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How likely are published findings in the functional neuroimaging literature to be false?

According to a recent mathematical model, the potential for false positives increases with

the flexibility of analysis methods. Functional MRI (fMRI) experiments can be analyzed

using a large number of commonly used tools, with little consensus on how, when, or

whether to apply each one.This situation may lead to substantial variability in analysis out-

comes.Thus, the present study sought to estimate the flexibility of neuroimaging analysis

by submitting a single event-related fMRI experiment to a large number of unique analysis

procedures. Ten analysis steps for which multiple strategies appear in the literature were

identified, and two to four strategies were enumerated for each step. Considering all pos-

sible combinations of these strategies yielded 6,912 unique analysis pipelines. Activation

maps from each pipeline were corrected for multiple comparisons using five thresholding

approaches, yielding 34,560 significance maps. While some outcomes were relatively con-

sistent across pipelines, others showed substantial methods-related variability in activation

strength, location, and extent. Some analysis decisions contributed to this variability more

than others, and different decisions were associated with distinct patterns of variability

across the brain. Qualitative outcomes also varied with analysis parameters: many con-

trasts yielded significant activation under some pipelines but not others. Altogether, these

results reveal considerable flexibility in the analysis of fMRI experiments.This observation,

when combined with mathematical simulations linking analytic flexibility with elevated false

positive rates, suggests that false positive results may be more prevalent than expected

in the literature. This risk of inflated false positive rates may be mitigated by constraining

the flexibility of analytic choices or by abstaining from selective analysis reporting.
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INTRODUCTION

How common are false positive results in the functional neu-

roimaging literature? Among functional MRI (fMRI) studies that

apply statistical correction for multiple comparisons, most use a

nominal false positive rate of 5%. However,Wager et al. (2009) esti-

mate that between 10 and 40% of fMRI activation results are false

positives. Furthermore, recent empirical (Ioannidis, 2005a) and

mathematical modeling studies (Ioannidis, 2005b) argue that the

true incidence of false positives may far exceed the nominal rate in

the broader scientific literature. Indeed, under certain conditions,

research findings are more likely to be false than true (Ioannidis,

2005b).

As described in a mathematical modeling study by Ioannidis

(2005b), analytic flexibility is a key risk factor for inflated rates of

false positive results when combined with selective reporting of

favorable analysis methods. Analytic flexibility is defined here as

the range of analysis outcomes across different acceptable analysis

methods. Thus, if many analysis pipelines are considered valid,

and if different methods yield different results, then analysis flex-

ibility is high. When analytic flexibility is high, investigators may

elect to report methods that yield favorable outcomes and omit

methods that yield null results. This practice is known as selective

analysis reporting. For example, a researcher may notice that

an experiment yields positive results when analyzed using head

motion regression, but not when analyzed without using head

motion regression. The researcher may then choose to describe

the former analysis but not the latter when reporting the results

of the experiment. Indeed, investigators in some research fields

appear to pursue this strategy. Reviews of randomized clinical tri-

als show that many studies change outcome measures and other

methodological parameters between study design and publication.

Critically, these changes tend to make results appear more signif-

icant than they would have been under the original analysis plan

(Chan et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009).

A recent survey of fMRI methods shows that methodological

decisions are highly variable from study to study (Carp, 2012).

Across 241 published fMRI studies, authors reported using 32

unique software packages (e.g., SPM 2, FSL 3.3) and 207 unique

combinations of design and analysis steps (e.g., spatial normal-

ization, head motion regression). Parameter settings also showed

considerable variability within each analysis step. For example,

spatial smoothing kernels ranged from 3 to 12 mm full width

at half maximum, and high-pass filter cutoffs ranged from 0.33

to 750 s. Because many studies did not describe critical analysis

decisions, this survey likely understated the true diversity of

experimental methods in the fMRI literature. In other words,
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Table 1 | Pre-processing parameters.

Despiking

Despiking using AFNI No despiking

Slice-timing correction

Slice-timing correction No slice-timing correction

Spatial normalization

Normalization of

functional images to

the SPM EPI template

Normalization of

anatomical images to

the SPM T1 template

Normalization with

segmentation using

unified normalization

Spatial smoothing

Smoothing with kernel

of 4 mm FWHM

Smoothing with kernel

of 8 mm FWHM

Smoothing with kernel

of 12 mm FWHM

fMRI researchers may choose from a wide array of acceptable

methodological strategies.

Critically, methodological studies suggest that this variability

in analytic strategies may translate into variability in research out-

comes. Countless studies show that individual methodological

decisions can have important effects on estimates of fMRI acti-

vation. For example, temporal filtering (Skudlarski et al., 1999),

autocorrelation correction (Purdon and Weisskoff, 1998; Wool-

rich et al., 2001), global signal regression (Murphy et al., 2009;

Weissenbacher et al., 2009), and head motion regression (Friston

et al., 1996; Lund et al., 2005) can profoundly influence analysis

outcomes. Activation estimates also vary with the order of analysis

steps (Weissenbacher et al., 2009; Carp, 2011) and across analysis

software packages (Smith et al., 2005; Poline et al., 2006). Further,

combinations of analysis decisions may have interactive effects on

research outcomes (Churchill et al., 2012a,b).

However, while many studies have examined the effects of

individual analysis procedures or combinations of procedures on

research outcomes, most of these studies have focused on opti-

mizing the selection of analytic pipelines rather than quantifying

variability across pipelines. For example, Skudlarski et al. (1999)

investigated variations between analysis pipelines in receiver oper-

ating characteristic (ROC) measures; Della-Maggiore et al. (2002)

assessed the effects of differing pipelines on statistical power; and

Strother and colleagues (Strother et al., 2004; Churchill et al.,

2012a,b) evaluated pipelines using reproducibility and prediction

metrics. However, while these studies offer valuable insights into

which procedures should be applied and which parameters should

be used, they did not explicitly assess the variability of research out-

comes across analysis pipelines. In contrast, Hopfinger et al. (2000)

did measure variability in activation amplitude across 36 distinct

pipelines. But this study examined just four analysis steps, rather

than the complete pre-processing and modeling pipelines used in

most current fMRI studies, and focused on regional rather than

whole-brain activation results. Altogether, while a wealth of previ-

ous studies have investigated the question of pipeline optimization,

relatively few have considered the question of pipeline variability.

Thus, expanding on previous studies of analytic flexibility, the

present study estimated the variability of fMRI methods across

10 pre-processing and model estimation steps. Between two and

four options were considered for each step (see Tables 1 and 2).

Table 2 | Model estimation parameters.

Normalization-modeling order

Normalize before modeling Model before normalization

High-pass filtering

High-pass filtering

using a cutoff of 128 s

No high-pass filtering

Temporal autocorrelation correction

AR(1) modeling No correction for temporal

autocorrelation

Run concatenation

Runs concatenated

before model estimation

No run concatenation

Model basis set

Hemodynamic

response function

Finite impulse response1,

time points 3–4

versus baseline

Finite impulse response1,

time by condition

interaction

Head motion regression

Six regressors2 Twelve

regressors3

Twenty-four

regressors4

No motion

regression

1Eight basis functions.

2Raw motion parameters.

3Raw and time-shifted motion parameters.

4Raw, time-shifted, squared, and time-shifted squared motion parameters.

Enumerating all combinations of each of the steps yielded a total

of 6,912 unique analysis pipelines. Activation estimates from each

pipeline were then statistically thresholded and corrected for mul-

tiple comparisons using five commonly used techniques, yielding

34,560 unique thresholded activation maps. By examining a range

of analysis pipelines orders of magnitude greater than those con-

sidered in previous studies, the present investigation yields the

most comprehensive picture of methodological flexibility in the

fMRI literature available to date.

MATERIALS AND METHODS

DATA ACQUISITION

The present study re-analyzed a previously published fMRI study

of response inhibition (Aron et al., 2007). Data were drawn from

the Open fMRI database1 (Accession Number: ds000008; Task:

001). Fifteen subjects completed three runs of a standard event-

related stop-signal task and three runs of a conditional stop-signal

task. Only data from the standard stop-signal task were consid-

ered here. The task included three trial types. On go trials, subjects

were instructed to make a motor response; on successful stop tri-

als, subjects were instructed to withhold a response and were able

to do so; and on failed stop trials, subjects were instructed to with-

hold a response but failed to do so. Functional data were acquired

using a 3 T Siemens Allegra MRI scanner (TR: 2 s; TE: 30 ms; flip

angle: 90˚; voxel dimensions: 3.125 mm × 3.125 mm × 4.0 mm).

Each of the three functional scanning runs included 176 images.

High-resolution T1 MPRAGE images were also acquired for use

1http://www.openfmri.org
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in spatial normalization (TR: 2.3 s; TE: 2.1 ms; voxel dimensions:

1.0 mm × 1.33 mm × 1.33 mm). Complete imaging and behav-

ioral data were only available for 13 of the subjects; the remaining

two subjects were excluded from analysis. Further details on sam-

ple characteristics, task specifications, and imaging acquisition are

given in the original report of these data (Aron et al., 2007).

PIPELINE GENERATION

To generate a large collection of analysis pipelines, five pre-

processing decisions and five modeling decisions for which mul-

tiple strategies appear in the research literature were selected.

Pre-processing decisions, detailed in Table 1, included despiking

(despiking or no despiking), slice-timing correction (slice-timing

correction or no correction), spatial normalization (normalization

to a functional template, to an anatomical template, or using seg-

mentation of anatomical images), and spatial smoothing (FWHM

4, 8, or 12 mm). Modeling decisions, detailed in Table 2, included

the order of normalization and model estimation (images were

normalized before or after model estimation), high-pass filtering

(128 s cutoff or no filtering), autocorrelation correction [AR(1)

correction or no correction], run concatenation (run concatena-

tion or no run concatenation), basis set [canonical hemodynamic

response function, finite impulse response (FIR) with the contrast

of time points 3 and 4 versus fixation, and FIR with the interac-

tion of time point by condition], and head motion regression (6,

12, or 24 motion parameters, or no motion regression). Taking

all combinations of these options yielded 6,912 unique analysis

pipelines.

Despiking was implemented using the 3dDespike tool in AFNI

version 2011_05_26_1456. All other steps were implemented using

SPM 8 release 4010 (Wellcome Trust Centre for Neuroimaging,

UCL, UK) running under Matlab 2011b (The Mathworks, Inc.,

Natick, MA, USA).

Data from each subject were submitted to each analysis

pipeline. Each single-subject model included separate regressors

for go trials, successful stop trials, and failed stop trials. Single-

subject models were combined using random-effects analysis. Test

statistics (i.e., t and F values) were converted to Z -values after

contrast estimation using a transformation adapted from the ttoz

and ftoz utilities in FSL version 4.1.8. All further analysis was based

on random-effects models of the contrast of successful stop trials

versus go trials.

To assess the variability in activation strength across models,

the range of Z -values (referred to hereafter as the analytic range)

was computed for each voxel and for each contrast. In addition,

the range of activation values associated with each analysis step

(despiking, slice-timing correction, etc.) was estimated by com-

puting the mean absolute difference of Z -values over all pairs of

parameter options and over all settings of other analysis para-

meters. For example, to estimate the analytic range attributable

to changes in spatial smoothing kernel, the absolute value of the

differences between (a) 4 and 8 mm FWHM, (b) 4 and 12 mm

FWHM, and (c) 8 and 12 mm FWHM were averaged over all com-

binations of all other analysis parameters for each voxel and each

contrast. Because the analytic range metric used here is based on

variability in Z -values, this metric is sensitive to differences in both

parameter estimates and error variance across pipelines.

Table 3 | Statistical thresholding parameters.

Uncorrected

single-voxel

threshold

Corrected

single-voxel

threshold

Cluster

size

threshold

Monte Carlo @ p < 0.01 p < 0.01 n/a Determined by

simulation

Monte Carlo @ p < 0.001 p < 0.001 n/a Determined by

simulation

Monte Carlo @ p < 0.0001 p < 0.0001 n/a Determined by

simulation

False discovery rate n/a p < 0.05 n/a

Gaussian random field

theory

n/a p < 0.05 n/a

Many neuroimaging studies report the locations of peak acti-

vation for contrasts of interest. Indeed, spatial precision is often

advertised as one of the chief virtues of MRI as compared with

other imaging techniques. Thus, the variability of peak activa-

tion coordinates across analysis pipelines was assessed as well.

For each analysis pipeline and each contrast, the coordinates of

the peak activation from each hemisphere were extracted. The

distribution of peak coordinates was then plotted to assess the

spatial dispersion of peak activation locations. To assess vari-

ability in localization within circumscribed regions of interest

(ROIs), coordinates of peak activation were also extracted for each

analysis pipeline within each of two ROIs: a right inferior frontal

gyrus region (comprising the pars triangularis and pars opercularis

regions of the right inferior frontal gyrus) and a right temporal

cortex region (comprising the right superior and middle tempo-

ral gyri). All ROIs were defined using the Automatic Anatomical

Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

The 6,912 random-effects statistical maps were also thresholded

and corrected for multiple comparisons according to five strate-

gies (Table 3), yielding 34,560 thresholded maps for each contrast.

Activation maps were thresholded using three versions of a Monte

Carlo simulation procedure, as implemented in the Resting-State

fMRI Data Analysis Toolkit (REST; Song et al., 2011)2. These three

thresholding approaches used uncorrected single-voxel thresholds

of p < 0.01, p < 0.001, or p < 0.0001. Cluster size thresholds were

then selected to set the cluster-wise false positive rate at 5% for

each approach. Statistical maps were also thresholded using the

false discovery rate (FDR; Genovese et al., 2002) and Gaussian ran-

dom field theory (RFT; Nichols and Hayasaka, 2003) correction

procedures, as implemented in SPM 8. Both the FDR and RFT

procedures used a corrected single-voxel threshold of p < 0.05;

neither of these methods employed cluster size thresholds.

It is important to note that these thresholding methods take

different approaches to the problem of multiple comparisons.

The Monte Carlo and RFT corrections used here attempt to con-

trol the family wise error at 5%. Using these corrections, 5% of

activation maps should contain at least one false positive acti-

vation. In contrast, the FDR correction attempts to control the

2http://www.restfmri.net
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proportion of false positive voxels, such that 5% of significantly

activated voxels should be false positives in a given activation map.

Further, while the RFT and FDR corrections control the false

positive rate at the level of individual voxels, the Monte Carlo

correction controls the false positive rate at the level of clusters.

Because these thresholding strategies approach the problem of

multiple comparisons in different ways, it was expected that dif-

ferent strategies would yield different results. However, all three

strategies appear to be used interchangeably in published stud-

ies, with many reports describing their chosen approach simply as

“correcting for multiple comparisons.”

All code for generating analysis pipelines, calculating analytic

variability, statistical thresholding, and plotting figures is freely

available online3.

RESULTS

ANALYTIC VARIABILITY OF ACTIVATION STRENGTH

Estimates of activation strength showed substantial variability

across analysis pipelines. Analytic range values (i.e., the range

of Z -values across pipelines) for the contrast of successful stop

trials versus go trials are displayed in Figure 1. Range values var-

ied from 1.14 in the right superior frontal gyrus to 8.83 in the

right superior temporal gyrus, with a median analytic range value

of 3.44. Analytic range also varied with mean activation across

analysis pipelines. Mean activation and analytic range for the

successful stop versus go contrast were highly correlated across

voxels [r(44,614) = 0.87, p < 0.001], such that voxels with the

strongest activation also showed the greatest variability across

analysis pipelines.

While each analysis step contributed to variability in activa-

tion strength across pipelines, different steps were associated with

distinct patterns of variability across brain regions. For the con-

trast of successful stop trials versus go trials, the analytic range

values for choices of smoothing kernel (Figure 2) and model

basis set (Figure 3) were greatest in regions of maximal mean

activation, including superior temporal gyrus and precuneus. In

contrast, the effects of despiking (Figure 2) and head motion

regression (Figure 3) were generally greatest toward the edges of

the brain, particularly in ventral frontal regions. Other steps, such

as slice-timing correction and spatial normalization, exerted idio-

syncratic patterns of focal effects in a variety of regions across the

brain (Figure 2), whereas autocorrelation correction was associ-

ated with diffuse patterns of change across the brain and ventricles

(Figure 3).

Finally, range maps were moderately correlated across analysis

steps. The mean absolute correlation across voxels between range

maps for all pairs of analysis steps was r = 0.49, with an average

explained variance of R2
= 0.26. In other words, while different

analysis steps exerted spatially correlated effects on analysis out-

comes across the brain, correlations among step-wise variability

maps explained a minority of the variance associated with other

analysis steps.

Thus, estimates of activation strength showed considerable

variability across analytic pipelines; voxels that showed highly

significant activations under some pipelines yielded null results

under others. Pipeline-related variability was strongly correlated

3https://github.com/jmcarp/fmri-pipe

with average activation, such that activation estimates were most

variable in regions showing the greatest overall activation. Finally,

different analysis steps showed correlated but distinct patterns of

influence across the brain.

ANALYTIC VARIABILITY OF ACTIVATION LOCATION

Activation localization also varied widely across analysis pipelines.

To describe the spatial dispersion of peak activation locations,

the coordinates of the most significant activation were extracted

for each hemisphere and for each pipeline. As seen in Figure 4,

the results showed a considerable degree of consistency across

pipelines: many pipelines yielded maximal activation in the supe-

rior temporal gyrus, the supramarginal gyrus, and the right infe-

rior frontal gyrus. Within these regions, however, peak locations

were widely dispersed, with activations extending along the length

of the sylvian fissure. And many pipelines yielded peak locations

outside these regions. In the left hemisphere, 672 unique peak loca-

tions were observed, with standard deviations of 12.8, 38.5, and

21.8 mm along the x-, y-, and z-axes, respectively. Activation peaks

extended along the anterior-posterior axis from the middle frontal

gyrus (y = 63.0) to the middle occipital gyrus (y = −108.875);

along the lateral-medial axis from the middle temporal gyrus

(x = −71.75) to the middle occipital gyrus (x = −18.625); and

along the inferior-superior axis from the posterior cerebellum

(z = −50) to the postcentral gyrus (z = 80.0). In the right hemi-

sphere, 534 unique peaks were observed, with standard deviations

of 12.6, 30.4, and 16.4 mm. Peaks ranged along the anterior-

posterior axis from the superior frontal gyrus (y = 56.75) to the

middle occipital gyrus (y = −108.875); along the medial-lateral

axis from the posterior cerebellum (x = −15.5) to the superior

temporal gyrus (x = 72.0); and along the inferior-superior axis

from the posterior cerebellum (z = −50.0) to the postcentral gyrus

(z = 75.0). In all, peaks were identified in 69 of the 128 regions

defined by the AAL atlas.

The foregoing analysis investigated pipeline variability in the

localization of left- and right hemisphere activation peaks. How-

ever, investigators may be more interested in the localization

of peak activation within specific brain regions rather than an

entire cerebral hemisphere. To explore pipeline variability within

circumscribed ROIs, peak activation coordinates were extracted

for each pipeline within ROIs comprising the right inferior frontal

gyrus and the right temporal cortex. This analysis identified 223

unique activation peaks in the right inferior frontal gyrus and

197 unique peaks in the right temporal cortex. As displayed in

Figure 5, activation peaks were distributed widely across the

right inferior frontal gyrus. Peaks in the right temporal cortex

were relatively concentrated toward the center of the region, but

nevertheless extended to span nearly the entire anterior-posterior

and inferior-superior axes of the mask.

In sum, the localization of activation peaks also revealed

both consistency and variability across analysis pipelines. While

many pipelines yielded peak hemispheric activation locations in

a network of regions thought to be related to response inhibi-

tion (Aron et al., 2004), peak locations were scattered widely

throughout these regions, as well as additional regions throughout

much of the brain. Analysis of peak activation distribution within

inferior frontal and temporal regions also revealed considerable

variability in localization across pipelines.
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FIGURE 1 | Variation in activation strength across analysis pipelines.

Mean activation denotes the average Z -value for each voxel across all

analysis pipelines; analysis range denotes the range of Z -values across all

pipelines. Images are presented in neurological orientation, with the left

hemisphere displayed on the left. Note that color scales differ across

panels.

FIGURE 2 | Variation in activation strength attributable to pre-processing choices. Images are presented in neurological orientation, with the left

hemisphere displayed on the left. Note that color scales differ across panels.
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FIGURE 3 | Variation in activation strength attributable to model estimation choices. Images are presented in neurological orientation, with the left

hemisphere displayed on the left. Note that color scales differ across panels.

ANALYTIC VARIABILITY OF ACTIVATION SIGNIFICANCE

The previous analyses revealed substantial quantitative variation

in analysis outcomes (i.e., activation strength and location) across

pipelines. Analysis of statistically thresholded images revealed that

qualitative analysis outcomes (i.e., activation significance) varied

with respect to methodological decisions as well. The 6,912 statisti-

cal maps were thresholded and corrected for multiple comparisons

using five strategies: three variants of a Monte Carlo procedure,

as well as FDR and Gaussian RFT corrections (Table 3). These

parameters yielded 34,560 unique thresholded maps for each

contrast.

For the successful stop versus go contrast, the proportion of

significantly activated voxels (excluding non-brain voxels) var-

ied from 0 to 26.3%, with a median of 4.6%. Monte Carlo
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FIGURE 4 | Spatial distribution of peak activation locations across

analysis pipelines across the cerebral hemispheres. Shaded spheres

indicate the locations of activation peaks. Sphere colors denote the base-10

logarithm of the number of pipelines yielding maximal activation for that

location; colors range from blue, indicating a single pipeline, to red, indicating

526 pipelines.

FIGURE 5 | Spatial distribution of peak activation locations across

analysis within anatomically defined regions of interest (ROIs). Red

contour lines indicate the boundaries of the ROIs. All images represent lateral

views of the right hemisphere. Shaded spheres indicate the locations of

activation peaks. Sphere colors denote the base-10 logarithm of the number

of pipelines yielding maximal activation for that location. For the right inferior

frontal gyrus ROI (left panel), colors range from blue, indicating a single

pipeline, to red, indicating 639 pipelines. For the right temporal cortex ROI

(right panel), colors range from blue, indicating a single pipeline, to red,

indicating 844 pipelines.

simulation with a single-voxel threshold of p < 0.01 proved to

be the most liberal procedure, with a median of 12.8% of

brain voxels activated. Monte Carlo simulation with single-

voxel thresholds of p < 0.001 and p < 0.0001 yielded median

activation proportions of 5.4 and 1.9%, respectively. Using FDR

correction yielded a median activation proportion of 10.8%.

RFT correction was the most conservative approach, with a

median of 0.16% of brain voxels activated. Critically, all five

thresholding methods aimed to control the whole-brain false

positive rate at 5%. Thus, these results suggest that some

thresholding approaches are far more conservative than oth-

ers, even when targeting the same corrected false positive

rate – a point that has been raised in previous studies (e.g.,

Lieberman and Cunningham, 2009) but that merits being repeated

here.

To characterize the likelihood of significant activation across

all 34,560 thresholded maps, the proportion of pipelines yielding

significant activation was computed for each voxel (Figure 6). This
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FIGURE 6 | Activation significance across analysis pipelines using

three variants of a Monte Carlo thresholding procedure. Significance

proportion denotes the fraction of thresholded maps yielding significant

activation for each voxel. Discordance index denotes the level of

disagreement across threshold maps. Images are presented in

neurological orientation, with the left hemisphere displayed on the left.

Note that color scales range from 0 to 1 for significance proportion and

from 0 to 0.5 for discordance index.

index did not reach 1 (or 100%) for any voxel for the successful

stop versus go contrast. In other words, no voxels showed sig-

nificant activation under all analysis and thresholding pipelines.

However, some voxels consistently showed significant activation

over nearly every analytic approach. The peak significance propor-

tion in the right superior temporal gyrus reached 0.93. A subset of

voxels in the right inferior frontal gyrus and right middle occip-

ital gyrus also showed significant activation across a majority of

pipelines, with peak significance proportions of 0.77 and 0.83,

respectively. In contrast, many voxels deep within the arcuate fas-

ciculus yielded significance proportions of zero: these voxels did

not show significant activation under any combination of ana-

lytic and thresholding strategies. Somewhat paradoxically, voxels

showing relatively consistent activation (i.e., high significance

proportion indices) also exhibited relatively strong quantitative

variability across analysis pipelines (i.e., high analytic range values;

R2
= 0.64); analytic range values in the voxels of peak significance

proportion in the right superior temporal gyrus, the right inferior

frontal gyrus, and the right middle occipital gyrus were 8.13, 6.57,

and 7.05 Z -units, respectively. Finally, nearly all voxels yielded

non-zero significance proportions: 90.3% of brain voxels showed

significant activation for at least some thresholded maps.

Thus, some voxels were significantly activated for nearly all

analysis pipelines; others did not yield significant activation

under any pipelines. However, some voxels yielded less consis-

tent results across pipelines. This disagreement about qualitative
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FIGURE 7 | Activation significance across analysis pipelines using false

discovery rate and Gaussian random field theory error corrections.

Significance proportion denotes the fraction of thresholded maps yielding

significant activation for each voxel. Discordance index denotes the level of

disagreement across threshold maps. Images are presented in neurological

orientation, with the left hemisphere displayed on the left. Note that color

scales range from 0 to 1 for significance proportion and from 0 to 0.5 for

discordance index.

analysis outcomes was assessed at each voxel using the discordance

index:

discordance = minimum(significance proportion, 1 – signifi-

cance proportion).

This index ranged from 0 (when either 0 or 100% of analysis

pipelines yielded significant activation) to 0.5 (when exactly 50%

of pipelines yielded significant activation). Discordance indices

were high, often reaching the theoretical maximum value of 0.5,

in voxels surrounding regions of peak significance proportions

(Figures 6 and 7). For example, voxels bordering the bilateral

superior temporal gyrus and the right inferior frontal gyrus

showed consistently high disagreement across analysis pipelines.

These discordance rings around activation foci likely reflect

the effects of differing spatial smoothing kernels on activation

extent. Additional regions of disagreement included the pre-

cuneus (discordance index = 0.50), anterior cingulate cortex (dis-

cordance index = 0.44), and middle cingulate gyrus (discordance

index = 0.30).

Altogether, estimates of the spatial extent of significant activa-

tion and the proportion of thresholded maps showing significant

activation revealed substantial flexibility across methodological

strategies. Furthermore, regions showing strong disagreement

across pipelines were observed throughout the brain, both in the

neighborhood of peak significance proportions and in additional

isolated clusters.

DISCUSSION

According to a mathematical model of bias in scientific research

(Ioannidis, 2005b), the prevalence of false positive results in pub-

lished reports increases with the flexibility of research outcomes.

Research outcomes are flexible to the extent that (a) researchers

have access to a broad range of experimental design and data ana-

lytic strategies and (b) different research strategies yield different

research outcomes. A recent survey of methods used in the fMRI

literature shows that research strategies are highly flexible across

published studies, with nearly as many unique methodological

pipelines as studies in the sample (Carp, 2012). However, the extent

to which flexible research strategies translate into flexible research

outcomes remains unclear. Thus, the present study sought to esti-

mate the flexibility of research outcomes across a wide range of

complete analysis pipelines applied to a single fMRI experiment.

The present results revealed both consistency and variability

across analysis pipelines. Some results were highly stable across

pipelines. For example, voxels in the right superior temporal gyrus,

the right inferior frontal gyrus, and the right middle occipital

gyrus showed significant activation for the successful stop versus

go contrast for at least 77% of the 34,560 thresholded maps consid-

ered here. Thus, although quantitative responses (i.e., activation
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strength and location) in these regions proved variable across

pipelines, their qualitative responses (i.e., activation significance)

were quite stable. In other words, although we can be very confi-

dent that the level of stop-related activation in right inferior frontal

gyrus is greater than zero, there is much greater uncertainty about

the strength of this activation or its precise location within the infe-

rior frontal gyrus. These observations are consistent with the view

that the right inferior frontal gyrus is specialized for inhibitory

control (e.g., Aron et al., 2004). These results also largely uphold

the conclusions of the original stop-signal experiment by Aron

and colleagues (2007).

However, results also varied considerably from one pipeline

to another. Estimates of activation strength were highly variable

across analytic pipelines: in regions of peak overall activation, sig-

nificance estimates varied by over 8 Z -units. The localization of

peak activation also proved to be strongly pipeline-dependent.

Hundreds of unique peak coordinates were observed for each

contrast, with peak locations scattered throughout much of the

brain. For example, the contrast of failed stop trials versus base-

line yielded activation peaks in 83 of the 128 regions defined by

the AAL atlas. Finally, estimates of statistical significance showed

substantial variability across pipelines as well. For example, for the

successful stop versus go contrast, the proportion of activated brain

voxels ranged across pipelines from 0 to 26.3%. While some vox-

els were consistently activated, others showed strong disagreement

across analysis pipelines.

The flexibility of research outcomes illustrated here, along with

mathematical models linking flexible research methods with ele-

vated false positive rates (Ioannidis, 2005b), suggests that the risk

of false positive results in fMRI research may be greater than

expected. Nearly every voxel in the brain showed significant acti-

vation under at least one analysis pipeline. In other words, a

sufficiently persistent researcher determined to find significant

activation in virtually any brain region is quite likely to succeed.

By the same token, no voxels were significantly activated across all

pipelines. Thus, a researcher who hopes not to find any activation

in a particular region (e.g., to rebut a competing hypothesis) can

surely find a methodological strategy that will yield the desired null

result. If investigators apply several analysis pipelines to an exper-

iment and only report the analyses that support their hypotheses,

then the prevalence of false positive results in the literature may

far exceed the nominal rate.

It is important to note, however, that analytic flexibility only

translates into elevated false positive rates when combined with

selective analysis reporting. In other words, if fMRI researchers

reported the results of all analysis pipelines used in their studies,

then the flexibility documented here would not be problematic. To

the author’s knowledge, there is no evidence that fMRI researchers

actually engage in selective analysis reporting. But researchers in

other fields do appear to pursue this strategy. Surveys comparing

research protocols to published articles show that a majority of

randomized clinical trials add, omit, or replace study outcome

variables – and, critically, that investigators are more likely to

report significant outcomes than non-significant outcomes (Chan

et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009). Similarly,

studies of putative brain volume abnormalities in patients with

mental health disorders report far more positive results than would

be expected given their power to detect such effects, likely reflecting

the selective reporting of favorable analysis outcomes (Ioannidis,

2011). Thus, if fMRI researchers behave like researchers in other

fields, then the methodological flexibility illustrated here would

indeed imply an elevated rate of false positive results in the fMRI

literature.

Critically, selective analysis reporting may occur without the

intention or even the awareness of the investigator. For example,

if the results of a new experiment do not concord with prior stud-

ies, researchers may adjust analysis parameters until the “correct”

results are observed. Researchers may also elect not to describe the

results of all analysis pipelines due to space limitations in journal

articles or to preserve the narrative flow of a manuscript. Finally,

researchers may simply not be aware of the risks posed by selective

analysis reporting. Thus, although the practice of selective analysis

reporting is deeply problematic, it need not reflect any malice on

the part of the researchers who engage in it.

It is also important to note that bias related to analytic flexibil-

ity and selective analysis reporting is not unique to fMRI research.

Indeed, previous studies have argued that selective analysis report-

ing can lead to false positive results in studies of randomized

controlled trials (Chan et al., 2004a,b), brain volume abnormali-

ties in psychiatric disorders (Ioannidis, 2011), and in the broader

research literature (Ioannidis, 2005b). Selective analysis reporting

can contaminate research results in any empirical field that allows

for multiple analytic approaches – in other words, for nearly all

empirical studies.

LIMITATIONS

Although the present study revealed a wide range of research

outcomes for a single experiment, the approach used here likely

underestimated the true flexibility of fMRI analysis methods. The

present study considered two to four parameters for each analy-

sis step, but many more parameters appear in the literature. For

example, while this study considered three normalization tar-

gets, a methodological survey of recent fMRI studies (Carp, 2012)

revealed a range of at least ten unique normalization targets. Sim-

ilarly, while high-pass filtering cutoffs ranged from 0.33 to 750 s in

this methodological survey, the present study only considered two

filtering parameters: a cutoff of 128 s or no temporal filtering.

In addition, a number of key analysis steps were not consid-

ered in the present study. For example, the present approach did

not investigate the effects of different strategies for coregistration

between structural and functional images, for brain extraction

and segmentation, for signal normalization, or for physiological

noise reduction – e.g., as implemented in RETROICOR (Glover

et al., 2000) or PHYCAA (Churchill et al., 2012c). Similarly, this

study did not consider tools for the correction or deletion of noisy

slices, brain volumes, or subjects, which may exert strong effects

on analysis outcomes (Tohka et al., 2008; Power et al., 2012).

Furthermore, this study relied largely on analysis steps imple-

mented in the SPM 8 software library. However, fMRI researchers

use several versions of SPM and a wide variety of different software

packages, with 32 unique libraries reported across a recent survey

of fMRI studies (Carp, 2012). Studies may also combine analysis

routines from multiple libraries, further increasing the flexibility of

methodological approaches in the fMRI literature. This flexibility
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across software options may also contribute to analytic flexibil-

ity. Different libraries may offer different strategies for the same

analysis step. Further, even if multiple packages attempt to imple-

ment the same algorithms, ambiguities inherent in the translation

from natural and mathematical language to computer programs

may nonetheless result in differences between implementations

(Ince et al., 2012). Indeed, informal comparisons suggest that

choices of software package can have substantial effects on analysis

outcomes (Poline et al., 2006).

The present study also relied on a relatively small sample size

of 13 subjects. This sample size may have rendered many of the

pipelines underpowered to detect true effects, leading to high rates

of false negative results. However, the median sample size of single-

group fMRI studies is approximately 15 subjects (Carp, 2012).

Thus, while the present study is likely to be underpowered, it is

also about as underpowered as the typical study of its kind. Thus,

analytic flexibility in this sample is likely to be broadly represen-

tative of typical fMRI studies. Nevertheless, future studies should

repeat this analysis using larger sample sizes to determine how or

whether estimates of methods variability change with statistical

power.

In addition, the extent to which the analysis pipelines investi-

gated in this experiment resemble the true distribution of pipelines

in the research literature is unclear. To the extent that the distri-

bution of pipelines considered here differs from the distribution

in the research literature, the present study may either underes-

timate or overestimate the true flexibility of analysis outcomes.

For example, one third of the pipelines considered here estimated

parameters for spatial normalization using the unified segmen-

tation approach of SPM 8. But perhaps fewer or more than one

third of published fMRI reports appear to use this approach. Anal-

ogously, all of the pipelines considered here included some form of

correction for multiple comparisons. But a substantial fraction of

published studies appear not to use such corrections (Carp, 2012).

Thus, the pipelines examined in this study may not be fully rep-

resentative of the pipelines used in published reports. However,

because many published studies do not explicitly report which

analysis steps and parameters were used (Carp, 2012), it is chal-

lenging to determine the true distribution of analysis pipelines in

the literature. Future studies should continue to investigate the

prevalence of different analysis pipelines and the effects of these

pipelines on research outcomes.

Finally, it is important to note that the present study did not

address the issue of which analysis pipelines should be used.

Instead, this study merely sought to estimate the flexibility of

research results across pipelines. As described in the Introduc-

tion, many previous studies have considered the problem of

pipeline optimization (e.g., Strother et al., 2004; Churchill et al.,

2012a,b).

RECOMMENDATIONS

What steps can investigators take to mitigate the risk of false pos-

itive results posed by flexible analysis methods in fMRI studies?

As discussed above, the true range of fMRI methods cannot be

estimated unless research reports describe analysis pipelines in

detail. Thus, researchers should thoroughly describe the analysis

methods chosen, as well as the reasoning behind those choices.

Unfortunately, many published reports do not explicitly describe

critical design and analysis decisions (Carp, 2012). Standardized

reporting guidelines may help fMRI researchers to communicate

methodological choices in greater detail. Such guidelines, which

have been widely adopted by academic journals that publish stud-

ies of randomized controlled trials (Moher et al., 2001), diagnostic

accuracy (Bossuyt et al., 2003), and observational epidemiology

(von Elm et al., 2007), can significantly improve the quality of

methods reporting (Plint et al., 2006). Although no consensus

guidelines for the reporting of fMRI methods exist at present, the

reporting recommendations by Poldrack et al. (2008) provide a

useful starting point.

Flexibility in research methods may be particularly problem-

atic when it is undisclosed (Simmons et al., 2011). For example, a

hypothetical group of investigators might analyze an experiment

using a range of methodological strategies and discover that only

a few strategies yield positive results. If these investigators only

report the pipelines that favor their hypotheses, then readers may

not realize that the results of the experiment depend on (per-

haps arbitrary) methodological decisions. Thus, it is critical that

fMRI researchers report all analysis pipelines used in the course

of data analysis, whether or not those pipelines yielded results

favorable to the researchers’ hypotheses. For example, if a research

team initially used a canonical hemodynamic response function to

model activation time series but later opted to use a finite impulse

response basis set instead, the results of both strategies should be

described in full. Similarly, if researchers discover that a contrast

of interest yields significant activation using Monte Carlo correc-

tion but not using FDR correction, both sets of activation maps

should be reported. If investigators only describe a single analy-

sis pipeline, they should also certify that no additional pipelines

were used. Finally, reviewers can work to mitigate selective analysis

reporting as well. Indeed, Simmons and colleagues (2011) argue

that “reviewers should require authors to demonstrate that their

results do not hinge on arbitrary analytic decisions.” If authors

fail to indicate that they have fully described all analysis pipelines,

reviewers should require them to do so; if reviewers suspect that

critical results may depend on arbitrary methodological decisions,

they may ask authors to defend their choices or to report the results

of equally valid decisions.

Sharing data and analysis code may also help to unmask hid-

den flexibility in the analysis of fMRI experiments. If raw data

for an experiment are freely available, then interested readers may

reanalyze experiments on their own, searching out the analytic

boundary conditions of reported results. Several promising data

sharing initiatives focusing on resting-state imaging (the 1000

Functional Connectomes Project)4, structural imaging (the Open

Access Series of Imaging Studies database)5, and task-based par-

adigms (the Open fMRI database)6 are currently underway. Data

from the present study were drawn from the Open fMRI database;

analysis code is freely available online (see text footnote 3).

False positive results driven by analytic flexibility may also

be mitigated by curtailing the range of available methodological

4http://fcon_1000.projects.nitrc.org
5http://www.oasis-brains.org
6http://openfmri.org
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strategies. For example, investigators may develop standardized

analysis pipelines that they apply to all of their experiments.

Researchers may also simply adhere to the default options in

their software packages of choice. However, while both of these

approaches have the potential to reduce analytic flexibility and

selective analysis reporting, they may not yield optimal analy-

sis pipelines. Continued methodological research can also shrink

the space of analytic approaches. For example, Sladky et al.

(2011) argue that studies should perform slice-timing correc-

tion (but see also Poldrack et al., 2011, pp. 41–42); Purdon and

Weisskoff (1998) suggest that studies should correct for tempo-

ral autocorrelation; and Lund et al. (2005) argue that studies

should include head motion regression. Following these rec-

ommendations alone would reduce the number of pipelines in

the present study from 6,912 to 1,296; additional research on

optimal procedures and parameters may further reduce experi-

menter degrees of freedom. Pipeline optimization tools developed

by Strother and colleagues can also be used to reduce analysis

flexibility (e.g., Strother et al., 2004; Churchill et al., 2012a,b).

These tools automatically identify the analysis pipelines that max-

imize reproducibility and prediction metrics estimated from the

data on a subject-by-subject basis. Thus, using these methods

reduces the risk that investigators might use a range of analy-

sis pipelines and selectively report those that yield favorable

results.

While these recommendations have the potential to reduce bias

due to analytic flexibility and selective analysis reporting, they do

not address other sources of error and bias. For example, while

reporting the results of all analysis pipelines would (by definition)

eliminate selective analysis reporting, it does not guarantee that

any of the reported pipelines is optimal. As noted above, con-

tinued research on pipeline optimization may help to resolve this

problem. In addition, none of these recommendations can address

the problems of intentional misrepresentation or fraud. The vol-

untary guidelines described here cannot prevent researchers from

covertly engaging in selective analysis reporting and claiming not

to have done so – or from manipulating or fabricating results.

Fortunately, though, relatively few scientists appear to engage in

outright fraud (John et al., 2012).

CONCLUSION

The present study reveals both consistency and flexibility in the

analysis of fMRI experiments. While some research outcomes

were relatively stable across analysis pipelines, others varied widely

from one pipeline to another. Given the extent of this variability, a

motivated researcher determined to find significant activation in

practically any brain region will very likely succeed – as will another

researcher determined to find null results in the same region. To

mitigate the effects of this flexibility on the prevalence of false posi-

tive results, investigators should either determine analysis pipelines

a priori or identify optimal pipelines using data-driven metrics. If

researchers use multiple pipelines to analyze a single experiment,

the results of all pipelines should be reported – including those

that yielded unfavorable results. If implemented, these steps could

significantly improve the reproducibility of research in the fMRI

literature.
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