular, then   V , will be a cross-section of the

tubular neighborhood and g 1    will be a homeomorphism.

We assume that the general  V    is nonsingular and irreducible.   Then there

is a finite subset  S ÇC such that   V    is singular if and only if t £ S.   Using the

tubular neighborhoods,   W - f~   iS) - B  becomes a fibre bundle over  C - S via /
(see Wallace [7]).

Hence, if g:  [0, l] —» C  is a path such that g[0, 1) Ç C - S, then  V  ... is
a deformation retract of  Uy(rr0 n I7   ltl) and if d is a subset or cycle in   V   ,Q),
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ON THE PICARD-LEFSCHETZ TRANSFORMATION 93

we will have a corresponding cylinder unique up to homotopy. The cylinders

over homotopic paths are homologous. As in part 2B, we have the notions of

vanishing cycle, cone, etc.

C. Lefschetz first finds the P-L transformation when the singular fibre   VQ

has an ordinary double point off the base.

An ordinary double point can be described in several equivalent ways:

x  is an ordinary double point for   V.  if

(3.1) the tangent cone to   VQ  at x  is of degree   2  without multiple genera-

tors, or

(3.2) if  z.,•••, z    are local coordinates at  x  in  W,  then  VQ  is given

locally by an equation ß(z,, • • • , z ) = 0,  where

(1) dH/dz.\    = 0 for all  z,  that is,  x is singular for   VQ,
(2) \d H/dz.dz.\    ¿ 0,  that is, the partíais of   H form a local coordinate

system at  x,

or,

(3.3) local coordinates  z .,•••, z     can be found so that   VQ  is given by

z\ + ••• + z2n = 0 (Fa'ry [l]).

Hence, if  t  is a local coordinate at fix)  in   C,  then the pencil can be given

locally by z, + • • • + z    = t.   We then have

(3.4) The P-L transformation from  H .{V ) to itself is the identity if  z'4 n - 1.

(3.5) If d, = \z. teal   | z2 + • • • + z2 = 1S and d  = t~l     d„  then  d   is an
1 7 '       I 77 t V I

in - l)-sphere in  V    it 4 0) representing a homology class in  H      ,(V ) such

that  d   —> 0 as  / —> 0,  i.e.,  d   is a vanishing cycle on   V .

(3.6) If c £ H      AV),  then  c goes to c + ( - lW« + > >/2(c, d )d     as  /
77- 1 Z B Z        t

goes around   0.

(3.7) If 72  is odd,  dt goes to -dt  and  (rf, d) = (- l)(""*I)/22;   if 72  is
even,  d   goes to d   and  (rf , d ) = 0.

D. Lefschetz's global theorems require that the pencil V   belong to a "suffi-

ciently general" linear system  V.   According to Lefschetz, this means

(3.8) dim |V| > 72  and any  72  members of   |V|   have a point in common.

These properties, of course, are satisfied by any pencil on a curve, which

fits in with the results of part 2.   They are also satisfied by the system of hyper-

plane sections of  W  (relative to some projective embedding), and this is the

system we will be using (see part 4).

As we did before, we cut the parameter line by picking a base-point p   4 S

and tracing nonintersecting cuts  g. from p to the points of S.   Then we   have

(3.9) H.iW, V() = 0,   z < 72 - 1 = dim Vf  (for any   V(\
(3.10) W^(W, V  )  is generated by the cones over the  g ..

These hold regardless of the nature of the singular fibres.   It is often
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convenient to assume that the singular V have one ordinary double point off the

base (see part 4A for such a possibility), so that (3.6) tells us that there is just

one cone for each g ..

Let D . = Did., e.).   What are the relations among the   D.  in  H  (W, V   )?
2 i>   °2 ° 2 72 p

There is one obvious way to generate such relations:

Let  U = P1 - U.g..   Then   L  is homeomorphic to a disc and  /:  W —
/-1(Ug^ ~* c/  is the trivial bundle.   If   V   - B  is a typical fibre  (z £ L),  pick
a (compact or noncompact) cycle c  in it.   (This is really the same as a compact

cycle in H      AV . tí)A
J 72 — 1 t

Now  c x U is a noncompact   in + lWycle in  W - f~   (Ug).   It can be

thought of as the "translates" of  c  to the other fibres over   U  (these are co-

herent, because the bundle is trivial).   What is   die x U) in  W7   It is the  ?z-chain

idc) x U + c x idU) (viewing  c  now in  H      AV , B)).
idc) x U   ate the translates of  dc  in the fibres   V    it £ U), but since  de C B

and B   is always left point-wise fixed under the various deformation retracts

(part 3B), the collection of translates of  dc  consists of  dc  itself.  But this is

only  in — l)-dimensional and so does not figure effectively in  die x U).

As for c x idU) (or, at least, its  7z-dimensioñaI pieces), observe that each

g. contributes two edges to  dU in the sense that as  c approaches the same

point  t  of g . (except p) from opposite sides, the resulting cycles may not be

homologous in   H      ,(V ).   In fact, by (3.6), they differ by a multiple of d.  (i.e.,
after  d. has been put in   V   via g.).   Hence, as  t traces  g .,  c  traces a certain

multiple of  D ..

Hence, for some integers  n.,  die x U) = n.D. + ••• + something in   V     (p

being the only other part of  dil), i.e., we have a relation in  H  (W, V  ).   Then,

(3.11) All relations among the  D.  arise this way.

(3.12) If c £ H _j(V,, B) yields the trivial relation, then  dc = 0 and  c is
invariant under all the P-L transformations, i.e.,  (c, d.) = 0 for all   i.

Hence,

(3.13) rank H (W, Vj = m - rank H     AV , B) + tank H     Aw), where  m is72 p 72— 1 Í 72-1

the number of points in  S and  V    is any nonsingular fibre.

E.   Suppose now the   V   are hyperplane sections and let  H be one of them

(one can think of it as the "hyperplane at infinity").   Then  W — H and the   V   -

H ate affine varieties and we have (Fáry [l], Zizcenko [9])

(3.14) H.iW - H) = 0,   i > dim W and similarly,
(3.15) H.iVt - H) = 0,   z > dim Vt  fot any  t.
(3.16) H.iW - H, V( - H) = 0,   z < 77 = dim W.
(3.17) H (W - H, V  — H) is generated by the   D . and these are independent,

i.e.,   HniW -H, Vt-H)c*Z® ... © Z U times).
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4.   Hyperplane sections.

A. Parts 3D and 3E show how important hyperplane sections are for describing

the homology of varieties.   We now mention some facts about hyperplane sections

that will be useful later on (see Wallace 17]).

If  V is  a  nonsingular irreducible variety in a projective space   PN,  then the

general hyperplane section of  V  is  nonsingular  (Bertini's theorem).   Hence, the

collection of hyperplanes cutting singular sections on   V  (or containing   V en-
tirely) forms a proper irreducible subvariety  V*  of the dual space  P^.   V*  is

called the dual of  V.   We assume that   V  is not just a linear subspace of   PN  so

that  V*  is a hypersurface in  P*.   Its degree  m is called the class of  V.

A  nonsingular point  ß  of   V* corresponds to a section of  V  with one ordi-

nary double point (part 3C) and the tangent plane to   V*  at  H consists of those

hyperplanes of   P.,  which pass through that double point.

Now take a line  L  in   PÎ. which is in general position with respect to  V*.

L   just represents a pencil of hyperplanes in  P.,.   Since  L   is general, it meets

V*  in ttz  distinct points.   These points are nonsingular for  V*  and  L  is not

tangent to   V*  at any of them.   Hence,   L   is the kind of pencil we have considered

before (part 3D), viz., one in which each singular fibre has one ordinary double

point off the base.

We will refer to such a pencil simply as general (with respect to  V).

B. Now if we associate to a point in   V  the point in  L  on whose section it

lies, we get a rational map f:  V —> L  whose fibres are the hyperplane sections.

We can pick a base-point in  L,  make cuts in  L,  look at the corresponding cones
in  V, etc.

More generally, we can do what was mentioned in 3B:   let   ß £ Pf,  (and sup-

pose   V ¿_ H).   Then   V  H ß  is locally a deformation retract in   V and if  U is

any pre-assigned neighborhood of  V O ß,  then   V O ß will be Ç U as soon as
ß    is near enough to  ß  in   PÎ,.

This means that if g:  [0, l] —» P*   is a family of hyperplanes and if giu) C

V has the same kind of singularities as g(z2 ) O V fot u,  u   £ [O, l), then there

are induced homeomorphisms fro i giu) O V to giu ) O V and an induced map

from giu) n  V to g(l) O V (a € [O,  l]).   We get the usual collection of vanishing
cycles, cones, etc.

For example, if giu) is a nonsingular point in   V*  for all  u £ [O,  l],  then the

function  h from  [0,  l] to  V which assigns to each Z2 the double point of giu) O

V is continuous, and the rest of the homeomorphism between giu) O  V and giu )

C\ V can be obtained by construction of the normal bundles in   V - h[0, l],

C. Suppose now that   V is no  longer nonsingular and irreducible.   What

should   V*  mean?   It cannot just mean those hyperplanes whose section on   V is
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singular, since if the dimension of the singular set of  V  is  > 0,  every hyper-

plane does that.

What   V:*   ought to be is those sections which are "more singular" than the

general section.   I am not sure what that would be in general.    Perhaps one could

show that for all but a proper algebraic subset of  P'^ the sections are all homeo-

morphic, or (if the Betti numbers are semicontinuous functions on  P^) have the

same Euler characteristic or middle homology group.

For instance, if   V has isolated singularities (or none), these criteria are

all equivalent and  V*  is the planes tangent to   V at nonsingular points or pass-

ing  through  a  singular point (i.e., cutting singular sections).

D.   Furthermore, if one knew what  V* was, one could then take a general

pencil  L   in which a finite number of sections would be "extra-singular."   Again

there would be vanishing cycles and cones with which one could hope to build
the homology of  V.

(3-9) would fail, but perhaps (3-10) could become
(4.1)   H .(V, H n V)  is generated by the cones for   i < dim V.
For example, suppose   V possesses an improper double point, i.e., one

formed by taking  a  nonsingular  V and identifying two of its points,  P  and  Q.

An arc in   V joining  P  and  0  becomes a   1-cycle in   V which cannot be pulled

off the double point.   So if dim V > 1,  (3.9) is violated, but clearly this   1-cycle
is homologous to a cone.

These ideas can be worked out for curves, at least, and also for certain

simple kinds of singular varieties (see part 9).

5.   The branch function.

A. We return to our pencil   V   given by /:   W —> C.   For the present we al-

low a base locus but assume the general  V    nonsingular (unless we can apply

4C and D).   We have the finite set  S whose fibres are singular.   Then from 4A,

V* it 4 S) is a hypersurface in  P%  and forms an algebraic family (indexed by

C - S).   Hence, all the   V    it 4 S) have the same class   m,  and when  t approaches

a point  0 in  S,  V* becomes a well-defined (reducible) hypersurface in   Pï\  of
degree zzz.

This hypersurface, of course, will be defined to be the dual of  V„  and de-

noted   V*.   It is another candidate to be added to those suggested in   AC.   How-

ever, it is not intrinsic, since it depends on the enveloping pencil   V ,  at least

if there is a base locus   Ö  present.   In general,   V* = dual of  VQ  (viz. 4C) +

dual of singular locus of B  (viz. 4C).   See part 9 below for a special case.

B. The duals V* now form a 1-parameter family of hypersurfaces of degree

m indexed by all of C. Let L be a line in P^ in general position with respect
to this family.
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(5.1) Theorem. Every V* meets L m a finite number of points {which, of

course, is always  < m).

(5.2) Proof.    The Grassmann variety  G(l, N) of lines in   PN  is of dimension

2/V - 2.   Those lines contained in some   V* form an algebraic subset X   of   G(l, N),

We need only show that  dim A- < 2iM — 3.
The principle of counting constants shows that we need only establish

(5.3) Lemma. Let V be a hypersurface in P.,. Then the lines in V form S

an algebraic subset X of Gil, N) of dimension  < 2N - 4.

(5.4) Proof.    Let   H  be a hyperplane and p a point not in  V  or  ß.   Then if

L  is any line in   V, p and  L  span a  2-plane which meets   ß  in a line.   We thus

establish a rational map  h from  A.  to  Gil, N — l) which is everywhere defined.

Since  dim G(l, N — l) = 2N — 4, we need only show that  h~   (L) is finite, where
L   is a line in  ß.

If not, then  h~   (L) would contain a   1-parameter family of lines, a ruled sub-

surface   R  of  V which p projects onto the line  L.   Then  R  is a subset of the

2-plane  ip, L) spanned by p and  R,  hence,  R = ip, L).   But a (nontrivial) 1-

parameter family of lines in a plane must cover it, i.e., one of the lines of  h~   (L)

passes through  p.   But this contradicts the assumption that p 4 V.

C.   (5.1) shows that  {V* n Lj,  t £ C, is a  y     on  L,  i.e., a   1-parameterZ ' m r

family of divisors of degree  m,  if  L  is general.   It clearly has no base points,

since these would be common to all the   V*.   But   I  I €(- V* is of codimension

> 2  in   Pf,,  so a general line misses it.

All but a finite number of the 772-tup le s in y consist of m distinct points,
i.e.,   L  is general with respect to all but a finite number of the   V*.

Let S = those  t  for which  L  is not general.   Clearly,  S C S .   Let  u be a

coordinate on  L,  so we can consider  u as a rational map from  W to  L  whose

fibres are the hyperplane sections.   Then  y     defines an algebraic correspondence

between  C and   L:   t £ C and  u £ L  ate associated if u £ V*.   In this way  u

becomes an algebraic function  uit) on  C and S   is where  uit) ramifies.

(5.5) Definition, uit) is called the branch function of the pencil V rela-

tive to L. The correspondence curve / = lit, it) eCxL| u £ V*S is called the
branch curve.

D.

(5.6) Theorem.    The branch curve is irreducible.

(5.7) I root.    We extend the correspondence  /  as follows:

Let M be a general 2-plane through L and consider the family V* n M in

M.    By (5.1),   L   is not contained in any component of the   V ,   so   M  is not either.
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Hence, each   V* O M   is a curve.   Since a general   V* is irreducible and  M  is gen-

eral, a general member of  \V* C)M\  is also irreducible.

As before, we have a correspondence between  C and  M,  viz.,  /  = \(t, v) £

C x M| v £ V*\.   Its projection onto M is a finite covering, except that for finitely

many  v £ M,   C x v Ç / .   /    n it x M) = V* n M,  so   /   i s an irreducible surface

(note that no  Z x M  is a component of / ).

Hence, we obtain a   2-dimensional linear system of curves on  /   (or on its de-

singularization) by pulling back the lines in  M.   But then Bertini's theorem says

that the general member, i.e.,  /,  is irreducible.

6.   Application of the branch function.

A. We now describe how the branch function can be used to examine the

homology behavior of the   V .

Let  tQ4 S,  so that  L   is general for   V    .   Mark the  m  points   uit Q)  in   L

and pick a base-point  uQ in  L  distinct from the  uitQ).   As in 3D, draw cuts from

uQ  to the   uitQ).   If we number the  uitQ) as  b.Uq), •••,«   (Zq),  let the corres-

ponding cuts be g., • • • ,,g   .   Now as   t moves in  C-S,  starting from  tQ, the

u.it) will vary continuously and never coincide, so we can make  uQ and the  g.

vary continuously with  t also, such that at any stage the g-it) form an appropri-

ate set of cuts in  L  centered at  uAt).

Let d. £ Hn_2iHUQ O VtQ) be the vanishing cycle along  gitç,)-   Then, as
in 3B, as t  moves in   C - S,  the  d. will vary continuously so that  d.it) £

W^ _ 2 (W n V ) and  d .it) vanishes along  g-it).   Then the corresponding cones

D At) form a continuous family of in - l)-chains, and if  S n.D.itQ) is a cycle in

H   „  O V       then  2 n .D .it) forms a continuous family of  in - l)-cycles.220 ¿O '       I ! '

Suppose  t traverses a loop g  based at  tQ.   Then the points   u.it) describe

77Z arcs in  L,  so there are points of L  not on these arcs.   This means that the

base-point  uQit) can be chosen independent of t,  i.e., is constantly equal to

u0  as   I  moves on g.   Furthermore, we can choose  uQ  so that   H      O W  is non-

singular, since   L ¿ W*.   Hence, the  d.it) move in the pencil  H       O V    and we
1 r UQ t

have the basis for   an inductive procedure.

The Lefschetz theorems of 3D show that any  z'-cycle of  V    ii < n - 2) can

be put in  //       O V(,   so the behavior of  H ÍV ) can be reduced to a pencil of

lower dimension.   As for H .ÍV ) ii > n - l),  the P-L transformation on it is ad-

joint to that on  // .(V ) (at least mod torsion), so is determined by what
' Z72— L — It ' 7

happens on the first half of the homology sequence.

B. Thus, our problem becomes that of investigating the change in the cones

over the g .,  i.e., the group  H  _.(V , H      O V ).

When  t  traverses g,  the branch points  u.itQ) undergo a permutation   77 and
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the original cuts  g. are transformed into a new system of cuts  gn^y   The orig-

inal vanishing cycles  d. and cones  D. become  dJJ.,i. and  D^^y   We must express

the  D .    in terms of the original  D..

This is done as follows (cf. (3.11)):
Consider an arc g in L from uQ to Z2,00), say. A certain (72 - 2)-cycle d

vanishes along g . Now in L - U->i u.itQ), g is homotopic to h °g, where h

is a loop at  uQ.

Figure

Now after t traverses  h, d becomes a cycle d   which vanishes along g,.   Hence,

d = ±d..   Choose  d so that d = d..   Then  Did, g ) = D, + Did, h).   So we must
reduce  Did, h) to a sum of the   D ..

1

h, being an element of the fundamental group 77,(L - uitQ), uQ), is generated

by loops /., where /   encloses just g.«   Hence, D{d, h) = S D{d., I), but as in 3D,

Did .,/.)= ± id ,, d.)D . and we are done.7'   7 1 '    7     7

C.   Let us turn to the case at hand, where g  is a small loop about a point
0 of S.

By the classical theory of algebraic functions of one variable, the branch

function  uit) can be expressed (near 0) by a collection of Puiseux series or

cycles.   We can choose the coordinate  Z2  on   L  so that  H^  is not tangent to any

V ,  t small.   This means that the Puiseux series have no negative terms, i.e.,

have finite values at  t = 0.   These values, of course, are just the points
v* n L.

Consider one of these Puiseux series:

(6.1) uit)
a j /t7 a j/n

c   t + c   t + •

< ...where the  c. ate nonzero constants and the  a . ate integers with a. < a2

Obviously, we can take the integers  n,,a., a2, • • • relatively prime (so this

cycle effectively contains  « points of  V* Pi  L).   Furthermore, by choosing the

Z2 coordinate so that  zz(0) = 0, we can assume a   > 0.

These  72 points behave rather simply as  t traverses  g,  viz., they undergo

a cyclic permutation.   But it is more difficult to say what happens to the cuts

g¿.   (See 7A for discussion and examples.)   Here we will only discuss the case
that we will need later (part 9).
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D.   The simplest behavior occurs when  a, = 1.   This just means that  (0, 0)

is a simple point on  /.   We can change the coordinate  Z  on  C  so that (6.1) be-

comes   u = t       .   The branch points then move in circles (if  /  does) and it is easy

to choose cuts which behave nicely.

Suppose the points are numbered   1  through a  and undergo the permutation

(12 • • • a).   For convenience, we picture them in a row (see Figure 2),
2 3

Figure 2
and draw  the  cuts  g. so that gl —> g2 —> ■ • • —> g     as  t  moves about  0.   Fur-

thermore, if ¿j   vanishes along g.   and d     d  , • •.•  are its transforms in

Hn_ 2iVt n f    ) as  t  circles   0,  then d. vanishes along  g .,   so the corresponding

cones also undergo the transformation  D, —• D„ —> • • ■ —» D   .° 1 2 q

The key question, then, is:   what happens to  D   ?   The answer is   D    —> Drr i <? 9+1
= DKj + i> gç + i'' where  a^ +J   and g     j   are the  ath  transforms of a'j   and gv
respectively.

Figure 3

±Dj + ¿72i)2 + - + b  D     fot some integers  b ..
1 +1 12    2 ?    <j 6 z

Hence,   D

E. The precise determination of the b's depends on knowing the intersec-

tion numbers of the d.. But we can still draw some conclusions about the P-L

transformation without knowing them.

Clearly  D        = Did     , > h) ± D,,  where  h   is a loop in  L   enclosing all the
branch points of this cycle.   When  Z  stays close to  0,  the branch points and

their cuts will stay inside this loop.   Hence,  h is an invariant path with respect

to the change in  Z,   so if  T is the P-L transformation, we have

(6.2)   Proposition.    (1)   iTq ± l)D, „ DiTq + ld} , h),
(2) TiDiTqdv h))-DiTq+1dvh).
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Thus, if   P{T) is the minimal polynomial for  T  on the homology of  ß      n  V{

(or just on  ß?. ), we have

(6.3) P(7')(T« ±  l)Dj = 0.

We conclude that if Theorems I and II of the introduction are true in dimen-

sion < dim W, they are true for the pencil  V    if the branch curve is nonsingular.

7.   Examples of branch curves.

A. In general, we cannot assume that the branch curve is nonsingular or that

the branch points move .in circles.    Even worse, although  /  is irreducible, it may

not be so locally and several of the Puiseux series (6.1) may have the same

center.   So the cuts drawn to one cycle may interfere with those drawn to another

of the same center.   We give some examples of this behavior.

B. Consider the pencil of cubics

(7.1) ix3 + y3 + z3 = 0

in the projective plane  (= W).   When  I = 0,  the fibre   VQ is  y3 + z3 = 0,  or three

lines concurrent at  p = il, 0, 0).

The general hyperplane pencil  ß    is just the set of lines in  W through some

point.   Choose the parameter  u so that  HQ goes through  p.

(7.2) Proposition.    Vt = 6L„,  where  LQ  is the line in  W*  representing the

lines in  W through p.

(7.3) Proof.   We calculate the dual of the general   V .   The generic point of

V* is  Ox2, y2, z2), where  ix3 + y3 + z3 = 0.   If  {A, B, C) ate the coordinates
in W*, then  V* is given by  (M)3/2 + B3/2 + C3/2 = 0,  which is equivalent to
the polynomial relation

(7.4) A6 - 2M3(B3 + C3) + (2(B3 - C3)2 = 0.

When t = 0, we get the curve A = 0 counted  6 times.   But A = 0 is just
the line  LQ  in  W*.

In order to find the Puiseux expansions around  t = 0,  we write the line  H

parametrically as

(7.5) A = u,   B = au + b,   C = eu + d

and substitute in (7. 1).   The resulting expression in  t and  u is the local equa-

tion for / at  (0, 0).

One easily sees that

(7.6)   (0, 0)  is a double point on /  with double points in the first two neigh-

borhoods,   u is given by two Puiseux series  u .it) = e X        + • • • (e. 4 e,).° J 7 7 12
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Here, the six branch points travel  in  noninterfering circles about  0,  but

undergo the permutation (135)(246) instead of (123456).
This kind of behavior allows the cuts to be generated by two of their number,

i.e., we draw g.  and g2 as in part 6D (Figure 2) and observe that g^  becomes

zSv £">'*''  and z§2  becorries  g*,g¿>'''   as Z  moves about 0.   Hence, the rea-

soning and conclusions of 6E are still valid.

Notice that all this goes through for any   VQ with an ordinary triple point off

the base, since the question is local.

C. More generally, suppose   VQ  is an  s-fold curve (or component) with an

ordinary  r-fold point p.

Let  x and  y be affine coordinates in  W at  p and take the pencil   V    to be

(7.7) ixT + yT)s = Z.

This special form will not affect the properties of the branch function, but

makes calculation easier.

(7.8) Proposition.      For each  V    it 4= 0) there are  rsir — l) branch points

near p distributed in  r — 1   Puiseux series each varying like  t    TS.   The motion

of the branch points and cuts is like the  (r — l)sZ power at a simple branch

point of order  rsir — l), so the conclusions of 6E hold.

(7.9) Proof.   Let the lines   H    be given by x = u, y = au + b.
The branch curve is the locus where   V    and  H    ate tangent, i.e.,

t u 6      ' '

diVt, H )
tank  -  < 2.

dix, y)

The Jacobian here is

lrs(xT + yr)s- V" 1     rsixT + yr)s-lyr~l\

\ -1 /

Hence,  xr~    + ayr~    = 0,  since xr + yT 4 0 (we are not on   VQ).   The branch

curve then consists of r — 1   lines through p.   Let y = ex   be one of them.   Sub-

stituting in (7.7) gives  xTS = c't fot some constant  c   4 0,  or  u = c t     rs.   This

constant c    is obviously different for each of the  r — 1   lines.

D. However, the branch points do not even have to move in a single circle.

For example, take the case of plane quartics splitting into a cuspidal cubic plus

a line through the cusp (or the corresponding local situation).

If the line is not the cuspidal tangent, we can take   V    to be

(7.10) (y2-x3)x = Z.
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(7.11) Proposition.    There are two Puiseux series centered at the cusp.   One

is  t         and one is  t       .

(7.12) Proof.   Take the hyperplane pencil as in (7.9).
The Jacobian is

so the branch curve is

y2 - 4x3 - 2axy = 0.

It has an ordinary double point at the origin with tangents  y = 0 and y = 2z7x.

The branch points on the  y = 0 branch move like  / and those on y = 2ax

like  tU\
E.   If the line through the cusp is the cuspidal tangent, our pencil becomes

(7.13) (y2_X3)y = Z

and the Jacobian is

The branch curve is   3x y + 3ay    - ax    = 0.   At the origin, this is parametrically

x = 3s    + • • • , y = s    + • • • , and when substituted in (7.13) becomes

-26s9 + ...  =i  or s = P.S. 01/9).

Then x = c,2"     ; + •. . , y = c,i        + • • •  and  u = ac,2"        +.   Here, the branch

curve is locally irreducible.

8.   Ordinary double points.
A.   We apply the method of construction of homology to examine the case

where   VQ  has an ordinary double point off the base and demonstrate the results

of 3C.
Choose the general hyperplane pencil  H  ,  u £ L.   We can assume that no

member of  L  is tangent to  VQ  at points in the base of  V    or the base of  L  or

at points where   L  is tangent to  W.

(8.1) Proposition.   // x  is a simple point of VQ at which some  H     is tan-

gent, then the Puiseux series   uit)  at  x   is holomorphic.

(8.2) Proof.   Let   z, = 0 be the equation of VQ at x,  so the  V   is  z   = t.

If HQ  is tangent to  VQ  at x,  then  H     is given by  Z2 = z, + h.p.  Substituting  /
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for z.   gives  u = hit) + G, where   h  is a power series in  Z  and   G is a power

series in  t,  z-,,•••, z    of degree  > 1   in the  z's.

This is the local equation (in  V ) of   V   n W^.   Hence, it has a singular point

near x  if and only if u - hit), so  z/.  is indeed holomorphic in  Z.

(8.3) Proposition.    The cone over the path from  uQ  to  uit)  is invariant.

(8.4) Proof.   (8.1) says that the path is invariant.   On the other hand the

vanishing cycle over the path is invariant, since   ^g O H       is nonsingular in the

pencil  V   n H    .F t "0
B. The only point left to consider is the double point  p  itself.

(8.5) Proposition.    The branch curve is nonsingular at  p and u  is a power
1/2series in  t

(8.6) Proof.   By 4A, we can take the pencil to be  z\ + z    + • • • + z    = t.

Let  H    be   u = 2 c .z . + h.p.,  so that  H    goes through p.   The hyperplane

pencil being general, we have that  W„  is not tangent to the tangent cone at  p  in

VQ,  i.e.,  lc2.4 0.
The Jacobian is

(    2Z' '"        2Z"     ).
\e1 + --- c„ + --/'

When its rank is   1,  we have

(8.7) Z. = A(c. + ...)

for some  À and all  i.   We are only interested in small  A,   since the branch points

we want are close to p.

The coefficient matrix of the linear part of (8.7) is of the form  / — AM, where

/  is the identity n xn matrix and. M  is the Hessian of  H.  at p.   Hence,

det (/ — AM) 4 0  for small A,  which means that (8.7) can be uniquely inverted

near p to yield the branch curve whose parametric equations are z. = c .A + • • • „

all  z.   Hence,  Z = 2. c . A    + h.p.  and  zz = 2 c . A + h.p.  and  a  is a power series in
z,/2.

Note that we could have used the simpler pencil  u = Z-.   The branch function
1/2is then just  u = t       .   This device of using simpler local equations will be help-

ful later on.

C. Draw the cuts  g;   and g2  as in 6D and then any others needed for the

other branch points.

If an element  D  of  H       (V', V    n H     )  is written in the form  D = a.D. +n—lt't uQ '11
q2D2 + ...,  then by (8.3),   (T - l)D = q xiT - l)Dj + «2(T - l)D r   We have
TiDl) = D2  (by6D).   What is  TiD2)?
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There are two cases, depending on whether n  is even or odd.

(8.8) Proposition.    // 72  is odd,  T{D2) = 2D2 - D,.   // 72   is even,  T{D2) =

Dv
(8.9) Proof.   We use induction.   Let  d vanish along  g,   and generate  Dj.

Then d also generates  D  .   If n  is odd, then (3-7) says that  d goes to - d after

22 goes around  g2,  while if ?z  is even d is invariant around   g2.   In either case

(8.8) follows.
The discussion of part 4D applies to   VQ, as can be seen by blowing up its

singular point and noting that the pencil  ß    Ci VQ  is still sufficiently general in

the sense of Lefschetz (see (3-8)).   The section  HQ n y    has an ordinary double

point, so as  ß    Ci VQ approaches  H     Ci VQ, a single cycle will vanish and trace

out a cone  D„  on   V-.   The path of approach from   Z7Q  to   0 (in  L) can be taken

to be  g0,  near g,  and gr

Hence, as í —> 0,  d will approach dQ and D    and  D    will become  DQ.   In other

words,  D   — D     is an  (72 - l)-cycle on   V    which vanishes at   VQ.   Since   D    and

z92   are cones over a sphere,  D. - D2  is topologically   a sphere, too.   (8.8) then

yields
(8.10) If n  is odd,   T{D: - D2) = - (D, - D2).   If n  is even,   T{D, - D2) =

Dx-D2.
This verifies most of 3C except for the intersection numbers.
D.

(8.11) Proposition.   D   - D    can be pulled off any algebraic subset A   of

(8.12)   Proof.    Move the base-point uQ slightly.   Then d, D    and  D    will
vary continuously into  d, D.   and  D

Figure 5
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Hence,  D-D=D.-D     in  ß   _,(V ).   Since by induction d can be pulled
off   V    C H    n A  fot each  u  (except perhaps the singular points), we need only

choose the pencil  L  so that its tangencies on  V    miss  A.   Hence, all of D, -

D     is disjoint from  A.
This also shows that  D.   Ci{D. - DA) = 0 if  z > 2,  so we need only check

(3.6) for  D,   and  Dr
We have   TÍD  ) = D, - ÍDx - D2).   Hence, we must show that  (D,, D, - D.,)

- (_ 1)(t7-1)(t7-2)/2

This intersection number is the same as   {D     D    - D  ) which is also  ÍD,,
D,).

(8.13) (D1,D1) = (-l)("-1«"-2)/2.

(8.14) Proof.    Choose coordinates  z,, ••• ,z    at the vertex of D,   so that
1 77 i

ß    O V    is given in  V.  by z? + • • • + z       , = u, and the cone  iz. real I Xz.
U Z D t        J 1 77— 1 2 ' 2

< IS  is the tip of  D
D.   is obtained by moving  Z2  slightly counterclockwise from   1   and is given

by

{(*!>"• >z»-0\zlu~Vl «aland 2>f«-*)2 < l}.

Hence,  D, = zz1/2D,.

Using Lefschetz's prescription for calculating intersection numbers [4], let

(PQ, . • • , P  _ ,) be an orientation for the cell  D,  where   P„ = (0, • • • , 0).   Then

the orientation for D,   is   (P„, uX     P, ,•••, a1 ' 2P      ,).1 U 1 72—1
Putting these together gives the orientation  (PQ, P,, • • • , P   _j, Z2       P,,

•'• ,u  '   P  _ ,) for  V    near  PQ.   But the orientation   V    has as a complex mani-

fold is (?„ Pt, iP,.P,.„ i',.,)- (P„ P,i x1^,.*,.„
Z2   '    P   _j),  since  u is counterclockwise from  1.   To change the first orienta-

tion to the second requires  0z - 2) + (72 — 3) + • • • + 2 + 1 + 0 transpositions, so

(Dj, Dl) = {-l)(n-1)(-"-2^2.

Similarly, (3.6) can be checked for  D2, since  {D2, D2) = {- l)(n_ 1)("~ 2)/2.

(8.15) Corollary.   (3.7) holds.

(8.16) Proof.   When  72  is even, this is clear, since   D. - D     is then odd-

dimensional and so always has self-intersection number 0.

When 72 is odd, (D, - D2, D, - Dj = (D, - D2, D, - Dj = (£>,, D,) + {D2,
D2) = 2(- l)(n-D(n-2)/2_    Bm   (ß _ l)(fl _ 2)/2 _ ^ _  ,)/2   (mod  2)>   when   ß    .g
odd.

9.   Normal crossings.

A.   Suppose there is no base in the pencil   V ,  so / is everywhere defined.

The fibre  VQ  can have arbitrary singularities, but we can use Hironaka's results
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on the resolution of singularities [2] which say that by repeated monoidal transfor-

mations centered in  V.,  we can transform  W  to a nonsingular W with a birational

morphism g: W —> W  such that

(9-1)   (1)    g  is an isomorphism between  W - g~   ÍVQ) and  W - VQ.
(2)  g~   ÍV A is a divisor on  W with only normal crossings as singular-

ities (see below for definition).

Now  h = f ° g  is a morphism from  W to  C and so induces a pencil of fibres

V in  W.   By (9.1),   VQ = g~ liVQ) and  V   a* V     t 4 0.   W and  W ate the same

fibre space over  C - \0\,  so the P-L transformation on  V    is the same as that on
V .t

Hence, we can assume from the start that VQ has only normal crossings.
B.
(9.2) Definition. The divisor VQ is said to consist of normal crossings if

its support is the union of nonsingular hypersurfaces of W which are transversal

at every point.

This means that if  V   ,   • • • , Vs  ate the components of  V„ containing x £

Vq and if z .= 0 ii = 1, • • • , s) is a local equation for  V1 at x, then the z. ate

a partial system of coordinates at x in  W.

Suppose that all the components of VQ ate  V   , • • • , VT and that  V1  has

multiplicity m. > 0.   Then near x, the pencil   V   can be given by   z.     • ■ • z   s

= t.   x  is then  (t7z1 + • • • + m  Mold singular for the divisor   V-  and  s-fold sin-

gular for its support   |V01-   Conversely, a point which is  s-fold on   ¡VQ|   belongs

to exactly s components of  V„.

Let  M . = set of points   z'-fold singular for  | V0|   (z = 1, • • • , «).   The  M . pos-
sess the following properties:

(9.3) (1)   They are disjoint.
(2) U¿M¿=|V0|.
(3) If M. 4 0,  it is a nonsingular locally closed algebraic subset of

W  of dimension  n — i.

(4) dM. = M.  . u • • •  UM  .
I Z+l _ 72

(5) Each component of  M.  is nonsingular.

C.   Thus, we have a natural partition of  VQ  into its singular subvarieties.

It is clear what  V*  should be, viz., those hyperplanes tangent to some component
of some  M..   We shall show this later.

We first need some information about general hyperplane pencils.

(9.4) Proposition.    Let  V     V     ...  be a finite number of nonsingular ir-

reducible subvarieties of P     and A . Ç V. proper algebraic subsets.   Then in a

general pencil of hyperplanes,, the points of tangency on  V. do not lie on A ..
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(9.5) Proof.    Each   V* is an irreducible subvariety in   P^,  and the hyper-

planes tangent to   V. at a point of A . form a proper algebraic subset  /4* of   V*.

Hence, the general line in  PÎ,   misses every A|.

We apply this to the collection of components of the   M ..   Let the  A's  be the

parts of these components in  dM..   (9-4) then yields

(9.6) Corollary.    Let  H     be a general pencil of hyperplanes.   Then if H     is

tangent to a component of M .,  the point of tangency lies in  M ..

Furthermore, those hyperplanes tangent to more than one of these components

form a subset of  PÎ,  of dimension < N — 1,  so the pencil  L  misses it.   Hence,

(9.7) Each  H    is tangent to at most one component of the  M. and the tan-

gent section will have a single ordinary double point not lying on the base locus

B(L) of the pencil   H  .   In particular, no point of  M     is in  BÍL).

D.   We now examine the branch curve for  V

(9.8) Proposition.    Let x £ \'    O BÍL).   Then x  is not on the branch curve.

(9.9) Proof.    Let  x  belong to  V'1, • • • , Vs,  so  V    is  z™1 ■ • ■ z'"s = t neat

x.   Now  s < n, or else x £ M    O  BÍL).   M     is given locally by z.=■••= z    =

0.   If  h = 0 is a local equation for one of the hyperplanes   H,  then since  H Ci M

has no singularity at  x, the functions  z., • • • , z  , h form a partial system of co-

ordinates there.   Let us rename  h and call it z     ,.   Complete to a full set ofs+l r
coordinates  z,,•••, z  .

1 72

Let  h = c .z   + h.p. = 0 be the local equation for another hyperplane in  L.

For some  i 4 s + 1,  c¿ 4 0.   Otherwise,  h   - c     .z     . = 0  is a hyperplane in   L

tangent to  W  at  x £ BÍL), which contradicts the generality of   L.   Also,  i > s,

else  h   = 0   would be tangent to M    at x.

H Ci V    is given by the same equation z,     • • • z   s = Z   in   V ,  so  H  is not

tangent to  V , I 4 0.   Every other hyperplane can be written in the form h   +

s +1

m. — 1 m m . 772—1
lm,z, • •• z   s     ••■     m  z,     ■• • z   s 0 0

11 s s    1

+ c   + h.p.     *

When  Z 4 0,  none of z., •" , z    is zero, while near x, c. + h.p.  will be

nonzero.   Hence, this Jacobian has rank 2 and  x cannot be on the branch curve.

(9.10)   Proposition.   Suppose x 4 BÍL) but no  H     is tangent to M    at x.
Then x  is not on the branch curve.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE PICARD-LEFSCHETZ TRANSFORMATION 10 9

(9.11) Proof.    The proof is the same as (9-9) except that now the hyperplane

pencil takes the simpler form  zz = z     ,.   The Jacobian is

(mlt/zi     •■■     rnst/zs     0    0     •••     0\

\     0 ••• 0 10    •••     0/
so is of rank 2.

E.
(9.12) Proposition.   Suppose x 4 B{L), x £ M     and some hyperplane in  L

is tangent to  M    at  x.    Then,

(1) x  belongs to the branch curve.

(2) If V    is z,     ••• z   s = t and m = m, + • • • + m  ,  then  u  is a Puiseuxx '      t 1 s 1 s'
series in t     m.

(3) x  is nonsingular on the branch curve and u  is a uniformizing parameter

there.

(9-13)   Proof.   Let  ß    be  u = 2 c z . + h.p.  near x.   If  H.   is tangent to  Mu i   i r u ° -s

.  then  c = • • • = c    =0.
1 s +1 n
If some  c. (z < s) were zero, then ßQ would be tangent to some  M  »   is   < s)

at  x.   This contradicts (9.6).   So none of c., ••• , c     is zero.

The Jacobian is

777 ,  - 1 777 777, 777-1

<rV     •••*/   •••   mszi   •••*/       °   °   •

c, + h.p. • ■■ cs + h.p. —-      •
S+Ï

When  t /= 0,  neither are  z,,•••., z  ,  so the Jacobian has the same rank as

1      1      1        ... 1 0     0     •••     0

cszs      ,               du                  du
-  + h.p.      -      - • •   -

dzs+l dzn

Hence, the points on the branch curve near x are those satisfying the si-

multaneous equations

(9.14)   A = c.z./m. + h.p.   (t = 1, • •., s) and  du/dz. = 0 if = s i  I, • • • , n)
fot some (small) À.

x  satisfies these equations when À = 0,  which establishes (1).   For (2) and

(3), we must solve for the  z's  in terms of  A.

The Jacobian of (9.14) at   x is

(Cj/ttZj     ... 0

0 ■••     c /ms        s

o
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where   K  is the Hessian of  u with respect to z     ,,•••, z     evaluated at x.r S +1 77

Hence, its determinant is

- det K.
772,   • • •   ,„I s

We already know that no  c . = 0.   But  K is also the Hessian of  HQ Ci M     at  x  in

M   ,  and since  x  is an ordinary double point for  HQ C M  ,  its determinant is

nonzero.

It follows that (9.14) can be inverted near x  to yield

(9-15)   z. = dX + h.p.  id. = 7?7./ c .,  i = I, • • • , s) which are parametric equa-

tions for the branch curve.   Substituting (9.15) in the expressions for u and  t,

we get  u = mX + h.p.  and t = ckm + h.p.,  c/0.   This gives (2) and (3).

(9.16)   Note 1.   We could have simplified the calculations had we taken  ß

to be, say, z,+■••+ z    + z     ,+•••+ z    = u, since this variety is also tan-' ' ' 1 S S +1 77 '

gent to no  M   i  is < s) and cuts an ordinary double point on  M  .

Note 2.   Since all the calculations are local, (9-12) also holds for those   VQ

which consist of local normal crossings, i.e., such that locally  VQ  is  z,

z       =0 for some local coordinates  z ..
S 7

F.   The considerations of part 6E apply to the case of normal crossings

since the branch curve is nonsingular at  t = 0 and the general section   ß      O  V.

also has normal crossings.   We know Theorems I and II ((1.6) and (1.8)) hold when

dim IV = 1   (part 2A).
Hence,

(9-17)   Theorems I and II are established for arbitrary dimension.

(9-17) is equivalent to

(9-18)   There is an integer  N such that the P-L transformation satisfies the
relation  (TN - l)n = 0, n = dim W.

10.   The main theorems.
A.   In order to prove Theorems I   and II   (part 1C) we must make a closer

analysis of the behavior of the cones.

As in the previous part, consider the   722  cones corresponding to a point x

on  Ms  and  V : z,     •••z   s = t.   With respect to  L we have  m  cuts  g., van-

ishing cycles  d. and cones   D ..   If T  is the P-L transformation and  Tm{D.) =

qïDl + ... + qmDm,  then  PÍT) = Tm -qJT™-1-q. is the minimal poly-
nomial of T on this group of cones (considered as elements of H    AV -H ,V H    — H ).^      r 72-1      t 00'      Í    UQ °°

cf. (3.17)).
Theorems I   and II   follow immediately from

(10.1)   Theorem.   P{T) = U {Tmi - l).
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(10.2)   Proof.   The method of proof is to take a new hyperplane pencil  L

with which we can express the homology of V   O H    and hence the vanishing cycles

d..   There are two main cases, according as  s < 77  (i.e.,  dim M^ > 0) or  s = n

(i.e.,  x  is one of the points of  M  ).

B.   Case 1.   s < n.   First we   remark  that the base section  uQ can be chosen

close enough to  0  so as to meet any pre-assigned neighborhood of x,  for instance,

the domain of definition of the local coordinates  z, , • • • , z ,  but not close
1 72

enough to interfere  with the  uit), t  small.

For convenience, let   L  be given by  a = z, +•••+- z    +z     ,+••• + z   .   The0 J 1 S S +1 72

lack of higher powers will not affect the conclusions (see note 1 of 9E).   The

new general pencil  L    can be taken to be  z     . = const,  since no member of it is

tangent to  M     neat x.

(10.3) Proposition.    (1)   The pencil L    has  2m  langendes on V   (~\ H

near x.

(2) The 2m branch points are arranged in two nonintersecting circles of m

points each (when t is small), each moving as around a point of type im., • • • ,

m  ) when t goes about   0.

(3) // the cuts in these two groups are chosen appropriately, then as   u ap-

proaches one of the  uit), the cycle vanishing there is the sum of a cone from one

group and a cone from the other.

(10.4) Proof.    The tangencies of  L    on  Vt fl  H       depend on the places

where   L'   is tangent to the singularities of  VQ n H       (part 9E).   Near x  there

are only s  components for both  VQ and   V^ n H     ;  hence, there will be the

singular subvarieties  zVlj , —, M^   on   VQ n H       (analogous to the  M. on   VQ).

In fact,  M. = M. C H       and points in each are of the same type.

Now  H     is not tangent to  M. (z < s) neat x , so no member of ,.L    can be tan-
u ° 1

gent to  M.  n H       (because M . O H     is a pencil without singularities).   But
6 2 220 ' u

since   HQ  cuts an ordinary double point on  M   ,  a nearby section, like   M    Ci  H     ,

will have two tangent planes in  L    (part 8).   Hence, for small  t,  there will be

two groups of branch points on  V   D H

Since   Vn = Tzz.V1 + ••• + 77Z  Vs  neat x,   H„  n H = ttz, V1  Cl H      + • • • + m  Vs
0 1 s '0 1 ¡¿o s

°  W22o'  S° k01"*1 tnese grouPs are of type  (777 j, • • • , 77z^) and there are  777  points in
each.

As   uQ approaches one of the  uit), two branch points come together, one from

each group, so the vanishing cycle is the sum of a cone from each group.

We can demonstrate (10.3) analytically by using the local equations for  L  and
L':
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V , ß    and z     , = 0 meet in a singular variety when the Jacobian matrixt'     u s +1 & 7 J

diV , H  , z     , )/(9(z .,•••, z  ) has rank  < 3.
2'        u'       S +1 1 77

Here, this Jacobian is

7,-1 777 777. 777-1
1        ■.. z   s     ■••     m  z,1 ••• z   5 0     0       •••fTTZjZj ■■--s --•        ».s~j

i 2z     .1 s+l

0 ••• 0 1    0     • ••       0

Since no  z. = 0 0 = 1, • • • , s), the rank of this matrix is the same as that of

,     m,    •••    7W 0 0 • • •       0

z        •••     z        2z     ,     2z ■••     2z2 s s+1 5+2 n

0       0      •••     0 1 0 •••       0

Rank < 3  means that z . = Attz . (z = 1, • • • , s) and  z     , = • • • = z    =0.
27 s +2 n

Hence,  u = mk + z     ,   and  t = cXm, c / 0.   Hence, the branch points  z     .   on

V   O H    are given by z     , = iu - c't1/m)l/2,  c' ¿ 0.
t U & ' S +1 '

The assertions of (10.3) follow easily from the simple nature of this alge-

braic function.

C. We apply (10.3) to prove (10.1).
Consider the boundary map

d: H     ,(v,v,nfl   ) — ß    ,(v  nfl   . v , nß     nu')
77—1 t t U ç. 77—2 Z £2q Z Z2q 7^ g

where  ß        is in  i. .   Better still, consider the same map on the relative groups

of the corresponding affine varieties (i.e., with the hyperplane at infinity removed).

By (3.17) the cones we have been considering are free generators of their

respective groups.   We have  P{T)D, = 0.   Applying  d gives  Pij)d   = 0.   But

(10.3) tells us that  d^   is the sum of cones on which, by induction, the P-L trans-

formation has minimal polynomial Q{T) = Yl {T   l - l).

Hence,  Q{T) divides   P{T), but since they are both monic and of the same

degree   ??2,  they must be equal.

D. Case 2.   s = n.   In this case there will be no nice form for the new pen-

cil   L ,  since we have run out of coordinates.   The best we can do is let  L  be

22 = z. +-..+Z   ,  as before, and L :   v = c,z,+--' + cz  , with distinct non-1 72' 11 77    77'

zero constants   c..
1

Let   VQ = m, V    + • • • + 777   V" neat x.   We need to know the tangencies of

L'  on   V    nß      .
Z u 0

(10.5)   Proposition.    (1)   L    has  (72 - 1)722  tangencies  on  V    CH       near x.
1 ° t UQ

(2)   These  in — Dm branch points are arranged in n nonintersecting circles
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of m — m . points each iwhen t   is small), each moving as around a point of type

im,,•••, m.,••-, m   ) when  t  goes around 0.T

(10.6)   Proof.   As in part B we examine the singular subvarieties of  VQ n
H     .   Since this is   in - 2)-dimensional, we have the partition (near x)  V. C H

a r. A L» U 0"0.
M, U  ••• U M      ,   where  M.   = M. n H     .As before, the   H     (u  small) are not

1 72- 1 2 2 120 "
I II

tangent to  M.,---,M   _.,  so  L    will not have tangents on  ™p •••!«  _2   near

x  (because their dimension is  > 0 and  L    is general).

But  A1      .   is a set of points, so the members of  L    we seek are the ones72— 1 r '

that contain a point of  M      ,.r 72—1

Let p. be the point  (O • • • a„ ••• O), with  uQ  in the z'th coordinate.   This is

where   V1, ••-, VA ••, V", H       meet near x.   Now   Vn O  H      =mAV1nH     )' 220 ° "0 1 «0

+ • • • + z/z  (V™ O W     ) and  M      , = {ô .j.   We now just remark that  p . is of type
72 220 72-1 2 »

(tzz. , • • • , 7?7 .,-•., 7?z  ) and so contributes a cycle of  m — m . branch points.

Finally, the total number of branch points near x is S (ttz — ttz .) = (tz — 1)t?z.

The picture in the t'-line   L    looks like

Figure 6

E.   We must now examine the homology groups of the several varieties at

hand.   Since the question is local, the topology involved is the same as that of

the affine pencil  z.     • • • z   " = Z.   The topology of  V    is given by

(10.7) If k is the g.c.d. of the m ., then V is homeomorphic to the sum of

k copies of 7/"_ x Rn~ , where T"~ is an in - l)-torus and Rn~ is Euclid-

ean  in — l)-space.   The  k  pieces of  V    permute cyclically as   Z  circles   0.

(10.8) Proof.    One just examines the map  A:   V   —> R"~     given by

A(zj, • • • , z  ) = i\z. I, • • • , jz   |) and observes that the image is homeomorphic

to  R"~     and each fibre is  k copies of  T"~   .

Now consider the exact sequence

(10.9) //      AV   n H      ) — H      AV ) -. H      AV , V   n h    ) -L
72-1 t UQ 72 -  1 t 72-C       (' Í UQ

H     AV   n H    ).
n— z      t uQ

The first group is   0  (3.15), the second is Z    and the third is  Zm .   Since

the   D. generate   H       (V     V   C H     ) and  dD . = d.,  the  d. span a subgroup of2    ° 72- lZ'Z 220 ZZ' Zr 6f

rank tzz - k  in  H     ,(V,  n H     ).   In other words, there are just  zê  relations72- 2 Z UQ ' 1

among them.

Let   P(T) be the minimal polynomial of  T  on the   D's  and  QÍT) the minimal
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polynomial on the d's.   Then deg p = m and 0{T) \ P(T).   Now the minimal poly-

nomial of  T on all the   (72 — 1)772  cones in  V   n ß       ¡s

RiT) = Lern.  ÜT   1 - 1), • • • , (T   ' - l), • • • , (T   ■ - D)

-Or"1'- i)/(r* -1).

Then öCF) ! ß(T^ so deg Q < deg P = 772 - ¿. If deg Q < m - k, then all the
d's would depend on the first m - k - I: d^, T{d^), • • • , Tm~ ~ id^t, a contra-

diction.   Hence,  Q = R.
Thus,   P = PS where  S  is monic and of degree   k.

Now observe that because the  k pieces of   V    ate disjoint and permuted

cyclically by  T,  the cones  D ., T{D .), ••• , Tk~   {D .) ate all disjoint for any  i.
Hence, when we look at  D{d    ,,, g      , )  and bring d     .   back around each g. to

' 777+1*   °777+l ö 777+1 °7

calculate the coefficients of P, it will never involve a D . unless i = m (mod k).

Hence, P{T) is a polynomial in Tk, so S{T) = Tk ±1. To prove (10.1), we need
S{T) =Tk -I.

Consider the loop h which surrounds all 772  branch points in  L.   After

carrying d     . = Tm{d.) around  h,  it vanishes along g,.   Hence, it becomes

id.   after traversing  h.   The following proposition is easily verified.

(10.10) Proposition,   d     ,   becomes  d.   if and only if SÍT) = T   — 1.

Hence, we assume (10.10) holds in dimension  < 72 and allow  u to trace out

h, keeping  /  small.   The  772  points  M trace out disjoint circles on  M   _

so the  722 groups of branch points in  V   n H       merely rotate around  v = 0 but

within each group come back to their original positions in a different order.

(10.11) Proposition.   Each of the   m cycles undergoes the transformation
ry — m

(10.12) Proof.   Let us look at the point p   = (O 0 • • • 0 u) in  M '   ,(22).   Ifr r 77 77—1

L    is  v - c,z, +-..+C   _,z   _,+z  ,   H    goes through p     for  v = u.   Then we

know by (9.12) that  v = u + ctl/^m~mn> + . .. , c depending on  u.

We calculate  cw as follows:

On  ß  ,  the pencil   V   O H    is z"1 • • • z'" Y   ("U7 r t U 1 77-1 ■1 ' =   t

and  L    becomes   v = u + (c, - l)z, + • • • + (c      , - l)z      ,.   In order to make the1 1 72—1 77—1
equation for  V,  O ß    have the simple form of (9-12), replace z      ,   by z       , =

*„-!<«-*,-«„..r"     *"\  so   V   n ß    isgivenby  z^1  ...
r772 2- m 1   =

77—2 72 — 1

Hence,  the  linear  part  of   77   is     Z2 + (c   - l)z, + • • • + 0R_2 - l)z„_2 +

tri_ , - l)z n_ j(z7 - z, - • • • - z   _ ,)      "      "~   ,  or, when  t  is small enough,
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-m    /m        .
u + ic, - l)z ,+•••+ ic      , - l)z      , + (c      , - 1)77      "

1 1 72 — 2 72 — 2 72—1 72—1

From (9.12) we get

*. = («./(C. - 1)U+•"    , Z   =   l,   ••■    ,77-2,

and

This means  v - u = mk + • • •  and
m — 772        . — mm        ,    772 m—m      m

Z = cA "_1       "A   "-1«   " + ... = cA "«* + ...,        c a constant.

t, '   —mn/(m — mn)  l/(m — m    ) 'Hence,  v = u + c u      " n t     ^ "' + • • • , c    a constant, ot v =
uil + cV/(m-m*VmZ1/(m~m*) + •••).

So as   ZY  travels on  h  (t  fixed), the Puiseux series around  p    gets multiplied

by  (~m,  where  e is a primitive   im - m  )th root of  1.

Hence, the  m - m    cones in this group undergo the transformation  T

Similarly for all the other groups, which proves (10.11).

Since,  d.   is a sum of these   (?z - 1)777 cones, (10.10) implies that   PÍT) =
U ÍTmi - 1),  as desired.

11.   Normal crossings at the base.

A.   We now weaken the assumptions we have been working under to allow

for a base locus.   This means that the parameter curve   C  is the projective line

P   ,  so that the  V   ate just a 1-dimensional linear system on  W.   Any two mem-

bers will meet in the same algebraic cycle   B  of codimension  2   in   W.

The singularities of B  coincide with the points where some   V   has sin-

gularities at the base.   This is the same as the set of points where two (nonsin-

gular) V    are tangent.    A singularity of B  is singular for a unique   V     since

we are still assuming that the general fibre is nonsingular.

The homeomorphisms   between the nonsingular  V    induced by the local re-

tractions clearly leave  B  point-wise fixed and the same holds for any homology

cycle that can be put in  B.   This, of course, is why there is no action in homol-

ogy (outside of the middle dimension) when the   V    are hyperplane sections.

In theory, one can eliminate the base by the following device:

Our family  V    is given by the rational map /:  W —► P   .     Let  W    be the

graph of / in  W x P  .   Then we have the rational maps  / :  W —>  P    and g:  W

—► W induced by the projections.   We have

(11.1)   (1)  /    and g ate everywhere defined.

(2) /•*-/'.
(3) g  is a biregular isomorphism between   W   — g~   (B)  and  W - B.

(4) If Z £ P1,  then g \f'~Ht) is an isomorphism of f'~lit) with  V .
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By (3), the only singularities of  W'  lie in g~r{B),  so if  W" is the desingu-

larization (Hironaka) of  W'  obtained by blowing up pieces of g~   iß) and if g :

W" —» W'  is the associated map, we get a rational map /   °g   = / ° g ° g    which

is defined everywhere on  W    and gives us a pencil  V    without base.    If we con-

sider the map g ° g':  W" —> W,  then g ° g'■  V    ~> V;  is a blowing-up of  V(  along

pieces of  B.

This means that the map W+(V') —»ß^O^) induced by g °g is surjective.

Hence, if the main theorems hold for  V  ,  they hold for  V .

B.   Still, it may be worthwhile to examine the pencil   V(  directly when the

base  B  is particularly simple.    This is useful for hypersurfaces in projective

space, where a base locus cannot be avoided.

As before, we assume the singular fibre V. has only normal crossings. We

will also assume that the pencil V is transversal at the base. This just means

that the components of V0 and any one of the other V ate transversal wherever

they meet, i.e., their local equations form a partial system of coordinates. This

implies that only  V.  has singularities on B.

Analytically, this means that if x £ B  and   V  , • • • , V    ate the components

of  VQ through x with local equations  z,, •••, z    and multiplicities  m,, •••,

772      then  s < n and there is another local coordinate  z     ,   such that   V,  is givens +1 t       brn\
1
Hence, the base (near x) is given by

by z. * ••• z   " = tz
1        1 s s \\

(z, = zs + l = 0) U (z2 = zs + 1 = 0) U • • • U (*, = zs + , = 0).

Hence,  B  consists of normal crossings, i.e.,   V    it j¿ 0)  is not tangent to any M..
Let  B. = M. n B.

7 7

C.   We now examine   V*.   (9.4) and (9-6) yield

(11.2) Proposition.   Let  H    be a general pencil of hyperplanes.   Then each

H     is tangent to at most one of the  M . or B . and cuts an ordinary double point

there.   Also, if H     is tangent to M. {or B .),  it is tangent to  M. {resp.  B .) but
not at  B.

The branch function and P-L transformation for tangencies of ß    with M.° U I

were given by (9.12).   For a tangency at  B, we have

(11.3) Proposition.   If x £ B    and V    is  z™1 ••• z™5 = tz     ,   ?2ear x and. s ' I s s +1
if some H     is tangent to B     at x,  then x  is on the branch curve and the branch

function is given by  u = Puiseux series in 11'<-m~ 1;    m = m, + • • • + m  .
' 1 s

(11.4) Proof.   We can take   H    to be  z, + • • • + z     , = u.   The Jacobian isu 1 s +1 ■>
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(m ,tz     ,/z.       ...     m  tz     ,/z       - t    0     • • ■     0 \1        S+1 1 S       S+l í \

1 ... 1 10- ••    0 /

When the rank is   < 1,  we find z. = mjzs+li- l) ii = 1, • • • , s) or cz™+l =

tz      ,    and u = - im - l)z     ,,  from which (11.3) follows.
25 + 1 S + V

Hence, for each tangency on  B     we have a cycle of ttz - 1   branch points, so

the P-L transformation on this group is a polynomial of degree  tzz - 1.   By using

an auxiliary pencil  H    and calculating the cones of  V   Cl H        we arrive at

(11.5) Theorem.    The minimal polynomial for the P-L transformation is  PÍT)
= n iTmi~ i)/(r- i).

(11.6) Proof.   As in part 10, there are two cases, according as  s < n - 1  or

s = n — 1.

First, observe that (locally)  V    ( Z 4 0)  is homeomorphic to a  (2tz - 2)-ball,

so in the exact sequence (10.9),  d is injective.   Hence, the minimal polynomial

of  J on d. = dD     is also  PÍT).   We find  d    by looking at the tangencies of
H    on  V    n H       near  x.

V t UQ

Case 1.   s < n - 1.   This is quite analogous to (10.3).   HQ O ß^  has an

ordinary double point at  x,  so for two (small) values of v,  H    will be tangent

to  H      OB    near x.   Hence, we have two groups of tzz - 1   branch points on   V

'"I  H       from which d.   is formed.   By induction, the minimal polynomial of  T on

these  2m - 2 cones is   PÍT).   Hence, the same is true for d.   (since we know its

minimal polynomial has degree   m - 1 ) and  D

Case 2.   s = n - 1.    VQ  is locally   V1 U   ...   uV""1   and  B  is  ÍV1 O   V()\j
...   U iVn~l  C V ).   Hence,   Vn O   H       is  ÍV1 n H     ) u  • • •   U ÍV"~ l O   H    ) '

t ' 0 220 "0 720
and the base of the pencil  V   n  H       is   ÍV1   O V   n H     ) U   . . .   u ÍVn ' ! O  V

^ t UQ    | í 220 '
O //     ).   Hence, the tangencies oí  H    on  V   Cl H       near x  are of two kinds:220 & V t UQ

(11.7) (1)   A group of  ttz  cones with minimal polynomial  II (T   ' - l) coming

from the non-base-point  ÍV1 Ci  H     ) Ci ...   DiV"'1 O  H     ).r "0 220

(2)   tz - 1  groups of   m - m. — l  cones each, coming from the base-

point (V'1 n v n H   ) n ... n (v1 n v  n //    > n ... n (v"~ ' o v   n tf   ).
r 7 220 t UQ t UQ

The minimal polynomial of  T on these  (ttz - I)(tz - l) cones is  11 ÍT   ' - l).

Since the minimal polynomial on d.   is of degree  ttz - 1,  it can only be

II ÍTmi - D/ÍT-1) = PÍT) or  n ÍTmi - 1)/(T + 1).   We shall eliminate the latter
possibility.

First we have a result analogous to (10.10).

(11.8)   I roposilion.    Let  h be a (counterclockwise) loop surrounding the

1   branch points.    Then  h  indi,
if the minimal polynomial is  PÍT).
ttz - 1   branch points.   Then  h  induces the transformation   T~^m    l'  if and only
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Now to examine the action of  h  on the  im - l)in - l) cones of  Vf O ß       we

have two cases, according as the cone is induced by a base-point or not (cf.

(11.7)).
V    is given by z™l • • • z m_"~    = tz^,  L  by  ¡z =z, + •■• +2^  and  L    by v =

c ,z. + • • • + c z     (higher powers will not affect the results).   Consider first the

base-point  iu, 0, • • • , O) on   V   Ci H     (as  u traverses  h).   22¿ <•••,«    are local

coordinates there and we have

777 ,      777 -, 777 .
V, n ß  :     (k - 2,-z  )    lz2 ... z   n~l = tz   ,

tU 2 n 2 72—1 72'
(11.9)

L':    v = CjB + (c2 - Cj)z2 + •••+- (cn - c,)zn.

In order to put the local equation of  V    l~) ß     into the standard form, let

Au — z, — ••• — 2  ) ,  so (11.9) becomes

(11.10)
L'

V nß :    z.2...z  "7! = /z ,Z Z2 2 77—1 77'

—777. /m~
' :    v — c.u = (c, - c.)u z    + (c2 - c.)z   + .. . + (c   - c.)z   + h.p.1 21 23I3 77l77r

By (11.3), the branch points on   V;   n ß    are given by  v - cxu =
— m\/{m — m\ — \)  \ /(m—m\ — \) .

const z/ / + • • •  where the constant does not depend on

u.   This can be written

-(777-l)/(777-7771-l)   1/(t77-777 , - 1 )
v = Z2(c. + const u t +•••).

We conclude that as  u traverses   h,  the center of this group of  m — m. — 1  branch

points makes one circuit and its members undergo the permutation  T~

Similarly for the other n — 2  groups of m — m. — I  points.   As for the non-base-

point  (0, • • • , 0, Z2), we eliminate  z    to get

777 1                   777          .

Vt"Hu:      Zl       ■■■Znll      -^~ZX-*„-!>.

L :     v = c u + (c, - c  )z ,+••• + (c      , - c  )z      ,.
72 1 77        1 77— 1 77       77— 1

Then from (9.12) (or directly) we find the branch points on   L    to be   v =
Z,   \\/m I -(m-\)/m  \/m \     ,, , . ,c  u + const UZ2) = u(c    + const z2 /        +•••).   Hence, this group be-

haves just like the other  72 - 1  groups of cones, and the effect of traversing h
is  T-(m~n.    Q.E.D.

12.   Examples of Picard-Lefschetz transformations.

A.   We give here a few examples of the P-L transformation for certain simple
pencils and singularities.

The first case to consider is where the   V    are curves.   The possible types
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of singular fibres have been classified by Kodaira 13] for genus   1  and Ogg 15] for

genus   2.   Kodaira worked out the P-L transformation using the modular function,

but it can also be done with the previously described theory.

B.   Example 1.    VQ = 3  rational lines meeting at a point.   This singularity

was analyzed in part 7B.   We get six cones in  H AV     V    Cl H  ) and  A   ~* B "—♦ C

—'A  under  T.   Also  dA = dB = dC since   T is the identity on  V    Cl H  .   Hence
' t U

A - B  and  B - C form a basis for H AV ) and we have the matrix  (_ .

order  3.
)  of

Figure 8

Example 2.    VQ = 2 rational lines tangent at a point.   One could blow up the

singularity and analyze the resulting normal crossings (viz. HA), but it is sim-

pler to treat it directly.

Locally,   V   is x(x + y  ) = z and  H    is  u = x + y.   The Jacobian is

2x +■ y -     2xy

so the branch curve is   2x + y    — 2xy = 0.   This is nonsingular at   (0, 0) and
1A,2-M> •• ,¡z = y + , z %y4 Hence, the branch function is es-

sentially  u = ct   , c 4 0.   Under  T we have  A --* B —♦ C  —» D  and since all the

boundaries are equal,   TÍD) = 2D - 2C + 2B - A.   H AV ) is spanned by A - B
and  B - C.

Figure 9
TÍA - B)= B - C and  TÍB - C) = C - D.   Since  ÍA - B, B - C) = ÍB - C, C - D)
= -ÍC - D, B -C), we have   TÍB - C) = - (A - B) and the matrix is   (_ °     Q).

Example 3.    VQ = s  rational lines forming a closed "polygon."   Each inter-

section is an ordinary double point, so we have s  pairs of cones with

A,       B,    A,      B, Aß

Fi?,: 10 Figure 11
- o.      ,_i.._. „v. i_au aDomuc   vi i    - a    — a.   by choosing the path

correctly, because   V    is irreducible.   Here,   H AV ) is spanned by  2 A . and

dA j = (9A 2 «...  etc. We can assume   dAl7 ¿

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 ALAN LANDMAN

Bj-Aj.   Since for all  z,  B. - A. = B, - A,   in  ß,(Vp,  the matrix is   (J     *).
Example 4.    V„  is like Figure 12, where each component is a rational curve,

four of multiplicity  1  and s + 1   of multiplicity 2.   The cones look like Figure

13 (we have ignored two sets of three).   Underneath the first

Figure 12

^1B1 A,- B     C

s-l

Figure 13
member of each group is its boundary, e.g.,   d£, = c - c20, dA, = an — rz,,  etc.

The boundaries of the other cones are determined by the points  c, d, a , h . 0' =

0, . • •, s) of  V   n ß    where  Tic) = c, T{d) = d,   T{a .) = b .   and  Tib .) = a..
' t U 11 11

Let G = 1 {A.-B.) + E, - E. + F, - F_ and H = A, -C..   G and  H spanz z 12 12 II r

ß,(^) since  (G, ß) = 1.   We have Bl~Dl=-Al~Cl  and E, -E? = F, - F}
= 0,  so the P-L matrix is   (~¿       f).

C.   The P-L transformation for elliptic curves can be calculated more easily

after expressing the general  V    as a 2-sheeted covering of the projective line,

since the corresponding g2  suffices to calculate   H {V ).   Of course, this is also

true for any hyperelliptic pencil.   This can be written in the form

(12.1)  y   = fix, t), f a polynomial of degree  2g + 1  or 2g + 2  in x (g =
genus of  V ).

The cones and their behavior can be calculated with respect to the pencil

x = const.   The only difficulty is that (12.1) may represent a   singular surface in

P   ,  so must be desingularized if one wants to see what the "real" fibre   V     is.

This, of course, does not change the P-L transformation (cf. HA).

Example 5.   Consider the pencil  y    = x3 + x    + ts, s > 1.   The point (0, 0, 0)

is singular, but after a finite number of quadratic transformations (in fact after

U/2J), the singularity is resolved and the new   VQ  is just the curve of Example

3.   Observe that as  t moves around  0 once,  ts  moves around s  times.   In other

words the P-L transformation is the sth power of the one corresponding to the
2 3 2

pencil y    = x    + x   + t.   But  VQ  here just has an ordinary double point, so the

matrix'is  (Q     ,), and its sth power is  (¿    *), as before.
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Example 6.   Consider Ogg's example:   y" =x    - ts.   As  s  changes, the

fibre   VQ on the nonsingular surface assumes various shapes, e.g.,  s = 2  and s

= 3  are represented in Figures 14 and 15 (the components are rational lines with

their corresponding multiplicities).

10

Figure 14 Figure 15
But as was explained above, the P-L transformation is just the sth power

of the one for the pencil y = x - Z. To calculate the latter we use the pencil

x = u and find two groups of branch points and cones, viz.,   u = t and  u = °°.

They are represented in Figure 16.

a\    a2   a3      a4    a5

Figure 16
There is one relation in  H AV. V   C H  ) (cf. (3.11)), viz.,1     z'     t u

(12.2)

Furthermore, under   T we have

(12.3)  aQ —* aQ,     a^ —► a2 —, .

an — a, +• a, — a, + a ,o 1 2 3 4

s.

a, = 0.

fl_ 2a, 2a . + 2a,4 3 2a - + a..

C = a, - fl ,,  z9 = a 4 - a      then  A , B,If we put  -4 =aj -a,  B =a    — a,,

C   and  D  span  H,(V ) and the matrix is the companion matrix to the polynomial

x    - x3 +■ x    - x + 1,  so is of order  10.

More generally, we have the following:

(12.4) Proposition. Let y = xm — t. If m is odd, the matrix is companion

to ixm + l)/(x +■ l), so is of order 2m im > l). // zzz is even, the matrix is com-

panion to  ixm — l)/(x    — l),  so is of order  m  im > 2).

D.   Example 7.    V   = quadrics in projective space  P  .   //   _,ÍV ) = 0  if  7?  is

even, so the P-L transformation is trivial.   Assume  n = 2m + 1.   Then  H      AV )
72—1 t

(for  V    nonsingular) is generated by two linear  Trz-spaces  A  and  B  with the fol-

lowing intersection properties:

(12.5)
ÍA, A) = ÍB, B) = 0,        (A, B) = 1     if m  is odd;
(A, A) = (B, B) = 1,        ÍA,B) = 0     if 777   is even.
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By (3.7) the self-intersection number of the cycle vanishing at an ordinary

double point is  2(- l)m.   Since it must be of the form  rA + sB fot some integers

r and  s,  (12.5) shows that the vanishing cycle must be A - B.   From this it fol-

lows that the P-L matrix is  (.       ).

In the space of dimension  72(72 + 3)/2  which parametrizes the quadrics of  P   ,

the singular quadrics form a hypersurface of degree  72 + 1.   Hence, if the inter-

section multiplicity of the pencil  V    with this hypersurface at  Vn   is even, the

P-L transformation is the identity and  (.       )  otherwise.

The intersection multiplicity can be calculated as follows:   choose projec-
2 2tive coordinates so that one   V    has equation  xn + • • • + x   =0.   Then the multi-

Z * U n
plicity of V„ is the number of times 0 counts as an eigenvalue of the symmetric

matrix representing VQ. For instance, if the singular set of VQ is r-dimensional

and  V    is not tangent to it, the multiplicity is  r + 1.

Example 8.    V   = cubic surfaces in   P,.   H2ÍV ) is generated by the lines

on  V .   The set of all these lines forms a surface of degree 9, since the nonsin-

gular    V    contain just 27 lines.   Hence, when  /  makes a loop, the 27 lines un-

dergo some permutation, and we conclude that

(12.6) The P-L transformation for cubic surfaces in   P,   is of finite order.

For instance, as a simple special case we have

(12.7) If  V„ = 3  planes and  V    is otherwise general, the P-L transforma-

tion is the identity.

We can see this as follows:   the pencil  V   C H    neat  V. n ß     is of ther Z 12 Ou

type of Example 3 with s = 3, so there is a single invariant vanishing cycle b.

Now   Vn  has  3  double lines and   1  triple point.   The former yield  9 double

points at the base, which result in  9  invariant cones on   V    (see (11.5)).   Their
2boundaries must be   b.   The triple point yields three cones:   A, TA, T A,  with

boundaries a, a + 3b, a + 6b, where ia, b) = - 1. The relation among these 12

cones induced by b (viz. 3D) is {T - l) A = 0, so every cycle in V is invari-

ant.

Example 9.   Finally, for an example of a less trivial transformation, we men-

tion the case of quartic surfaces in   P,,  with   VQ = 4 planes.    V»  has  6 double

lines and 4  triple points, so we get 24  invariant cones plus  4  sets of 3  on

which the minimal polynomial is  (T - 1)  .

73,      B2 B Cj C2      C        D,    D2    D3

Figure I7
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(T — 1) A ,, (T — l)  B,,  etc., are vanishing cycles which turn out to be

homologous to one cycle   E,   while  F = A.+B.+C.+D.   is a cycle such that

ÍE, F) = - 1.   Hence,  (T — l)  F = 4E 4 0,  and we conclude
(12.8)   The minimal polynomial of the P-L transformation on  H AV ) is

(r-i)3.
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APPENDIX AND SUPPLEMENTARY BIBLIOGRAPHY
(PHILLIP A. GRIFFITHS)

1.   Restatement of the mondromy theorem.   Let  D = \t £ C:   \t\ < 1\ be the

unit disc in  C,  X  a complex manifold of dimension  n + 1   which admits a projec-

tive embedding, and /:  X—* D  a proper, holomorphic mapping which has  7 = 0

as the only critical value.   Then   V   - f~   it)  is a smooth, projective variety for

Z 4 0,  and by Hironaka we may assume that   Vn  has normal crossings.   This is

the localization in the parameter space of the situation  /:   W —* C of the above

paper.   We write

VQ = JJijDj + • • • + rnp l

where the  D. are smooth divisors meeting transversely.   We then define

Fs(V0)=       L       D     C...ODi:,<•■•< i        ' s
1 s

so that the following hold:
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Fj(V0) = |V0|   is the support of  VQ;

F  (Vn) = points of order s  on   |Vn|.

The two numerical characters

( N = l.c.m. (772,, ■ • • , ntj),
(A.l)

[r0 = max{Fs{V0)¿  0\ < n + I

ate associated to the situation  /:   X —► D.

Fix  t0 4 0  and set   V = V(  ,  Hq{v) = HqiV, Q),  and denote by  T:  Hqiv) —
ß90/)  the Picard-Lefschetz transformation given by the generator of  77,(D - |0S)

acting on the cohomology Hqiv).   Theorems I , II   of the paper may be summarized

by the matrix equation

(A.2) (TN-/)ri=0        Oj = min(r0,?-r 1)).

This result is generally referred to as the monodromy theorem. Since Landman's

thesis there have been several proofs of (A.2) of widely varying natures, and our

purpose is to present a short bibliography to these proofs.

2.   Geometric proofs.   These have been given by Clemens [il] and Deligne-

Grothendieck 113J.   The idea is to consider the situation

X—S—, V

where  g  is the retraction of  X  onto the singular fibre  V„.   Thus  g:   V   —► Vn

may be viewed as a sort of "collapsing" map.   By using the normal crossings of

Vg,   we may assume that  / ° g = /.   If we now apply the Leray spectral sequence

to  X   -S» IC,   then  / operates in this via its operation on the Leray direct image

sheaves   Rq (Q).   The  monodromy  theorem  follows by examining this action.   A

further discussion of this is given in S1 15 of [14].

There is also a local version of the monodromy theorem when the fibres V

ate hypersurfaces in  C"       acquiring an isolated singular point.    Early results

here by Pham, Brieskorn, and Milnor led to a fascinating interplay between the

P-L transformation and exotic spheres [16].

3.   Proofs using the Picard-Fuchs equation.   The sheaf K9 = Rq (C) ®c 0D

admits a canonical flat connection  V9  the Gctuss-Mctnin connection, such that
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R,   (C)  forms the subsheaf of flat sections.   Now K     extends to a coherent sheaf

on  D,  but  V  will generally have a singularity at  Z = 0  whose "residue" is log T.

The detailed study of  (Kq, V)  led Brieskorn [lO], Deligne [12], and Katz [l5] to
a proof of the monodromy theorem.   Moreover, Katz was able to refine the index

of unipotency  r  in (A.2) as follows:   Using the Hodge decomposition [18],

(A.3)

HqÍV, C) = Hq'°ÍV) ®Hq- l. 1ÍV) <&H°'qiv),

„ Hq-a'aÍV) = Ha-q-aÍV),

ve define the integer  r2  by

min(7-0, s) /hete Ha- q~uiV) = 0    for a > s.

Then  rQ < q + 1,  and this number measures how many terms vanish from the "out-

side" of the Hodge decomposition (A.3).   Katz's refinement of the monodromy

theorem is that

(A.4) ÍTN - I)
r2

0.

This improvement is of an analytic rather than a geometric nature.

4.   Analytic proofs.   Associated to the situation  f:  X —► D  there is a clas-

sifying space for Hodge structures (= period matrix domain)  i' = G/H  such that

T £ G and such that there is a holomorphic mapping

(A.5) D->ÍÜ/¡T

where  (pit) = ÍHodge decomposition of  HqÍV , C)i  [14].   Passing to the universal

covering K = jz = x + \/- y, y > 0Î  of  D,  the period mapping (A.5) lifts to give

where  <JXz + l) = '  • "ÏAz).   The mapping 4) is distance decreasing relative to the

Poincaré metric on  K  and a suitable  G-invariant metric on  J .   Using this, Borel

(unpublished) gave a very simple proof that the eigenvalues of  T are roots of

unity.   Recently, this approach has been greatly extended by Schmid [17] who

has given a complete asymptotic analysis of the Hodge decomposition  (f>it) as

\t\ —► 0.   As a by-product, Schmid obtains the exact position of  log T  in the Lie

algebra of  G giving yet another proof of the strong monodromy theorem (A.4).   In

addition to this arithmetic property, Schmid finds that  T has very remarkable

positivity properties, the simplest being that given by (13.5) on p. 266 of [14J.
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5.   Computational questions.   The problem of computing the P-L transforma-

tion in explicit examples is generally quite difficult.   It seems to me that the

global algorithmic procedure given by Landman in this paper is by far the best

general method, as is perhaps suggested by the fairly complicated examples he

is able to treat with relative ease.   In particular, all of the P-L transformations

which I have seen arising from the study of Feynman integrals in mathematical

physics should be accessible to these techniques.
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