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We consider the problem of maximizing a nondecreasing submodular set function under
a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework
for the approximation of this problem, which is based on the pipage rounding tech-
nique by Ageev and Sviridenko (2004), and showed that this framework indeed yields
a (1 − 1/e)-approximation algorithm for the class of submodular functions which are
represented as the sum of weighted rank functions of matroids. This paper sheds a new
light on this result from the viewpoint of discrete convex analysis by extending it to the
class of submodular functions which are the sum of M\-concave functions. M\-concave
functions are a class of discrete concave functions introduced by Murota and Shioura
(1999), and contain the class of the sum of weighted rank functions as a proper subclass.
Our result provides a better understanding for why the pipage rounding algorithm works
for the sum of weighted rank functions. Based on the new observation, we further ex-
tend the approximation algorithm to the maximization of a nondecreasing submodular
function over an integral polymatroid. This extension has an application in multi-unit
combinatorial auctions.
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1. Introduction

1.1. Main Results

We consider the maximization of a nondecreasing submodular function under a

matroid constraint. In the area of continuous optimization, the maximization of a

concave function is recognized as a tractable problem while the maximization of a

convex function is hard to solve. In discrete optimization, submodular function is

often regarded as discrete convexity, and indeed the maximization of a submodular

function is known to be NP-hard. On the other hand, some classes of submodular

functions are deeply related to discrete concavity (cf. [9,18,22]). For example, a set

function f(X) = ϕ(|X |) given by a univariate concave function ϕ is a submodular
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function, and it is natural that such a function has discrete concavity. The objective

of this paper is to shed a new light on the pipage rounding algorithm [3] from the

viewpoint of discrete convex analysis by pointing out that discrete concavity plays

an essential role in computing an approximate solution in the maximization of a

submodular function.

Our problem is formulated as follows:

(P) Maximize f(X) subject to X ∈ F ,

where f : 2N → R is a nondecreasing submodular set function on a finite set N with

f(∅) = 0, and M = (N,F) is a matroid with the family of independent sets F . We

assume that the membership oracle for M is available. A set function f : 2N → R

is said to be submodular if it satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (X,Y ∈ 2N),

and nondecreasing if f(X) ≤ f(Y ) for any X,Y ∈ 2N with X ⊆ Y .

In the literature, various problems related to (P), including the optimal al-

location in combinatorial auctions to be explained later, have been discussed over

decades [4,7,11,16,27,33,34]. Recently, Calinescu et al. [3] proposed an elegant frame-

work for the approximation of the problem (P), which is based on the pipage round-

ing technique developed by Ageev and Sviridenko [1]. In their framework, they firstly

consider a relaxation of the problem (P):

(RP) Maximize f̃(x) subject to x ∈ P (M),

where P (M) (⊆ R
N ) is the matroid polytope of M and f̃ : [0, 1]N → R is an

extension of f , i.e., a function such that f̃(χX) = f(X) for every X ∈ 2N and

its characteristic vector χX ∈ {0, 1}N . Then, an optimal (fractional) solution x ∈

[0, 1]N of the relaxed problem (RP) is computed and rounded to a {0, 1}-vector

that corresponds to an independent set of M by using a potential function defined

over [0, 1]N . The main result of Calinescu et al. [3] is described as follows, where

e denotes the base of natural logarithm, and for a matroid M′ = (N,F ′) and a

nonnegative vector w ∈ R
N
+ , a weighted rank function f : 2N → R is defined by

f(X) = max{w(Y ) | Y ∈ F ′, Y ⊆ X} (X ∈ 2N ). (1.1)

We note that any weighted rank function is a nondecreasing submodular function

with f(∅) = 0.

Theorem 1.1 ([3]). Let f : 2N → R be a function given as the sum of weighted

rank functions. Then, the pipage rounding algorithm (see Section 2.3) outputs a (1−

1/e)-approximate solution of the problem (P) in polynomial time (if the extension

f̃ : [0, 1]N → R of f is defined appropriately).

A connection of this result to discrete concavity is made by the observation that

a weighted rank function has discrete concavity called M\-concavity. A set function

f : 2N → R ∪ {−∞} is said to be M\-concave if f satisfies the following property:
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for every X,Y ∈ 2N with f(X) > −∞, f(Y ) > −∞ and every

i ∈ X \ Y , it holds that either

f(X) + f(Y ) ≤ f(X \ {i}) + f(Y ∪ {i})

or

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X \ {i} ∪ {j}) + f(Y ∪ {i} \ {j})}.

The proof of the following fact will be given in Section 2.4.

Theorem 1.2. Any weighted rank function is an M\-concave function.

The concepts of M\-concavity/M\-convexity are introduced by Murota and Sh-

ioura [24] as discrete concavity/convexity for functions defined over the integer

lattice, and are variants of M-concavity/M-convexity due to Murota [21]. These

concepts play primary roles in the theory of discrete convex analysis [22]. It is shown

in [10,26] that M\-concavity is equivalent to the gross substitutes property in math-

ematical economics. The class of M\-concave functions properly contains that of

weighted rank functions; for example, the set function f(X) = ϕ(|X |) with concave

ϕ is an M\-concave function and not a weighted rank function. Therefore, the class

of the sum of M\-concave functions contains the class of the sum of weighted rank

functions, but so far we do not know whether this is a proper inclusion or not.

Although the two classes of functions might be the same, any function in the class

can be represented by a smaller number of functions if we use M\-concave functions

instead of weighted rank functions. Indeed, the set function f(X) = ϕ(|X |) with

strictly concave ϕ can be represented by a single M\-concave function, while it is

the sum of |N | weighted rank functions.

An M\-concave function has a natural extension called the concave closure. For

a set function f : 2N → R, its concave closure f : [0, 1]N → R is given by

f(x) = max

{ ∑

X⊆N

λXf(X)

∣∣∣∣
∑

X⊆N

λXχX = x,
∑

X⊆N

λX = 1, λX ≥ 0

}
. (1.2)

We will show that the maximization of the sum of the concave closures of M\-

concave functions can be solved (almost) optimally in polynomial time. We assume,

without loss of generality, that {j} ∈ F and f({j}) > 0 for every j ∈ N since

otherwise there exists an optimal solution X∗ ∈ F of (P) with j 6∈ X∗. We also

assume that the membership oracle for M and the function evaluation oracles for

M\-concave functions are available. We denote by n the cardinality of N .

Theorem 1.3. Let fk : 2N → R (k = 1, 2, . . . ,m) be a family of nondecreasing

M\-concave functions with fk(∅) = 0, and denote by fk : [0, 1]N → R the concave

closure of fk. Suppose that the function f̃ in the problem (RP) is given as f̃(x) =∑m
k=1 fk(x).
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(i) For any ε > 0, a (1− ε)-approximate solution of (RP) can be computed in time

polynomial in n, m, log f(N), Λ, and log(1/ε), where

Λ = max

[
0,max

j∈N
log

1

f({j})

]
.

(ii) If each fk is an integer-valued function, then an optimal solution of (RP) can

be computed in time polynomial in n, m, and log f(N).

Our algorithm used in the proof of Theorem 1.3 is based on the ellipsoid method

combined with an algorithm for computing a subgradient of the concave function

f̃ . Since f̃(x) =
∑m

k=1 fk(x), a subgradient of f̃ is given as the sum of subgradients

of the functions fk (k = 1, 2, . . . ,m), and subgradients of each fk are computed in

polynomial time by using the combinatorial structure of M\-concave functions.

As a corollary of Theorem 1.3, we see that the pipage rounding algorithm of

Calinescu et al. [3] also works for the sum of M\-concave functions.

Theorem 1.4. Suppose that the function f is given as f(X) =
∑m

k=1 fk(X) with

a family of nondecreasing M\-concave functions fk : 2N → R with fk(∅) = 0 (k =

1, 2, . . . ,m).

(i) For any ε > 0, a (1 − 1/e− ε)-approximate solution of the problem (P) can be

obtained in time polynomial in n, m, log f(N), Λ, and log(1/ε).

(ii) If each fk is an integer-valued function, then a (1 − 1/e)-approximate solution

of (P) can be obtained in time polynomial in n, m, and log f(N).

Our results show that the success of the pipage rounding algorithm for the sum

of weighted rank functions (Theorem 1.1) can be understood as a special case of

Theorem 1.4. It should be emphasized that our algorithm uses only the value oracle

for functions fk, while the original algorithm in [3] requires an explicit representation

of each weighted rank function fk.

1.2. Extension

Based on the observation above, we can further extend the pipage rounding algo-

rithm to a more general problem than (P).

Let v ∈ Z
N
+ , and [0, v]Z(⊆ Z

N ) denotes the set of integral vectors in the interval

[0, v] (⊆ R
N ). Let h : [0, v]Z → R be a nondecreasing submodular function with

h(0) = 0. We assume that h is submodular, i.e., h satisfies

h(x) + h(y) ≥ h(x ∨ y) + h(x ∧ y) (∀x, y ∈ domZ h),

and that h is “concave” in the sense that the function ϕ(α) = h(x+αχj) is a concave

function in α ∈ Z for all x ∈ [0, v]Z and j ∈ N . Here, the vectors x ∨ y, x ∧ y ∈ R
N

for x, y ∈ R
N are defined by

(x ∨ y)(j) = max{x(j), y(j)}, (x ∧ y)(j) = min{x(j), y(j)} (j ∈ N).

We consider the following problem:
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(GP) Maximize h(x) subject to x ∈ P ,

where P is an integral polymatroid with P ⊆ [0, v]Z. It is easy to see that the

problem (P) is a special case of (GP) with v = 1. On the other hand, the problem

(GP) can be easily reduced to the problem (P) associated with a certain nonde-

creasing submodular set function f : 2N̂ → R and a certain matroid M = (N̂ ,F),

but the size of the ground set N̂ is polynomial in
∑n

j=1 v(j), i.e., pseudopolynomial

in the input size of (GP) (see, e.g., [30, Section 44.6b]). We assume, without loss of

generality, that χj ∈ P and h(χj) > 0 for every j ∈ N .

We also consider the relaxation of the problem (GP):

(RGP) Maximize h̃(x) subject to x ∈ P ,

where P ⊆ R
N is the convex hull of the integral polymatroid P and h̃ : [0, v] → R

is an extension of h, i.e., a function such that h̃(x) = h(x) for all x ∈ [0, v]Z.

We note that for every M\-concave function h : [0, v]Z → R, its concave closure

h : R
N → R ∪ {−∞} defined by

h(x) = max

{ ∑

y∈[0,v]Z

λyh(y)

∣∣∣∣
∑

y∈[0,v]Z

λyy = x,
∑

y∈[0,v]Z

λy = 1,

λy ≥ 0 (y ∈ [0, v]Z)

}
(x ∈ [0, v]) (1.3)

satisfies h(x) = h(x) for every x ∈ [0, v]Z (see Theorem 2.10).

Theorem 1.5. Let hk : [0, v]Z → R (k = 1, 2, . . . ,m) be a family of nondecreasing

M\-concave functions with hk(0) = 0, and denote by hk : [0, v] → R the concave

closure of hk. Suppose that the function h̃ in the problem (RGP) is given as h̃(x) =∑m
k=1 hk(x).

(i) For any ε > 0, a (1−ε)-approximate solution of (RGP) can be computed in time

polynomial in n, m, logh(v), Λ̃, log ||v||∞, and log(1/ε), where Λ̃ is given by

Λ̃ = max

[
0,max

j∈N
log

1

h(χj)

]
.

(ii) If each hk is an integer-valued function, then an optimal solution of (RGP) can

be computed in time polynomial in n, m, logh(v), and log ||v||∞.

Theorem 1.6. Suppose that h is given as the sum of nondecreasing M\-concave

functions hk : [0, v]Z → R (k = 1, 2, . . . ,m) with hk(0) = 0.

(i) For any ε > 0, a (1− 1/e− ε)-approximate solution of the problem (GP) can be

obtained in time polynomial in n, m, logh(v), Λ̃, log ||v||∞, and log(1/ε).

(ii) If each hk is an integer-valued function, then a (1 − 1/e)-approximate solution

of (GP) can be obtained in time polynomial in n, m, logh(v), and log ||v||∞.
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Application to combinatorial auctions The problem (GP) contains as a special

case the optimal allocation problem in multi-unit combinatorial auctions (see, e.g.,

[2,17]). Multi-unit combinatorial auctions are those in which some of the items for

sale are identical. We assume that there are n goods and u(j) denotes the number

of available units of goods j ∈ {1, 2, . . . , n}. We also assume that there are m

bidders and the k-th bidder has a valuation gk : [0, u]Z → R that is a nondecreasing

submodular function with gk(0) = 0 such that ϕ(α) = gk(x + αχi) is a concave

function in α ∈ Z for all x ∈ [0, u]Z and i ∈ N . Then, the optimal allocation

problem is formulated as

(OAP) Maximize
m∑

k=1

gk(xk)

subject to

m∑

k=1

xk(j) = u(j) (j = 1, 2, . . . , n),

xk ∈ Z
n
+ (k = 1, 2, . . . ,m),

which can be easily reduced to the problem (GP) as follows:

Maximize h(y) subject to y ∈ P (⊆ Z
E
+),

where E = {(k, j) | k = 1, 2, . . . ,m, j = 1, 2, . . . , n}, v ∈ Z
E
+ is a vector given by

v(k, j) = u(j) ((k, j) ∈ E), h : [0, v]Z → R (k = 1, 2, . . . ,m) is a function defined by

h(y) =
m∑

k=1

gk(y(k, 1), y(k, 2), . . . , y(k, n)) (y ∈ [0, v]Z), (1.4)

and P ⊆ Z
E
+ is an integral polymatroid defined by

P = {y ∈ Z
E
+ |

m∑

k=1

y(k, j) ≤ u(j) (j = 1, 2, . . . , n)}.

While the single-unit case (i.e., u(j) = 1 for all j) has been discussed in the literature

(see, e.g., [6,15,16,34]), no polynomial-time approximation algorithm with theoret-

ical error bound has been proposed for the multi-unit case, as far as the present

author knows. Note that the multi-unit case can be easily reduced to the single-unit

case with a pseudopolynomial number of goods, and therefore the previous approx-

imation algorithms for the single-unit case can be applied to the multi-unit case,

but they require pseudopolynomial time.

The special case of (GP) where each valuation gk is M\-concave (i.e., satisfies the

gross substitutes property) is well studied in the literature, and Lehmann et al. [16]

show that this case can be solved exactly in polynomial time in the single-unit case;

this result extends to the multi-unit case by reduction to the M-convex submodular

flow problem (cf. [22]).

We consider a more general case where each valuation gk is given as the sum

of M\-concave functions. In such a case the function h defined by (1.4) can be
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also represented as the sum of M\-concave functions (see, e.g., [22]), and therefore

Theorem 1.6 implies that (1 − 1/e)-approximation is possible.

Corollary 1.7. Suppose that each valuation gk (k = 1, 2, . . . ,m) in (OAP) is given

as the sum of nondecreasing M\-concave functions.

(i) For any ε > 0, a (1 − 1/e− ε)-approximate solution of the problem (OAP) can

be obtained in time polynomial in n, m, log
∑m

k=1 gk(u), Λ̂, log ||u||∞, and log(1/ε),

where

Λ̂ = max

[
0, max

1≤k≤m
max
j∈N

log
1

gk(χj)

]
.

(ii) If each gk is an integer-valued function, then a (1−1/e)-approximate solution of

(OAP) can be obtained in time polynomial in n, m, log
∑m

k=1 gk(u), and log ||u||∞.

1.3. Organization of the paper

In Section 2, we review the pipage rounding framework of Calinescu et al. [3] as

well as the definition and some fundamental properties of M\-concavity. In Section

3, we present algorithms for computing a subgradient of the concave closure of an

M\-concave function. In Section 4, we prove Theorems 1.3, 1.4, and 1.5 by giving

polynomial-time algorithm for the maximization of the sum of concave closures.

Finally, we explain how to extend the pipage rounding algorithm to (GP) and give

a proof of Theorem 1.6 in Section 5.

Remark 1.8. Quite recently, Vondrák [34] has shown that for any nondecreasing

submodular set function f , a (1 − 1/e − ε)-approximate solution of the problem

(P) can be obtained in polynomial time. The algorithm in [34] is randomized, and

uses the pipage rounding technique, as in our algorithm. The major difference be-

tween Vondrák’s algorithm and ours is in how to compute a fractional solution;

Vondrák [34] obtains it by solving a nonconcave relaxation of the problem (P) ap-

proximately by using a randomized algorithm, while we solve a concave relaxation

of (P) (almost) exactly by a deterministic algorithm. In addition, it is not clear

how to extend Vondrák’s algorithm to the problem (GP) so that it runs in polyno-

mial time, although it is easy to extend the algorithm to a pseudopolynomial-time

approximation algorithm for (GP).

2. Preliminaries

2.1. Matroids

We denote by Z+ (resp., by R+) the set of nonnegative integers (resp., nonnegative

real numbers). Also, we denote 0 = (0, 0, . . . , 0) ∈ Z
N and 1 = (1, 1, . . . , 1) ∈ Z

N .

Throughout this paper, we assume that M = (N,F) is a matroid with the family

of independent sets F (⊆ 2N ), which gives a constraint in the problem (P). A set

system M = (N,F) is called a matroid if the set family F ⊆ 2N is given as

F = {X ∈ 2N | |X ∩ Y | ≤ rM(Y ) (Y ∈ 2N )},
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by using a nondecreasing submodular set function rM : 2N → Z+ such that

rM(Y ) ≤ |Y | (Y ∈ 2N ) (see, e.g., [28] for other equivalent definitions of matroids).

The function rM is called the rank function of M. Any maximal element in F is

called a base, and we denote by B the family of bases in M. The family of bases B

can be represented as

B = {X ∈ 2N | X ∈ F , |X | = rM(N)}.

For any X ∈ 2N , we denote by χX ∈ {0, 1}N the characteristic vector of X , i.e.,

(χX )(j) =

{
1 (j ∈ X)

0 (j ∈ N \X).

In particular, we denote χj = χ{j} for each j ∈ N . The matroid polytope P (M)

(resp., the base polytope B(M)) is defined as the convex hull of the set of {0, 1}-

vectors {χX | X ∈ F} (resp., {χX | X ∈ B}). They are also given as

P (M) = {x ∈ R
N
+ | x(Y ) ≤ rM(Y ) (Y ∈ 2N )},

B(M) = {x ∈ R
N
+ | x ∈ P (M), x(N) = rM(N)},

where x(Y ) =
∑

j∈Y x(j) for x = (x(1), x(2), . . . , x(n)) ∈ R
N and Y ∈ 2N .

In the following, we assume that the matroid M is “full-dimensional” in the

sense that the matroid polytope P (M) is full-dimensional. This is equivalent to the

property that every singleton set {j} (j ∈ N) is an independent set of M.

We also assume that the membership oracle for F is available. Since the function

value of the matroid rank function rM can be computed by using the membership

oracle at most n times, the following oracles for M can be implemented to run in

polynomial time by using submodular function minimization algorithms [12,14,29]

(see [9]). All of the four oracles can be also realized by the combinatorial algorithm

of Cunningham [5] for testing membership in a matroid polytope.

• [membership oracle]

for x ∈ R
N , check whether x ∈ P (M),

• [separation oracle]

for x 6∈ P (M), find a set X ∈ 2N with x(X) > rM(X),

• [saturation capacity oracle]

for x ∈ P (M) and i ∈ N , compute the value

ĉ(x, i) = max{η ∈ R+ | x+ ηχi ∈ P (M)},

• [exchange capacity oracle]

for x ∈ B(M) and i, j ∈ N , compute the value

ĉ(x, i, j) = max{η ∈ R+ | x+ η(χi − χj) ∈ B(M)}.
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2.2. Polymatroids

Throughout this paper, we assume that P ⊆ Z
N
+ is an integral polymatroid, which

gives a constraint in the problem (GP). A set of nonnegative integral vectors P is

called an integral polymatroid if it is represented as

P = {x ∈ Z
N
+ | x(Y ) ≤ rP (Y ) (Y ∈ 2N)}

by using a nondecreasing submodular set function rP : 2N → Z+ with rP (∅) = 0.

The function rP is called a (polymatroid) rank function associated with the integral

polymatroid P . A maximal vector in P is called a base of P , and the set of bases

of P is denoted by B (⊆ Z
N
+ ), which is represented as

B = {x ∈ Z
N
+ | x ∈ P, x(N) = rP (N)}

in terms of the polymatroid rank function rP . Moreover, the convex hull P (resp.,

B) of P (resp., B) is represented as

P = {x ∈ R
N
+ | x(Y ) ≤ rP (Y ) (Y ∈ 2N)},

B = {x ∈ R
N
+ | x ∈ P , x(N) = rP (N)}

In the following, we assume that the polymatroid P is “full-dimensional” in the

sense that its convex hull P is a full-dimensional polytope. This is equivalent to the

property that every unit vector χj (j ∈ N) is in P .

We also assume that the membership oracle for the integral polymatroid P is

available. In the same way as in the case of matroids, membership oracle, separation

oracle, and saturation capacity oracle for P and exchange capacity oracle for B can

be implemented to run in polynomial time with the aid of binary search.

2.3. Pipage rounding algorithm

The pipage rounding algorithm [3] for the problem (P) consists of the following

three steps:

1. Define a relaxed problem (RP) of the original problem (P).

2. Compute an (approximately) optimal solution x∗ of the relaxed problem (RP).

3. Round the fractional vector x∗ to obtain a {0, 1}-vector x̂.

We explain the details of each step below.

To define a relaxation (RP) of the problem (P), we use an extension f̃ : [0, 1]N →

R of f which is a function satisfying f̃(χX ) = f(X) (X ∈ 2N ). For example, the

concave closure f of f given by (1.2) can be used as an extension of f ; in case

where f is given as f(x) =
∑m

k=1 fk(x) with a family of set functions fk : 2N → R

(k = 1, 2, . . . ,m), the sum of the concave closures
∑m

k=1 fk(x) can be also used.

In the second step, we compute an (approximately) optimal solution x∗ of the

relaxed problem (RP). We may assume that x∗ ∈ B(M), since otherwise we can

find x ∈ B(M) with f̃(x) ≥ f̃(x∗) by computing the saturation capacities ĉ(x∗, i)

at most n times.
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In the third step, we round the fractional vector x∗ ∈ B(M) to a {0, 1}-vector

χX with X ∈ B by using a potential function Ψ : [0, 1]N → R defined by

Ψ(x) =
∑

X⊆N

( ∏

j∈X

x(j)

)( ∏

j∈N\X

(1 − x(j))

)
f(X) (x ∈ [0, 1]N).

Note that Ψ(χX) = f(X) for any X ∈ 2N . We assume that the function evaluation

oracle for Ψ(x) is available, as in [3]. We note that the function value of Ψ can be

evaluated to any desired accuracy in polynomial time by taking sufficiently many

independent samples (see [3]).

Rounding of a fractional vector is done by using the following procedure.

Procedure Rounding(x)

Input: a vector x ∈ B(M)

Output: a set X ∈ B such that Ψ(χX) ≥ Ψ(x)

Step 1: If x ∈ {0, 1}N , then output the set X ∈ 2N with χX = x, and stop.

Step 2: Let Y be a minimal set satisfying

x(Y ) = rM(Y ), Y ∩ {j ∈ N | 0 < x(j) < 1} 6= ∅.

Step 3: Choose any distinct elements i, i′ in Y ∩ {j ∈ N | 0 < x(j) < 1}.

Step 4: Put

x′ = x+ ĉ(x, i, i′)(χi − χi′), x′′ = x+ ĉ(x, i′, i)(χi′ − χi).

If Ψ(x′) ≥ Ψ(x′′), then put x := x′; otherwise put x := x′′. Go to Step 1.

Theorem 2.1 ([3]). The procedure Rounding terminates in O(n2) iterations.

Given a function evaluation oracle for Ψ and a membership oracle for B(M), the

procedure can be implemented to run in polynomial time.

The correctness of the procedure Rounding follows from the following property

of Ψ.

Proposition 2.2 ([3]). For any x ∈ B(M) and distinct i, j ∈ N , the function

ψ(η) = Ψ(x+ η(χi − χj)) is convex in the interval η ∈ [−ĉ(x, j, i), ĉ(x, i, j)].

The quality of the solution obtained by the procedure Rounding depends on

the choice of the extension f̃ . We denote by OPT the optimal value of the problem

(P).

Theorem 2.3 (cf. [3]). Suppose that Ψ(y) ≥ αf̃(y) holds for all y ∈ [0, 1]N . Given

a β-approximate solution x ∈ [0, 1]N of the problem (RP), the procedure Rounding

outputs a subset X ∈ 2N satisfying f(X) ≥ αβOPT.

The following properties show that if the function f(x) (or
∑m

k=1 fk(x)) is used

as an extension of f and we can solve (RP) exactly (i.e., β = 1 in Theorem 2.3) in

polynomial time, then the pipage rounding algorithm is a (1 − 1/e)-approximation

algorithm for (P).
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Theorem 2.4 ([3]). For any nondecreasing submodular function f : 2N → R with

f(∅) = 0, we have

Ψ(x) ≥

(
1−

1

e

)
f(x) (x ∈ [0, 1]N).

Corollary 2.5 (cf. [3]). Suppose that f is given as f(X) =
∑m

k=1 fk(X) with a

family of nondecreasing submodular functions fk : 2N → R with fk(∅) = 0 (k =

1, 2, . . . ,m). Then, we have

Ψ(x) ≥

(
1 −

1

e

) m∑

k=1

fk(x) (x ∈ [0, 1]N).

2.4. M\-concave functions

We review the definition of M\-concavity and show some fundamental properties.

A function h : Z
N → R ∪ {−∞} defined over the integer lattice is said to be

M\-concave if it satisfies the following property:

∀x, y ∈ domZ h, ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) ∪ {0}:

h(x) + h(y) ≤ h(x− χi + χj) + h(y + χi − χj),

where χ0 = 0 ∈ R
N , domZ h = {x ∈ Z

N | h(x) > −∞}, and

supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0} (x ∈ R
N ).

We note that for any M\-concave function h and any p ∈ R
N , the function h(x)+p>x

is also M\-concave in x.

The following property shows that M\-concave functions constitute a subclass

of submodular functions.

Theorem 2.6 ([22]). An M\-concave function h : Z
N → R ∪ {−∞} is a submod-

ular function.

M\-concavity for set functions can be naturally defined through the one-to-one

correspondence between set functions f : 2N → R∪ {−∞} and functions h : Z
N →

R ∪ {−∞} with domZ h ⊆ {0, 1}N . That is, a set function f : 2N → R ∪ {−∞} is

said to be M\-concave if f satisfies the following property:

for every X,Y ∈ 2N with f(X) > −∞, f(Y ) > −∞ and every

i ∈ X \ Y , it holds that either

f(X) + f(Y ) ≤ f(X \ {i}) + f(Y ∪ {i}) (2.1)

or

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X \ {i}∪ {j}) + f(Y ∪ {i} \ {j})}. (2.2)
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Maximization of an M\-concave function can be done efficiently.

Theorem 2.7 (cf. [22,31]). For any M\-concave function h : Z
N → R∪{−∞}, a

maximizer of h can be computed in time polynomial in n and in log max{x(i)−y(i) |

i ∈ N, x, y ∈ domZ h}.

We now give a proof of Theorem 1.2 stating that any weighted rank function

is M\-concave. The original proof in [32] relies on the convolution theorem [22,

Theorem 6.13 (8)] for M\-concave functions. We here give an elementary proof by

Murota [23].

Proof of Theorem 1.2. Recall the definition of a weighted rank function f :

2N → R in (1.1). To prove the M\-concavity of a weighted rank function, we use

the simultaneous exchange property of the family F ′ of independent sets (cf. [24,

Remark 5.2]):

for every I, J ∈ F ′ and i ∈ I \ J , either I \ {i}, J ∪ {i} ∈ F ′ or

I \ {i} ∪ {j}, J ∪ {i} \ {j} ∈ F ′ for some j ∈ J \ I .

Take X,Y ⊆ N and i ∈ X \ Y . Let I, J ∈ F ′ be independent subsets of X and

Y respectively such that f(X) = w(I) and f(Y ) = w(J).

If i 6∈ I , then

f(X \ {i}) ≥ w(I) = f(X), f(Y ∪ {i}) ≥ w(J) = f(Y ),

which implies (2.1). So assume i ∈ I . If J ∪ {i} ∈ F ′, then

f(X \ {i}) ≥ w(I \ {i}) = f(X)− w(i), f(Y ∪ {i}) ≥ w(J ∪ {i}) = f(Y ) + w(i),

which implies (2.1). So assume J ∪ {i} 6∈ F ′. Then we must have the second case

in the simultaneous exchange axiom for I, J, i. That is, there exists j ∈ J \ I such

that I \ {i} ∪ {j}, J ∪ {i} \ {j} ∈ F ′. If j ∈ X , then I \ {i} ∪ {j} ⊆ X \ {i},

J ∪ {i} \ {j} ⊆ Y ∪ {i}, and hence

f(X \ {i}) ≥ w(I \ {i} ∪ {j}) = f(X)− w(i) + w(j),

f(Y ∪ {i}) ≥ w(J ∪ {i} \ {j}) = f(Y ) + w(i) − w(j),

which implies (2.1). If j 6∈ X , then j ∈ Y \X , and

f(X \ {i} ∪ {j}) ≥ w(I \ {i} ∪ {j}) = f(X) − w(i) + w(j),

f(Y ∪ {i} \ {j}) ≥ w(J ∪ {i} \ {j}) = f(Y ) + w(i) − w(j),

which implies (2.2).

We give some other examples of M\-concave set functions.

Example 2.8 (laminar concave function). Let F ⊆ 2N be a laminar family,

i.e., for any X,Y ∈ F we have X \Y = ∅, Y \X = ∅, or X ∩Y = ∅. For a family of
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univariate concave functions ϕY : Z → R (Y ∈ F), the function f : 2N → R defined

by

f(X) =
∑

Y ∈F

ϕY (|X ∩ Y |) (X ∈ 2N )

is an M\-concave function. In particular, f is nondecreasing if each ϕY is nonde-

creasing.

Example 2.9. Let G = (U, V ;E) be a complete bipartite graph with vertex set

U ∪ V and edge set E, and let we ∈ R+ be the weight of edge e ∈ E. We define a

function f : 2U → R by

f(X) = max

{ ∑

e∈F

we

∣∣∣∣ F : matching of G, {∂+e | e ∈ F} = X

}
,

where ∂+e ∈ U denotes the end vertex of edge e ∈ E contained in U . Then, f is a

nondecreasing M\-concave function.

We also consider M\-concavity for polyhedral concave functions. A polyhedral

concave function b : R
N → R ∪ {−∞} is said to be M\-concave if it satisfies the

following property:

∀x, y ∈ domR b, ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0},

∃η0 > 0:

b(x)+b(y) ≤ b(x−η(χi−χj))+b(y+η(χi−χj)) (∀η ∈ [0, η0]),

where domR b = {x ∈ R
N | b(x) > −∞}.

Theorem 2.10 ([22,25]). Let h : Z
N → R ∪ {−∞} be an M\-concave function,

and h : R
N → R ∪ {−∞} be its concave closure.

(i) If domZ h is bounded, then h is a polyhedral M\-concave function.

(ii) For any x ∈ R
N , it holds that

h(x) = max

{ ∑

X⊆N

λXh(bxc + χX)

∣∣∣∣ bxc +
∑

X⊆N

λXχX = x,

∑

X⊆N

λX = 1, λX ≥ 0 (X ∈ 2N )

}
,

where bxc ∈ Z
N denotes the vector such that (bxc)(i) = bx(i)c (i ∈ N). In particu-

lar, we have h(x) = h(x) for all x ∈ Z
N .

A nonempty set S ⊆ R
N is called a g-polymatroid [8] if S is given as

S = {x ∈ R
N | µ(X) ≤ x(X) ≤ ρ(X) (X ∈ 2N)}

with a pair of a submodular set function ρ : 2N → R ∪ {+∞} and a supermodular

set function µ : 2N → R ∪ {−∞} such that

ρ(∅) = µ(∅) = 0, ρ(X) − ρ(X \ Y ) ≥ µ(Y ) − µ(Y \X) (X,Y ⊆ N).
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Theorem 2.11 ([22,25]). Let h : Z
N → R ∪ {−∞} be an M\-concave function,

and let h : R
N → R ∪ {−∞} be its concave closure. For any p ∈ R

N , the set

arg max{h(x) − p>x | x ∈ R
N} is an integral g-polymatroid if it is not empty.

Finally, we explain the concept of L\-concavity, which is deeply related to the

concept of M\-concavity. A function g : Z
N → R ∪ {−∞} defined over the integer

lattice is said to be L\-concave if it satisfies

g(p) + g(q) ≤ g((p− λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ Z
N , ∀λ ∈ Z+).

Maximization of an L\-concave function over the integer lattice can be solved effi-

ciently.

Theorem 2.12 ([22]). For any L\-concave function g : Z
N → R ∪ {−∞} with

bounded domZ g, its maximizer can be computed in time polynomial in n and in

log max{p(i)− q(i) | i ∈ N, p, q ∈ domZ g}.

L\-concavity is also defined for polyhedral concave functions. A polyhedral con-

cave function g : R
N → R ∪ {−∞} is said to be L\-concave if it satisfies

g(p) + g(q) ≤ g((p− λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ R
N , ∀λ ∈ R+).

Theorem 2.13 ([22,25]). Let h : Z
N → R ∪ {−∞} be an M\-concave function

with bounded domZ h, and define a function h◦ : R
N → R by

h◦(p) = min{p>x− h(x) | x ∈ Z
N} (p ∈ R

N ). (2.3)

Then, h◦ is a polyhedral L\-concave function.

3. Approximation Algorithms for Concave Closure

For a concave function b : R
N → R∪{−∞}, a vector p ∈ R

N is called a subgradient

of b at x if p satisfies

b(y) − b(x) ≤ p>(y − x) (y ∈ R
N ),

and the set of subgradients of b at x is denoted by ∂b(x) (⊆ R
N ). In this section,

we consider the concave closure h of a nondecreasing M\-concave function h and

show that an approximate subgradient of h can be computed efficiently.

Theorem 3.1. Let v ∈ Z
N and h : Z

N → R ∪ {−∞} be a nondecreasing M\-

concave function satisfying h(0) = 0 and domZ h = [0, v]Z.

(i) For any x ∈ [0, v] and any δ > 0, we can compute a vector p ∈ R
N and a real

number α ∈ R satisfying

h(y) − h(x) ≤ p>(y − x) + δ (∀y ∈ [0, v]), h(x) ≤ α ≤ h(x) + δ (3.1)

in time polynomial in n, log maxi∈N h(χi), log ||v||∞, and log(1/δ).

(ii) Suppose that h is an integer-valued function. Then, for any x ∈ [0, v] we can

compute a subgradient p ∈ ∂h(x)∩Z
N and the exact value of h(x) in time polynomial

in n, log maxi∈N h(χi), and log ||v||∞.
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In the following, we give a proof of Theorem 3.1. By the definition of the concave

closure (1.3) and LP duality, we have

h(x) = min{p>x+ γ | p>y + γ ≥ h(y) (y ∈ [0, v]Z), p ∈ R
N , γ ∈ R}

= min{p>x− h◦(p) | p ∈ R
N} (3.2)

for any x ∈ [0, v], where h◦ : R
N → R is given by (2.3). We define

gx(p) = h◦(p) − p>x (p ∈ R
N ).

Then, Eq. (3.2) is rewritten as

h(x) = −max{gx(p) | p ∈ R
N}. (3.3)

The following properties show that finding a subgradient (resp., an approximate

subgradient) of h can be reduced to the problem of finding a maximizer (resp., an

approximate maximizer) of the polyhedral concave function gx.

Lemma 3.2 ([22,25]). Let x ∈ [0, v].

(i) ∂h(x) = arg max{gx(p) | p ∈ R
N}.

(ii) ∂h(x) is a polyhedron.

(iii) Suppose that h is an integer-valued function. For any vectors u, u′ ∈ Z
N with

u ≤ u′, the set ∂h(x) ∩ [u, u′] is an integral polyhedron if it is nonempty.

We note that the set ∂h(x) has a nice combinatorial structure called L\-convexity

(see [22,25] for the definition of L\-convex set), from which the statements (ii) and

(iii) of Lemma 3.2 follow.

Lemma 3.3. Let p ∈ R
N be a vector such that

min{||p− p∗||∞ | p∗ ∈ arg max gx} ≤
δ

n||v||∞
.

Then, the vector p and the value α = −gx(p) satisfy the inequalities in (3.1).

Proof. Let p∗ be a vector in argmax gx minimizing the value ||p − p∗||∞. Since

p∗ ∈ ∂h(x) by Lemma 3.2 (i), we have

h(y) − h(x) ≤ (p∗)>(y − x) = p>(y − x) + (p∗ − p)>(y − x) ≤ p>(y − x) + δ

for all y ∈ [0, v], i.e., the former inequality in (3.1) holds.

We have h(x) = −gx(p∗) by (3.3). Let yp ∈ [0, v]Z be a vector such that h◦(p) =

p>yp − h(yp). Then, we have

gx(p∗) = h◦(p∗) − (p∗)>x ≤ {(p∗)>yp − h(yp)} − (p∗)>x

= (h◦(p) − p>x) + (p∗ − p)>(yp − x) ≤ gx(p) + δ.

On the other hand, we have gx(p∗) ≥ gx(p) since p∗ ∈ arg max gx. Hence, the value

α = −gx(p) satisfies the latter inequality in (3.1).

To complete the proof of Theorem 3.1, we show that a maximizer (or an ap-

proximate maximizer) of gx can be computed in polynomial time. Define a vector
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u ∈ R
N by u(i) = h(χi) (i ∈ N). Although the effective domain of the function gx is

unbounded, the next lemma shows that it suffices to consider the bounded interval

[0, u] when maximizing gx.

Lemma 3.4. For every x ∈ [0, v], there exists a subgradient p ∈ ∂h(x) such that

0 ≤ p ≤ u.

Proof. To prove Lemma 3.4, we use the following properties of concave closure h.

Claim 1: For every x, y ∈ [0, v] with x ≥ y and for every i ∈ supp+(x− y), there

exists η0 > 0 such that

h(x) + h(y) ≤ h(x− ηχi) + h(y + ηχi) (∀η ∈ [0, η0]).

Claim 2: For every x ∈ [0, v]Z and i ∈ N , we have

h(x + ηχi) − h(x) = η{h(x+ χi) − h(x)} (∀η ∈ [0, 1]).

Claim 1 follows from Theorem 2.10 (i) and the definition of polyhedral M\-concave

functions, and Claim 2 is by Theorem 2.10 (ii).

Let x ∈ [0, v]. Since h is a polyhedral concave function such that domR h is a

full-dimensional polytope, there exists a subgradient p ∈ ∂h(x) such that the set

S = {y ∈ [0, v] | h(y) − h(x) = p>(y − x)}

is a full-dimensional polytope. We show that such a subgradient p satisfies 0 ≤ p ≤

u.

Let x0 ∈ R
N be a vector in the interior of S. Then, there exists ε0 > 0 such that

εp(i) = h(x0 +εχi)−h(x0) = h(x0)−h(x0−εχi) (∀i ∈ N, 0 ≤ ∀ε ≤ ε0). (3.4)

Since 0 < x0 < v, Claim 1 implies that

h(εχi) − h(0) ≥ h(x0) − h(x0 − εχi) (∀i ∈ N), (3.5)

h(v) − h(v − εχi) ≤ h(x0 + εχi) − h(x0) (∀i ∈ N) (3.6)

for a sufficiently small ε > 0. By Claim 2 and Theorem 2.10 (ii), we have

h(εχi) − h(0) = ε{h(χi) − h(0)} = ε{h(χi) − h(0)} = εu(i), (3.7)

h(v) − h(v − εχi) = ε{h(v) − h(v − χi)} = ε{h(v) − h(v − χi)} ≥ 0 (3.8)

for every i ∈ N , where the last inequality in (3.8) is by the monotonicity of h.

Combining (3.4), (3.5), and (3.7), we have p(i) ≤ u(i) for all i ∈ N . Similarly, (3.4),

(3.6), and (3.8) imply p(i) ≥ 0 for all i ∈ N .

By Theorem 2.13, gx is a polyhedral L\-concave function, and its function value

can be computed in time polynomial in n and log ||v||∞ by Theorem 2.7. Let δ′ =

δ/(n2||v||∞), and define a function gZ : Z
N → R ∪ {−∞} by

gZ(p) =

{
gx(δ′p) if δ′p ∈ [0, u],

−∞ otherwise
(p ∈ Z

N ).
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Then, gZ is an L\-concave function over the integer lattice. The following theorem

states that any maximizer of gZ is sufficiently close to a maximizer of gx.

Theorem 3.5 ([19]). Let pZ ∈ Z
N be a maximizer of gZ. Then, there exists a

maximizer p∗ of gx with p∗ ∈ [0, u] such that

||p∗ − δ′pZ||∞ ≤ nδ′ =
δ

n||v||∞
.

Since gZ is an L\-concave function, Theorem 2.12 implies that a maximizer of gZ

can be computed in time polynomial in n and log maxi∈N (u(i)/δ′). This concludes

the proof of Theorem 3.1 (i).

In case where h is integer-valued, Lemmas 3.2 (iii) and 3.4 imply that an optimal

solution of the problem max{gx(p) | p ∈ Z
N , p ∈ [0, u]} is a subgradient of h at x,

and such an optimal solution can be obtained in polynomial time by Theorem 2.12.

Hence, Theorem 3.1 (ii) is proved.

4. Solving the Relaxed Problem

We prove Theorem 1.5 by providing polynomial-time algorithms for the relaxed

problem (RGP). Theorem 1.3 is an immediate corollary of Theorem 1.5, and The-

orem 1.4 follows from Theorems 1.3, 2.1, and 2.3, and Corollary 2.5.

4.1. Algorithm for real-valued functions

We first prove Theorem 1.5 (i). Let α∗ be the optimal value of the problem (RGP),

i.e.,

α∗ = max{h̃(x) | x ∈ P}.

It suffices to show that for every ε > 0, we can find a vector x ∈ P with h̃(x) ≥ α∗−ε

in time polynomial in n,m, logh(v), Λ̃, log ||v||∞, and log(1/ε). If we put ε = ε′h(χj)

for ε′ > 0 and an arbitrarily chosen j ∈ N , then we obtain a (1 − ε′)-approximate

solution of (RGP) since

h̃(x)

α∗
≥
α∗ − ε′h(χj)

α∗
≥ 1 − ε′.

For every α ∈ R, we define a set by

L(α) = {(x, α) ∈ R
N × R | α ≤ α ≤ h̃(x)},

which satisfies L(α) 6= ∅ if and only if α ≤ α∗. Given a real number α, our algorithm

described below checks the nonemptyness of the set L(α); more precisely, our algo-

rithm either asserts α > α∗−(ε/4) or finds a point x ∈ P such that α ≤ h̃(x)+(ε/2).

By combining this algorithm with binary search w.r.t. α, we can find a real number

α and a point x ∈ P such that

α > α∗ −
ε

2
, α ≤ h̃(x) +

ε

2
.
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This implies that h̃(x) ≥ α∗ − ε, i.e., x is a desired approximate solution of (RGP).

Our algorithm for checking the nonemptyness of the set L(α) is based on the

ellipsoid method [13]. Recall that P is assumed to be a full-dimensional polytope;

this assumption is needed for the correctness of the ellipsoid method since we will

use approximate separating hyperplanes for L(α) (see [13, Remark 6.3.3]).

The ellipsoid method always maintains an ellipsoid containing the set L(α);

initially, we can use a sufficiently large ellipsoid containing the following set:

{(x, α) ∈ R
N × R | x ∈ [0, v], 0 ≤ α ≤ h(v)}.

In each iteration, the algorithm checks whether the set L(α) approximately contains

the point (xc, αc) which is the center of the current ellipsoid E (⊆ R
N ×R); if not, it

computes a hyperplane which almost separates the point (xc, αc) and the set L(α)

in the following way, where δ > 0 is a constant given by δ = ε/2m.

Case 1: If αc < α, then we output the inequality α ≥ α as a separating hyperplane.

Case 2: If xc 6∈ P , we compute a separating hyperplane for P and xc and output

it.

Case 3: Suppose that αc ≥ α and xc ∈ P . For each k = 1, 2, . . . ,m, we compute a

real number βk satisfying

hk(xc) ≤ βk ≤ hk(xc) + δ

(cf. Theorem 3.1 (i)) and put β =
∑m

k=1 βk.

Case 3-1: If αc ≤ β, then we output the point xc ∈ P and stop. (The point xc

satisfies α ≤ h̃(xc) + ε/2.)

Case 3-2: Suppose that αc > β. For each k = 1, 2, . . . ,m, we compute a vector

pk ∈ R
N satisfying

hk(x) − h(xc) ≤ p>k (x− xc) + δ (∀x ∈ [0, v])

(cf. Theorem 3.1 (i)), and put p =
∑m

k=1 pk. We output the inequality

α− β ≤ p>(x− xc) + 2mδ (= p>(x− xc) +
ε

2
)

as a separating hyperplane.

After computing a separating hyperplane q>y+ q0α ≤ ξ in this way, we compute a

new ellipsoid E′ such that

E′ ⊇ E ∩ {(y, α) | q>y + q0α ≤ ξ}

and the ratio of the volumes of E and E ′ is bounded by a constant less than one,

where the constant is dependent only on n (cf. [13, Lemma 3.2.10]).

We now show that a polynomial number of iterations is sufficient to check the

nonemptyness of L(α). It is noted that the inequality

α− β ≤ p>(x− xc) +
ε

2



February 12, 2009 12:7 WSPC/INSTRUCTION FILE M#approx-dmaa-
final

On Pipage Rounding Algorithm for Submodular Function Maximization 19

obtained in Case 3-2 is satisfied by all (x, α) ∈ L(α), implying that the ellipsoid

E always contains the set L(α) in each iteration. This fact, together with the next

lemma, implies that if the volume of the current ellipsoid E is sufficiently small,

then L(α) is almost empty.

Lemma 4.1. For any α ∈ [0, α∗], the volume of L(α) is at least

α∗

(n+ 1)!

(
α∗ − α

α∗

)n+1

.

Proof. We first consider the case where α = 0. We denote by C0 (⊆ R
N × R) the

convex hull of the set

S = {(y, 0) ∈ R
N × R | y is a vertex of P} ∪ {(x∗, α∗)},

where x∗ ∈ R
N is an optimal solution of (RGP). Then, we have C0 ⊆ L(0) since

L(0) is a convex set and all of the vectors in S are contained in L(0). Since P is a

full-dimensional integral polytope, its volume is at least 1/n!. Hence, the volume of

C0 is at least α∗/(n+ 1)!.

We then consider the general case. For any α ∈ [0, α∗], we define a set C(α) ⊆

R
N × R by

C(α) = C0 ∩ {(y, α) | α ≥ α}.

Then, we have C(0) = C0 and

(the volume of C(α)) = (the volume of C0) ×

(
α∗ − α

α∗

)n+1

≥
α∗

(n+ 1)!

(
α∗ − α

α∗

)n+1

.

Since C(α) ⊆ L(α), we obtain a desired result.

Let

∆ =
α∗

(n+ 1)!

(
ε/4

α∗

)n+1

.

We see from Lemma 4.1 that if the volume of the current ellipsoid E can be less

than ∆, then it holds that α∗ − α < ε/4. This implies that after a polynomial

number of iterations we can find a point xc ∈ P with α ≤ h̃(xc) + ε/2 or discern

α > α∗ − ε/4. Hence, we obtain a desired algorithm for checking the nonemptyness

of L(α).

4.2. Algorithm for integer-valued functions

We then prove Theorem 1.5 (ii). When each hk is integer-valued, we use the ellipsoid

method in a different way; the ellipsoid method is used to find a vector in the set

S∗ = argmax{h̃(x) | x ∈ B}, where B is the convex hull of the set B of bases



February 12, 2009 12:7 WSPC/INSTRUCTION FILE M#approx-dmaa-
final

20 Akiyoshi Shioura

in P (see Section 2.2). We note that there exists an optimal solution x∗ of (RGP)

with x∗ ∈ B since the objective function h̃ is nondecreasing. For the correctness

and polynomial-time termination of the ellipsoid method, it suffices to prove the

following properties (see [13, Theorem 6.4.1]):

(a) S∗ is a rational polytope such that the encoding length of each

facet is bounded by a polynomial in the input size,

(b) a separating hyperplane for the set S∗ and a given point x ∈

[0, v] can be computed in time polynomial in the input size.

For any k = 1, 2, . . . ,m and any p ∈ R
N , the set arg max{hk(x)−p>x | x ∈ [0, v]}

is an integral g-polymatroid by Theorem 2.11. Hence, S∗ is given as the intersection

of m integral g-polymatroids and the polytope B. Therefore, S∗ can be represented

by the inequalities of the form x(X) ≤ γX or x(X) ≥ γX with X ∈ 2N and an

integer γX with 0 ≤ γX ≤ n||v||∞. This fact shows that S∗ is a rational polytope

such that the encoding length of each facet is bounded by a polynomial in n and in

log ||v||∞.

We then explain how to compute a separating hyperplane for S∗ and x. We first

check whether x ∈ B or not. If x 6∈ B, then we compute a separating hyperplane

for B and x, and output it. If x ∈ B, then we compute a subgradient pk ∈ ∂hk(x)

for all k = 1, 2, . . . ,m in polynomial time, as shown in Theorem 3.1 (ii). Since

h̃ =
∑m

k=1 hk, the vector p =
∑m

k=1 pk is a subgradient of h̃ at x. Therefore, we

have

0 ≤ h̃(x∗) − h̃(x) ≤ p>(x∗ − x) (∀x∗ ∈ S∗),

i.e., p>y ≥ p>x is a separating hyperplane for S∗ and x. This concludes the proof

of Theorem 1.5 (ii).

5. Extension of Pipage Rounding Algorithm

We give a proof of Theorem 1.6 by extending the pipage rounding algorithm of

Calinescu et al. [3] to the generalized problem (GP).

We firstly compute an (approximate) optimal solution of the relaxed problem

(RGP) with the objective function h̃(x) =
∑m

k=1 hk(x). The problem (RGP) can be

solved optimally (or approximately) in polynomial time by Theorem 1.5.

Suppose that x∗ ∈ B is an optimal (or an approximate) solution of (RGP). We

consider the restriction of the problem (GP) over the hypercube [bx∗c, bx∗c + 1].

That is, we consider the problem:

Maximize

m∑

k=1

fk(X) subject to X ∈ F , (5.1)

where fk : 2N → R (k = 1, 2, . . . ,m) and F ⊆ 2N are defined by

fk(X) = hk(bx∗c + χX) − hk(bx∗c) (X ∈ 2N),

F = {X ∈ 2N | bx∗c + χX ∈ P}.
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Since the functions fk are nondecreasing M\-concave set functions with fk(∅) = 0

and F is the family of independent sets of a matroid M = (N,F), the problem

(5.1) is of the form (P). We apply the pipage rounding algorithm for (P) to the

problem (5.1), and compute an approximate solution X0 ∈ 2N . Finally, we output

an integral vector x0 = bx∗c + χX0
as an approximate solution of (GP).

We show that the vector x0 obtained in this way is a (1 − 1/e)-approximate

solution of (GP). It follows from Theorem 2.10 (ii) that

hk(bx∗c + y)

= max

{ ∑

X⊆N

λXhk(bx∗c + χX)

∣∣∣∣
∑

X⊆N

λXχX = y,
∑

X⊆N

λX = 1, λX ≥ 0 (X ∈ 2N)

}

= hk(bx∗c)

+ max

{ ∑

X⊆N

λXfk(X)

∣∣∣∣
∑

X⊆N

λXχX = y,
∑

X⊆N

λX = 1, λX ≥ 0 (X ∈ 2N )

}

= hk(bx∗c) + fk(y)

for every y ∈ [0,1]. Hence, it holds that

m∑

k=1

hk(y + bx∗c) =

m∑

k=1

hk(bx∗c) +

m∑

k=1

fk(y) (∀y ∈ [0,1]). (5.2)

This equation shows that the vector d∗ = x∗ − bx∗c ∈ [0,1] is an optimal solution

of (RP) associated with (5.1). Therefore, Theorem 1.4 implies that

m∑

k=1

fk(X0) ≥

(
1 −

1

e

) m∑

k=1

fk(d∗).

Using this inequality and (5.2), we have

m∑

k=1

hk(x0) =
m∑

k=1

fk(X0) +
m∑

k=1

hk(bx∗c)

≥

(
1 −

1

e

) m∑

k=1

fk(d∗) +

(
1 −

1

e

) m∑

k=1

hk(bx∗c)

=

(
1 −

1

e

) m∑

k=1

hk(x∗).

This shows that the vector x0 is a (1 − 1/e)-approximate solution of (GP).
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