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Three different results are established which turn out to be closely
connected so that the first one implies the second one which in turn
implies the third one. The first one states the smoothness of an invariant
diffusion density with respect to a parameter. The second establishes a similar
smoothness of the solution of the Poisson equation in R

d . The third one states
a diffusion approximation result, or in other words an averaging of singularly
perturbed diffusion for “fully coupled SDE systems” or “SDE systems with
complete dependence.”

1. Introduction. Our goal is to establish a general result of diffusion
approximation, more precisely to study the limit in law of {Y ε

t ; t ≥ 0} as ε → 0,
where

dXε
t = ε−2b(Xε

t , Y
ε
t ) dt + ε−1σ(Xε

t , Y
ε
t ) dBt,

dY ε
t = F(Xε

t , Y
ε
t ) dt + ε−1G(Xε

t , Y
ε
t ) dt + H(Xε

t , Y
ε
t ) dBt,

where Xε
t takes values in R

d , Y ε
t in R

�, and {Bt ; t ≥ 0} is a d-dimensional standard
Brownian motion. The novelty, compared to our previous work [15] and other
contributions to this field, see in particular [1, 2, 6, 7, 13] and the references
therein, is the dependence of the coefficients of the “fast” component Xε upon
the process Y ε. Another essential feature of our setting is noncompactness of the
state space. In order to tackle this problem, we need to study the solution of a
Poisson equation associated to the process {Xy

t ; t ≥ 0}, where

dX
y
t = b(X

y
t , y) dt + σ(X

y
t , y) dBt

and its regularity with respect to the variables x and y. At the same time, we
obtain regularity results for the density p∞(x, y) of the invariant measure µy of the
process {Xy

t ; t ≥ 0}. Both those problems are also important as such; an example
which shows this can be found in [7]; cf. the assumptions of Theorem 7.9.1 and the
footnote concerning the invariant density regularity, while discrete time version of
our work should be of interest for analyzing certain stochastic algorithms; see [3].
Our results seem to be useful for studying some climate model (see [10]) where
different aspects of ordinary differential equations, SDEs and dynamical systems
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with averaging are considered. To compare our setting with (3.1) + (3.3) of [10]
one should change the time scale to εt . A short version of our work in discrete time
concerning mainly an invariant density has been appeared in [14]. We mention also
a relevant paper with a close idea how investigate Poisson equations, [9].

Our Poisson equation takes the form

L(x, y)u(x, y) = −f (x, y), x ∈ R
d,(1)

where y ∈ R
� is a parameter, and

L(x, y) =
d∑

i,j=1

aij (x, y)
∂2

∂xi ∂xj

+
d∑

i=1

bi(x, y)
∂

∂xi

,

with a = σσ ∗/2, under the condition that for each y ∈ R
�,∫

Rd
f (x, y)µy(dx) = 0.(2)

Recall that there is no boundary condition; we are looking for solutions in the class
of functions which grows at most polynomially in |x|, as |x| → ∞. The condition
which guarantees uniqueness of the solution is then (cf. [15])∫

u(x, y)µy(dx) = 0.(3)

Both coefficients a and b are assumed to be bounded; a is uniformly continuous
with respect to x variable. The existence of the invariant probability measure µy

is insured by the following recurrence condition:

lim|x|→∞ sup
y

b(x, y)x = −∞;(Hb)

cf. [16]. We also assume nondegeneracy of the diffusion coefficient uniformly with
respect to y, that is, we assume that there exist two constants 0 < λ < � < ∞ such
that

λI ≤ a(x, y) ≤ �I,(Ha)

from which uniqueness of the invariant measure follows.
We shall specify the required regularity assumptions when we shall need them.

N denotes {0,1, . . .}, while N
∗ = {1, . . .}. The notation a ∈ C

i+α,j
b with 0 < α < 1

below means that the function has j bounded derivatives in y variable and
i derivatives in x variable, and all derivatives ∂i′

x ∂
j ′
y a, 0 ≤ i′ ≤ i,0 ≤ j ′ ≤ j , are

Hölder continuous with respect to x variable with exponent α uniformly in y. We
denote by (Hr+α,j ), with some j ∈ N

∗, r ∈ N, 0 < α < 1, the condition

a, b ∈ C
r+α,j
b , r ∈ N

∗.(Hr+α,j )

We need to study the regularity of u in the variables x, y, and find expressions for
the derivatives of order one and two with respect to y.
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In our previous paper [15], we extensively used the representation

u(x, y) =
∫ ∞

0
Ex,yf (Xy

s , y) ds

=
∫ ∞

0
dt

∫
Rd

dx′f (x′, y)pt (x, x′;y).

Here we shall rewrite the same formula as

u(x, y) =
∫ 1

0
dt

∫
Rd

dx′f (x′, y)pt (x, x′;y) +
∫ ∞

1
dt pt (x, f ;y),(4)

where, by definition,

pt(x, f, y) :=
∫

f (x′, y)pt (x, x′;y) dx′

≡
∫

f (x′, y)[pt(x, x′;y) − p∞(x′, y)]dx′.

Hence, the derivative ∂yu should have a representation of the form

∂yu(x, y) =
∫ 1

0
dtDypt (x, f ;y) +

∫ ∞
1

dtDypt (x, f ;y),

where Dypt (x, f ;y) is a full derivative of the function pt with respect to y. To
explore this elementary idea in order to get this and similar results for derivatives
in x, y of arbitrary order, we have to show the differentiability of the transition
density, or at least of the function pt(x, f ;y) and study its behavior both near t = 0
and as t → ∞. For pt(x, f ;y) it turns out to be possible under wider assumptions
than for pt(x, x′;y).

We shall essentially use arguments from PDE theory, rather than probabilistic
ones as we did in [15]. Our estimations will be based on two types of bounds.
The first type is a set of estimates for the fundamental solution of a non-
degenerate second order parabolic PDE, due independently to Eidelman [4, 5] and
Friedman [8]. The second is a polynomial inequality for the convergence rate of
the fundamental solution as t → ∞; see [16, 17].

We now give some indication concerning a notation which will be used
repeatedly in the paper. If u is a function of the d-dimensional variable x with
values in R, we shall write ∂xu(x) to denote the d-dimensional vector whose ith
coordinate is ∂xi

u(x). Similarly ∂2
xu(x) will denote a d × d matrix, and ∂

j
x u(x)

denotes for j > 2 a tensor with j indices. These notation are classical and quite
obvious, but since we shall use them so to speak as if the corresponding quantity
were a scalar, we prefer to be explicit at least once about the dimensions.

The organization of the paper is as follows. The three main theorems, Theorem 1
on the transition and invariant densities, Theorem 2 on smoothness and bounds
for semigroups and Theorem 3 on the solution of the Poisson equation, are
stated in Section 2. The proof of Theorems 1 and 2 is the object of Sections
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4 and 5 correspondingly, while the proof of Theorem 3 is given in Section 2 as
a consequence of Theorem 1. Section 3 is devoted to the application of Theorem 2
to the diffusion approximation result which was introduced above. Section 4 gives
estimates on the transition and invariant densities, together with their derivatives
with respect to x. Section 4.3 establishes the differentiability of the transition
density with respect to y and Section 4.4 the same differentiability of the invariant
density. Section 4.5 analyzes the x-differentiability of the y-derivatives from
Sections 4.3 and 4.4. The result concerning higher order y-derivatives is given in
Section 4.5. Finally, differentiability of solutions of PDEs is discussed in Section 5.

2. Invariant density and Poisson equation. We first recall the existence and
uniqueness result and some estimates for solutions of equation (1) from [15],
adjusted to our present setting which is a bit less general than in [15].

PROPOSITION 1. Under conditions (Ha) + (Hb) + (uniform continuity of the
matrix a) + [growth of f (x, y) in x not faster than polynomially for any y], there
exists a solution of (1) in the class of functions from the Sobolev space

⋂
p>1 W 2

p,loc
which are locally bounded and grow at most polynomially in |x|, as |x| → ∞,
unique up to an additive constant which can be chosen so that for any y the
centering equality (3) holds.

Moreover, for this solution, (4) holds true along with the following bounds:
If for some β ≥ 0,

|f (x, y)| ≤ C(y)(1 + |x|β),

then for any β ′ > β + 2,

|u(x, y)| + |∇xu(x, y)| ≤ C1(y)(1 + |x|)β ′
(5)

with some C1(y).
If for some β < 0,

|f (x, y)| ≤ C(y)(1 + |x|)β−2,

then u and ∇xu are bounded,

|u(x, y)| + |∇xu(x, y)| ≤ C1(y)(6)

with some C1(y).
If for some β > 4,

|f (x, y)| ≤ C(y)(1 + |x|β−2),

then for some constant C1(y),

|u(x, y)| + |∇xu(x, y)| ≤ C1(y)(1 + |x|β).(7)

We can now state our main results.
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THEOREM 1. Let (Ha), (Hb) and (H2+α,j ) with an 0 < α < 1 hold true. Then
the tensor of partial derivatives ∂

j
y pt (x, x′, y) =: p

(j)
t (x, x′, y) exists, together

with the limit

lim
t→∞p

(j)
t (x, x′, y) =: p(j)∞ (x′, y)

and

p(j)∞ (x′, y) = ∂j
y p∞(x′, y).

Moreover, for i = 0,1 and also for i = 2 if j = 0,∣∣∂i
x′p

(j)
t (x, x′;y)

∣∣ ≤ Ct−(d+i)/2 exp
(−c|x − x′|2/t

)
, 0 < t ≤ 1,(8)

and for any

∣∣∂i
x′p

(j)
t (x, x′;y) − ∂i

x′p(j)∞ (x′, y)
∣∣ ≤ C

1 + |x|m
(1 + |x′|m′

)(1 + t)k
, t > 1,(9)

∣∣∂i
x′p(j)∞ (x′, y)

∣∣ ≤ C

(1 + |x′|m′
)
.(10)

We also have that, for i = 0,1 and also for i = 2 if j = 0,∣∣∂i
xp

(j)
t (x, x′;y)

∣∣ ≤ Ct−(d+i)/2 exp
(−c|x − x′|2/t

)
, 0 < t ≤ 1,(11)

and for i = 1 and also for i = 2 if j = 0, for any m′, k there exist such C,m that

∣∣∂i
xp

(j)
t (x, x′;y)

∣∣ ≤ C(1 + |x|m)

(1 + |x′|m′
)(1 + t)k

.(12)

The last two inequalities are helpful in estimating derivatives of higher orders
of the function u.

PROOF OF THEOREM 1. The proof follows from the results of Section 4.

Case j = 0. Existence of the limit p∞ follows from [17]. Inequalities
(8) and (11) with j = 0 are classical, due to Eidelman and Friedman; see Proposi-
tion 2 based on [8]. Inequalities (9), (10) and (12) are proved in Proposition 3.

Case j = 1. Inequality (8) follows from Theorem 5 (i = 0) and Proposition 4
(i = 1). Inequalities (9) and (10) are proved in Theorem 7. Inequality (11) follows
from Proposition 4. Finally, (12) is proved in Theorem 8.

Case j = 2. All inequalities are proved in Theorem 9. �

It is plausible that inequalities (8)–(10) hold true with i = 2, and (11)–(12) with
2 ≤ i ≤ 4, too. Generalizations under assumption (H r+α,j ) with r > 2 would be
also natural. However, we will not use them: we are interested in partial derivatives
of second order needed to apply the Itô formula. So neither of these extensions are
discussed here.

Derivatives ∂
j
y pt (x, f ;y) will be denoted by p

(j)
t (x, f ;y).
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THEOREM 2. Let j ∈ N and (Ha) + (Hb) hold true. If either ((Hα,1) + (f ∈
C1+α,j )) or ((H 2+α,1) + (f ∈ Cα,j )) is valid with some α > 0, then the function
p

(j)
t (x, f, y) has the following properties: there exists a limit

lim
t→∞p

(j)
t (x, f ;y) = ∂j

y p∞(f, y) =: p(j)∞ (f, y),(13)

for any k > 0 there exist C,m > 0 such that for all t ≥ 1,

∣∣p(j)
t (x, f, y) − p(j)∞ (f, y)

∣∣ ≤ C
(1 + |x|m)

(1 + t)k
,(14)

and for i = 1 and also for i = 2 if j = 0,

∣∣∂i
xp

(j)
t (x, f, y)

∣∣ ≤ C
(1 + |x|m)

(1 + t)k
.(15)

The proof is given in Section 5.
The next result concerns the regularity of solutions of the Poisson equation. We

restrict ourselves to the derivatives up to the order 2 needed in Theorems 3 and 4
below. However we note that higher order derivatives in all variables can be also
studied similarly using Theorem 1.

THEOREM 3. Let conditions (Ha)+ (Hb) and either ((Hα,1)+ (f ∈ C1+α,2))

or ((H 2+α,1) + (f ∈ Cα,2)), with some α > 0, be satisfied, and the centered
[see (2)] function f be such that

|f (x, y)| + |∂yf (x, y)| + |∂2
yf (x, y)| ≤ C(y)(1 + |x|m).

Then the solution of (1) and (3) satisfies u(x, ·) ∈ C2 for any x, and the following
bounds hold true with some m′,m′′,m′′′ and some constant C1(y):

|∂yu(x, y)| ≤ C1(y)
(
1 + |x|m′)

,(16)

|∂2
yu(x, y)| ≤ C1(y)

(
1 + |x|m′′)

(17)

and

|∂y∂xu(x, y)| ≤ C1(y)
(
1 + |x|m′′′)

.(18)

PROOF. The existence of a solution u follows from the Proposition 1. Let us
denote

qt := p
(1)
t , rt := p

(2)
t .

Clearly, q is an �-dimensional vector, and r an � × � matrix.
The bound for uy follows from the representation

uy(x, y) =
∫ 1

0
qs(x, f, y) ds +

∫ ∞
1

qs(x, f, y) ds,
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standard estimates, including derivative with respect to y, for the integral∫ 1
t ps(x, f, y) ds which solves a Cauchy problem for a parabolic equation in the

region [0,1] × R
d (with an initial value at t = 1), and the estimates in Theorem 2

applied to the second integral here. The estimates for uyy and uxy follow similarly
from the bounds of the same Theorem 2. �

3. Diffusion approximation. The aim of this section is to apply Theorem 3
to the study of the asymptotic behavior, as ε → 0, of the R

�-valued process
{Y ε

t ; t ≥ 0}, where

dXε
t = ε−2b(Xε

t , Y
ε
t ) dt + ε−1σ(Xε

t , Y
ε
t ) dBt ,

dY ε
t = F(Xε

t , Y
ε
t ) dt + ε−1G(Xε

t , Y
ε
t ) dt + H(Xε

t , Y
ε
t ) dBt,

Xε
0 = x, Y ε

0 = y.

We shall make the following assumptions. For each K > 0, there exists a
constant CK such that for all y, y′ ∈ R

�, |x| ≤ K ,

|F(x, y) − F(x, y′)| + |G(x,y) − G(x,y′)| + |H(x,y) − H(x,y′)|
≤ CK |y − y′|.(HL)

Moreover, we assume the following growth condition on these coefficients,
together with a regularity condition and a centering condition on G. There exist
positive K,α,m1,m2 and m3 such that for all x ∈ R

d , y ∈ R
�:

|F(x, y)| ≤ K(1 + |y|)(1 + |x|m1),

|H(x,y)| ≤ K(1 + |y|1/2)(1 + |x|m2),
(HP )

(HG) the following smoothness, growth and centering conditions on function G

are satisfied:

G(x, ·) ∈ C2(R�), |G(x,y) − G(x′, y)| ≤ K|x − x′|α,

|G(x,y)| + |∂yG(x, y)| + |∂2
yG(x, y)| ≤ K(1 + |x|m3),∫

Rd
G(x, y)µy(dx) = 0.

Let X̄ε
t := Xε

ε2t
and Bε

t := ε−1Bε2t . Then

X̄ε
t = x +

∫ t

0
b(X̄ε

s , Y
ε
ε2u

) du +
∫ t

0
σ(X̄ε

s , Y
ε
ε2u

) dBε
u,

so that X̄ε
. is asymptotically identical in law to Xy

. .
Our strategy for proving that Y ε

. converges in law to a diffusion, to be precise, is
the same as the one used in [15], which follows ideas from previous works; see, for
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example, [13]. Let f : Rd → R be an arbitrary smooth function. For each y ∈ R
�,

let {u(x, y), x ∈ R
d} denote the solution of the Poisson equation

Lu(x, y) + 〈∇yf (y),G(x, y)〉 = 0.

Clearly u(x, y) = 〈∇yf (y),PG(x, y)〉, where

PG(x, y) :=
∫ ∞

0
dt

∫
Rd

pt (x, x′;y)G(x′, y) dx′.

The basic identity, which is used both for checking the tightness of the
sequence Y ε and identifying the limit, is obtained by applying Itô’s formula in
order to express

fε(X
ε
t , Y

ε
t ) − fε(X

ε
0, Y

ε
0 ),

where fε(x, y) = f (x) + εu(x, y). Needless to say, the results of the above
sections are essential in order to establish the required smoothness of u, and
express its derivatives.

We shall use the following notation:

(PG)(x, y) =
∫ ∞

0
pt(x,G;y) dt,

(QiG)(x, y) =
∫ ∞

0
∂yipt (x,G;y) dt,

(RijG)(x, y) =
∫ ∞

0
∂yiyj pt (x,G;y) dt.

Clearly

u(x, y) = 〈∇f (y),PG(x, y)〉.
Now for 1 ≤ i, j ≤ �,

∂yi
u(x, y) = 〈

∂yi
∇f (y),PG(x, y)

〉 + 〈∇f (y),QiG(x, y)〉
+ 〈∇f (y),P [∂yi

G](x, y)
〉
,

∂yi
∂yj

u(x, y) = 〈
∂2
yiyj

∇f (y),PG(x, y)
〉

+ 〈
∂yi

∇f (y),QjG(x, y)
〉 + 〈

∂yj
∇f (y),QiG(x, y)

〉
+ 〈

∂yi
∇f (y),P [∂yj

G](x, y)
〉 + 〈

∂yj
∇f (y),P [∂yi

G](x, y)
〉

+〈∇f (y),RijG(x, y)〉 + 〈∇f (y),P
[
∂2
yiyj

G
]
(x, y)

〉
.

THEOREM 4. Let conditions (H 2+α,1), (Ha), (Hb), (HL), (HP ) and (HG) be
satisfied. Then for any T > 0, the family of processes {Y ε

t ,0 ≤ t ≤ T }0<ε≤1 is
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weakly relatively compact in C([0, T ];R
�). Any accumulation point Y is a solution

of the martingale problem associated to the operator

L = 1
2 ãij (y)∂yi

∂yj
+ b̃i (y)∂yi

,

where

b̃(y) = F̄ (y) + ∑
i

∫
Gi(x, y)∂yi

(PG)(x, y)µy(dx)

+ ∑
i,k

∫
(Hσ ∗)ik(x, y)∂xk

∂yi
(PG)(x, y)µy(dx)

and
ã(y) = (H̄ + Ḡ + K̄)(y),

with

F̄ (y) =
∫

F(x, y)µy(dx),

H̄(y) =
∫

HH ∗(x, y)µy(dx),

Ḡ(y) =
∫ [

G(x,y)PG∗(x, y) + PG(x, y)G∗(x, y)
]
µy(dx),

K̄ij (y) =
d∑

k=1

∫ [
(Hσ ∗)ik(x, y)∂xk

(PGj)(x, y)

+ (Hσ ∗)jk(x, y)∂xk
(PGi)(x, y)

]
µy(dx).

If, moreover, the martingale problem associated to L is well posed (it is easy to
state sufficient conditions for that), then Y ε ⇒ Y , where Y is the unique (in law)

diffusion process with generator L.

Notice that all integrals in the definition of L are well defined.
The proof is exactly the same as that in [15], except for one minor modification,

which we now explain, but we shall not repeat the proof. Namely, we had to
reinforce the boundedness assumption on G, since allowing that G grows linearly
in y, with bounded (with respect to y) derivatives in y would not prevent QG and
RG, hence the partial derivatives in y of PG to grow linearly in y, which would
destroy the compactness argument in [15], unless we assume that F and H are
bounded in y.

Note that the condition |G(x,y)−G(x′, y)| ≤ C|x −x′|α,C,α > 0 is sufficient
for ∂2

x Ḡ ∈ C(Rd × R
�) due to Eidelman or Friedman results. This allows to use

the original Itô formula while in the first part of the paper we used the Itô–Krylov
version.

4. Properties of a fundamental solution.

4.1. Auxiliary bounds for the transition density. Let us recall certain results
concerning upper bounds for fundamental solutions of the Cauchy problem. We
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use [8] adjusted to our (homogeneous) case; cf. Theorem 9.2 and Theorem 9.7;
see also Theorems 3.5 and 3.6 in [5] and [4]. Concerning the case |m| = 2 in the
first part of Proposition 2, see remark around inequality (9.4.19) in [8].

In the next statement, we drop the index y. Note however that all the constants
are independent of y ∈ R

d . This implies inequalities (8) and (11) for j = 0 from
Theorem 1.

PROPOSITION 2. Assume that condition (Ha) holds and that b is bounded.

1. Let a(x, y), b(x, y) be Hölder continuous (with exponent α > 0) in x uniformly
in y with some uniform constants. Then the transition density pt(x, x′;y) exists
and satisfies the following bounds: for any T > 0 there exist some constants
C,c > 0 such that for any 0 ≤ |m| ≤ 2 and 0 ≤ t ≤ T ,

∣∣∂m
x pt (x, x′;y)

∣∣ ≤ Ct−(d+|m|)/2 exp(−c|x′ − x|2/t).

2. Let a(·, y), b(·, y) ∈ Cn+α
b for some n ∈ N, α > 0 and with bounds uniform

in y. Then ∂m+i
x ∂

j

x′pt(x, x′) exists and is a continuous function of (t, x, x′) in

(0,∞) × R
d × R

d for all 0 ≤ |i| + |j | ≤ n, 0 ≤ |m| < 2 and for 0 < t ≤ T ,

∣∣∂m+i
x ∂

j

x′pt(x, x′;y)
∣∣ ≤ Ct−(|m|+|i|+|j |+d)/2 exp(−c|x′ − x|2/t),

∣∣∂m
x ∂

j

x′pt(x
′ − x, x′;y)

∣∣ ≤ Ct−(|m|+d)/2 exp(−c|x|2/t),

with some constants C,c > 0.

The next type of bounds we will use are based on the ergodic estimates of the
process {Xy

t ; t ≥ 0}. We first recall a result from [17].

LEMMA 1. Assume that conditions (Ha) and (Hb) hold and there exists a
density pt(x, x′;y). Then for each m > 0, there exists a constant Cm such that for
all x ∈ R

d , t ≥ 0 and y ∈ R
k ,∫

Rd
|x′|mpt (x, x′;y) dx′ ≤ Cm(1 + |x|m+2).

Notice that the power m+2 in the right-hand side can be replaced by m in the case
of constant nondegenerate diffusion; see [16].

We next establish the following lemma.

LEMMA 2. For each m,c > 0, there exists a constant C > 0 such that for all
0 < t ≤ 1,

t−d/2
∫

Rd
(1 + |x′|m)−1 exp

(
−c

|x − x′|2
2t

)
dx′ ≤ C

1 + |x|m
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and

t−d/2
∫

Rd
(1 + |x′|m) exp

(
−c

|x − x′|2
2t

)
dx′ ≤ C(1 + |x|m).

Though of course a nonprobabilistic proof of this lemma is available, we give
probabilistic arguments, which are probably as simple as any other possible proof.

PROOF OF LEMMA 2. It suffices to prove the first assertion for |x| ≥ 1. Up to a
factor which depends only on c and d , the above left-hand side equals ({Bt ; t ≥ 0}
denotes again a d-dimensional standard Brownian motion)

E

(
1

1 + |x + Bt/
√

c|m
)

= E

(
1

1 + |x + Bt/
√

c|m ; |Bt | ≤
√

c|x|
2

)

+ E

(
1

1 + |x + Bt/
√

c|m ; |Bt | >

√
c|x|
2

)

≤ 1

1 + |x/2|m + P(|Bt | >
√

c|x|/2),

from which the result follows with C = 2m(1 + 2cm/2
E|B1|m), using Chebyshev’s

inequality, and |x|−1 ≤ 2(1 + |x|)−1 which follows from |x| ≥ 1.
The second statement follows from the inequality

sup
0≤t≤1

E(1 + |x + Bt/
√

c|m) ≤ C(1 + |x|m). �

We are now ready to prove the following proposition.

PROPOSITION 3. Let n ∈ N. Assume that conditions (Ha) and (Hb) hold, and
moreover, that the coefficients a and b are Hölder continuous in x, uniformly with
respect to y, and that for each y ∈ R

�, a(·, y), b(·, y) ∈ Cn
b (Rd), where the bounds

for the functions and their derivatives are independent of y.
Then for any k, j ∈ R+, there exist C,m > 0 such that for all x, x′ ∈ R

d , y ∈ R
�,

t ≥ 1,

∣∣∂n
x′p∞(x′, y)

∣∣ ≤ C

1 + |x′|j ,(19)

∣∣∂n
x′pt(x, x′;y)

∣∣ ≤ C
1 + |x|m

(1 + |x′|j )(20)

and

∣∣∂n
x′pt(x, x′;y) − ∂n

x′p∞(x′, y)
∣∣ ≤ C

1 + |x|m
(1 + t)k(1 + |x′|j ) .(21)
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Also, provided n ≥ 1 and for each y ∈ R
�, a(·, y), b(·, y) ∈ C

(n−2)+
b (Rd), where

the bounds for the functions and their derivatives are independent of y,
∣∣∂n

x pt (x, x′;y)
∣∣ ≤ C

1 + |x|m
(1 + t)k(1 + |x′|j ) .(22)

The last inequality also holds for mixed derivatives ∂n
x′∂n′

x pt , provided again
n ≥ 1 and the required regularity becomes the fact that a(·, y) and b(·, y) belong

to C
(n′−1)++n
b .

PROOF. Remind that a and b are Hölder continuous with respect to x.
Along with the assumption a, b ∈ Cn it is essential for the estimates of ∂n

x′pt

and ∂n
x pt . We first note that a simple consequence of Proposition 2 is that

|∂n
x′p1(x, x′;y)| ≤ cn. Combining this with the Chapman–Kolmogorov relation

implies that |∂n
x′pt(x, x′;y)| ≤ c for all t ≥ 1. This implies (20) and (19) in case

|x′| ≤ 1. We now prove (20) in case |x′| > 1:
∣∣∂n

x′pt(x, x′;y)
∣∣ =

∣∣∣∣
∫

Rd
pt−1(x, x′′;y)∂n

x′p1(x
′′, x′;y) dx′′

∣∣∣∣
≤ C

∫
Rd

pt−1(x, x′′;y)e−c|x′−x′′|2 dx′′

≤ C

∫
|x′′|>|x′|/2

pt−1(x, x′′;y) dx′′ + C exp[−c|x′|2/4]

≤ C

(
2

|x′|
)j

Ex

(|Xt−1|j ) + C exp[−c|x′|2/4]

≤ C
1 + |x|j+2

1 + |x′|j ,

where we have used Lemma 1 in the final step. Inequality (20) is proved and (19)
is proved exactly in the same way. We now want to prove (21):∣∣∂n

x′pt(x, x′;y) − ∂n
x′p∞(x′, y)

∣∣
≤

∫
Rd

∣∣pt−1(x, x′′;y) − p∞(x′′, y)
∣∣ × ∣∣∂n

x′p1(x
′′, x′;y)

∣∣dx′′

≤ C‖µx
t−1 − µ∞‖

≤ C
1 + |x|m

1 + (t − 1)k
,

where the last inequality can be found in [16]. Note that k is arbitrary, and m

depends on k. Inequality (21) follows from this and the next inequality, which is a
direct consequence of (20) + (19):

∣∣∂n
x′pt(x, x′;y) − ∂n

x′p∞(x′, y)
∣∣ ≤ c

1 + |x|j+2

1 + |x′|j .
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We finally prove (22). First note that for n ≥ 1,∫
Rd

∂n
x p1(x, x′′;y)p∞(x′, y) dx′′ = ∂n

x p∞(x′, y)

= 0.

Hence, from (21),
∣∣∂n

x pt (x, x′;y)
∣∣ =

∣∣∣∣
∫

Rd
∂n
x p1(x, x′′;y)

[
pt−1(x

′′, x′;y) − p∞(x′, y)
]
dx′′

∣∣∣∣
≤ C

∫
Rd

e−c|x−x′′|2 1 + |x′′|m
(1 + t)k(1 + |x′|j ) dx′′

≤ C
1 + |x|m

(1 + t)k(1 + |x′|j ) ,
where the last step follows from Lemma 2.

We omit the proof of the last assertion for ∂n
x′∂n′

x pt . �

4.2. First derivative qt = ∂ypt . We now establish the differentiability of pt

with respect to y. The result of this section is the following.

THEOREM 5. Assume that conditions (Hb), (Ha) and (H1+α,1) hold. Then for
each t > 0, x, x′ ∈ R

d , y ∈ R
�, pt(x, x′;y) is differentiable in the variable y, and

the gradient ∂ypt (x, x′;y) is given by the formula

∂ypt (x, x′, y) = qt(x, x′;y)

:=
∫ t

0
ds

∫
Rd

ps(x, x′′;y)
∂L

∂y
(x′′, y)pt−s(x

′′, x′;y) dx.
(23)

The function qt is bounded and continuous in y for any t > 0, x, x′. Moreover,
there exist C,c > 0 such that for all 0 < t ≤ 1, x, x′, y,

|qt(x, x′;y)| ≤ C

td/2
exp

(
−c|x − x′|2

t

)
.(24)

PROOF. We first check the integrability, that is, that formula (23) makes sense.
First the integrability over dx′′ for fixed 0 < s < t is no problem, given the
estimates of Proposition 2. Here we use the assumption a, b ∈ C

0,1
b , so that the

expression ∂L/∂y is well defined. Now the second factor in the integrand is a
linear combination of partial derivatives of pt−s (x, x′′;y) with respect to x of
order one and two, with bounded coefficients. Since we can always integrate by
parts one partial derivative in the dx′′ integral, we see that the integrand inside the
ds integral expressing qt is a sum of terms of the type

∫
Rd

αij (x
′′, y)

∂ips

∂ix′′
n

p(x, x′′;y)
∂jpt−s

∂jx′′
m

(x′′, x′;y) dx′′,
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where i, j = 0,1, 1 ≤ n,m ≤ d . It now follows from Proposition 2 that the integral
of the absolute value of the integrand in (23) is dominated by a constant times

∫ t

0
ds

∫
Rd

s(d+1)/2(t − s)(d+1)/2 exp
[
−c

|x − x′′|2
s

]
exp

[
−c

|x′′ − x′|2
t − s

]
dx′′

≤ c

td/2
exp

[
−c

|x − x′|2
t

]∫ t

0

ds√
s(t − s)

≤ C

td/2 exp
(
−c

|x − x′|2
t

)

which proves (24). Here we used the assumption a, b ∈ C
1,0
b (see Proposition 2).

The same estimate holds when ps and pt−s are evaluated at different points
y and y′.

We now prove that pt is differentiable and that its derivative is given by (23).
For 1 ≤ i ≤ �, let ei denote the unit vector in the ith direction of R

�, and let h �= 0.
We define

q
i,h
t (x, x′;y) := pt(x, x′;y + hei) − pt(x, x′;y)

h
.

In what follows, we delete most of the indices for notational simplicity, including
the index i, and write y + h instead of y + hei . The idea is to notice that

∂qh
t (y)

∂t
= −L(y)qh

t (y) + L(y + h) − L(y)

h
pt (y + h), qh

0 = 0,(25)

so that qh
t should be given by the formula

qh
t (x, x′;y) =

∫ t

0
ds

∫
Rd

ps(x, x′′;y)

× L(y + h) − L(y)

h
pt−s(x

′′, x′;y + h)dx′′
(26)

where we can pass to the limit as h → 0 to get the desired assertion.
These last statements need some justifications since pt and hence qh

t have sin-
gularities at t = 0, so that qh

0 = 0 should be understood in a weak sense. A simple
way to justify our claims is to start with pt(x,φ;y) = ∫

φ(x′)pt (x, x′;y) dx′ and
qh
t (x,φ;y) := ∫

φ(x′)qh
t (x, x′;y) dx′ 1(t > 0), φ ∈ C∞

0 .
Due to [12], Theorem 4.5.2, the function pt(x,φ;y) is a classical solution of

the problem

∂tpt (x,φ;y) = L(y)pt (x,φ;y), p0(x,φ;y) = φ(x).

So qh
t (x,φ;y) satisfies a smoothed version of equation (25), and is given by

the formula (26), but with pt−s (x
′′, x′, y) replaced by pt−s (x

′′, φ, y). Now we
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let φk → δx′ , and use the estimate leading to the proof of (24) and Lebesgue’s
dominated convergence theorem. This shows (26).

We can now invoke the same argument in order to take the limit as h → 0 in
the right-hand side of (26), provided pt−s(x

′′, x′;y) and ∂x′′pt−s(x
′′, x′;y) are

continuous in y (we get rid of the second derivative by integration by parts). The
first continuity (and even uniform Lipschitz continuity) follows from (26) and
implies the continuity of y → ∫

∂x′′pt(x
′′, x′;y)φ(x′) dx′, provided φ ∈ C1(Rd)

and has compact support. It remains to exploit the boundedness of ∂xpt in order
to extract out of ∂xpt (x, ·;yn) a sequence which converges on a countable dense
set of (x′)’s, and continuity in x′, uniformly with respect to y in order to conclude
that the limit, indeed, equals to ∂xpt (x, x′, y), as yn → y. So, we finally get (23).

Continuity of q in y follows from the convergence of the integrand in (23)
uniformly with respect to y. �

4.3. Behavior of the first derivative qt as t → ∞. Assumption (H 1+α,1) is
used in this section. It turns out that similar calculus can be applied to study the
behavior of qt as well as next derivatives ∂k

ypt , by induction, provided certain
preliminary properties are established. Hence, we organized this and next section
as follows: we introduce new notation, p̄ and L̄ for this induction. Whilst the first
reading of this and next subsections, p̄t (x, x′, y) = pt(x, x′, y), and L̄ = L. Then
we will establish additional bounds in order to be able to do the next induction
step, and at the next steps, p̄ and L̄ will mean some new functions. Notice that in
the next steps we do not assume p̄t to be a density or to be positive.

Define

f 1
t (x, x′;y) := ∂L̄(x, y)

∂y
p̄t (x, x′;y)

or, a bit more generally,

f 1
t (x, x′;y) := ∑

i

∂L̄i(x, y)

∂y
p̄i

t (x, x′;y),

with any L̄i(x, y) = ∑
āi
kj (x, y)∂xk

∂xj
+∑

b̄i
k(x, y)∂xk

such that all (āi , b̄i) satisfy
the same nondegeneracy, boundedness and smoothness conditions as (a, b). Just
for simplicity, we do all the calculus with only one operator L̄, however, it remains
absolutely similar for any finite sum.

Consider the functions

q̄t (x, x′;y) :=
∫ t

0
ds

∫
dx′′ ps(x, x′′;y)f 1

t−s(x
′′, x′;y)

=
∫ t

0
ds

∫
dx′′ pt−s (x, x′′;y)f 1

s (x′′, x′;y)

(27)
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and

q̄∞(x′, y) :=
∫ ∞

0
ds

∫
Rd

dx′′p∞(x′′, y)f 1
s (x′′, x′, y).(28)

We need to show that

q̄∞(x′, y) = ∂yp̄∞(x′, y)

and

q̄∞(x′, y) = lim
t→∞ q̄t (x, x′;y),

and for any function g : Rd → R which satisfies a bound of the type

|g(x)| ≤ C(1 + |x|n),
the following integral converges:

∫ ∞
0

dt

∫
Rd

[q̄t (x, x′;y) − q̄∞(x′, y)]g(x′) dx′.

More precisely, we now show the following theorem.

THEOREM 6. Assume that conditions (Hb), (Ha) and (H1+α,1) and the above
mentioned assumptions on p̄ hold. Then for each k,m′ > 0, there exists C,m ∈ R

such that for all y ∈ R
�, x, x′ ∈ R

d , t ≥ 1,

|q̄t (x, x′;y) − q̄∞(x′;y)| ≤ C
1 + |x|m

(1 + |x′|m′
)(1 + t)k

,(29)

|q̄∞(x, y)| ≤ C

1 + |x|m(30)

and moreover,

q̄∞(x, y) = ∂yp̄∞(x, y).

Note that p̄, q̄ stand for p and q correspondingly.

PROOF OF THEOREM 6. Estimate (30) follows clearly from (29) and (24),
considered at t = 1, x = 0. The last statement follows from taking the limit as
t → ∞ in the identity

p̄t (x, x′;y + hei) − p̄t (x, x′;y) =
∫ h

0
q̄i
t (x, x′;y + αei) dα

since the function q̄i
t (x, x′, ·) is continuous, which is shown exactly as for qt .
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Let us establish (29). We have

q̄t (x, x′;y) − q̄∞(x, x′;y)

=
∫ t

0
ds

∫
pt−s(x, x′′;y)f 1

s (x′′, x′;y) dx′′

−
∫ ∞

0
ds

∫
p∞(x′′, y)f 1

s (x′′, x′;y) dx′′

=
∫ t/2

0
ds

∫ (
pt−s(x, x′′;y) − p∞(x′′, y)

)
f 1

s (x′′, x′;y) dx′′

+
∫ t

t/2
ds

∫
pt−s (x, x′′;y)f 1

s (x′′, x′;y) dx′′

−
∫ ∞
t/2

ds

∫
p∞(x′′, y)f 1

s (x′′, x′;y) dx′′.

We now successively estimate each term of the above right-hand side.
Consider the first term. It follows from (21) that

|pt−s (x, x′′;y) − p∞(x′′, y)| ≤ C
1 + |x|m

(1 + t − s)k(1 + |x′′|)j .

So, estimating f 1
s with the help of Propostion 2 between 0 and 1 and of the

estimate (20) between 1 and t/2, we get∫ t/2

0
ds

∫
dx′′|pt−s(x, x′′;y) − p∞(x′′, y)||f 1

s (x′′, x′;y)|

≤ C

∫ 1

0
ds

∫
dx′′ 1 + |x|m

(1 + t − s)k(1 + |x′′|j )s
−d/2 exp

[
−c

|x′′ − x′|2
s

]

+C

∫ t/2

1
ds

∫
dx′′ 1 + |x|m

(1 + t − s)k(1 + |x′′|j )
1 + |x′′|j ′

1 + |x′|m′

≤ C
(1 + |x|m)

(1 + |x′|m′
)(1 + t)k−1

,

provided j > j ′ + d , and using Lemma 2.
Consider the second integral using (22):∫ 1

0
ds

∫
ps(x, x′′;y)

∣∣(∂yL̄(x′′)
)
p̄t−s(x

′′, x′;y)
∣∣dx′′

≤ C

∫ 1

0

∫
s−d/2 exp

(−(x − x′′)2/(2cs)
) (1 + |x′′|m)

(1 + t)k(1 + |x′|m′
)
ds dx′′

≤ C

∫ 1

0

(1 + |x′′|m)

tk(1 + |x′|m′
)
ds = C

(1 + |x′′|m)

tk(1 + |x′|m′
)
,

where we have used Lemma 1.
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Another part of this term is estimated by
∫ t/2

1
ds

∫
ps(x, x′′;y)

∣∣(∂yL̄(x′′)
)
p̄t−s(x

′′, x′;y)
∣∣dx′′

≤ C

∫ t/2

1

∫
(1 + |x|m)

(1 + s)k(1 + |x′′|m′′
)

(1 + |x′′|m)

(1 + t/2)k(1 + |x′|m′
)
ds dx′′

≤ C

∫ t/2

1

(1 + |x|m)

(1 + s)k(1 + |x′|m′
)(1 + t/2)k

ds ≤ C
(1 + |x|m)

(1 + t/2)k(1 + |x′|m′
)
.

Finally, we use (19) and (22), yielding∫ ∞
t/2

ds

∫
p∞(x′′, y)

∣∣(∂yL̄(x′′)
)
p̄s(x

′′, x′;y)
∣∣dx′′

≤
∫ ∞
t/2

ds

∫
C

1 + |x′′|m′
C(1 + |x′′|m)

(1 + s)k(1 + |x′|j ) dx′′

≤ C

(1 + t)k−1(1 + |x′|j ) ,

provided m′ > m + d . �

Note that f 1
t could be replaced by a finite sum

∑m
k=1

∂L̄k

∂y
p̄k(x, x′, y), where

each pair (L̄k, p̄k) satisfies the assumptions stated for (L̄, p̄). Let us describe the
notation for the induction step j :

(ISj ) p̄i := p(i), i = 0,1, . . . , j − 1; L̄i = Ci
j ∂

j−iL/∂yj−i (tensor), and
p̄j = p(j) where p(j) is defined by formula (34) below; assumption
(H 2+α,j ) is required for j th step.

4.4. Derivatives with respect to x, x′ : ∂x, ∂x′qt . Again, during the first
reading, p̄ = p and q̄ = q . We first study the derivatives ∂x′ q̄t and ∂x′ q̄∞ under
assumptions (H 1+α,1) and (H 2+α,1) (the latter is used only once). The existence
of both derivatives under (H 1+α,1) follow from the explicit expressions for
q̄t and q̄∞. Indeed, we clearly have that

∂q̄t (x, x′, y)

∂x′ =
∫ t

0
ds

∫
dx′′pt−s(x, x′′, y)

∂f 1
s (x′′, x′, y)

∂x′ .

We will show that this function converges, as t → ∞, to
∫ ∞

0
ds

∫
dx′′p∞(x′′, y)

∂f 1
s (x′′, x′, y)

∂x′ .

Moreover, the last quantity is the derivative of q∞ with respect to x′, and the same
is true for second order derivatives with respect to x′.
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THEOREM 7. Assume that conditions (Hb), (Ha) and (H1+α,1) hold. Then for
all k,m′ ≥ 0, there exist real numbers C,m such that for all y, x, x′ and all t ≥ 1,

∣∣∂x′ q̄t (x, x′;y) − ∂x′ q̄∞(x′, y)
∣∣ ≤ C

1 + |x|m
(1 + |x′|m′

)(1 + t)k

and

|∂x′ q̄∞(x′, y)| ≤ C

(1 + |x′|m′
)
.

PROOF. All terms can be estimated exactly as in the proof of Theorem 6,
except

∫ 1

0
ds

∫ (
pt−s(x, x′′;y) − p∞(x′′, y)

)
f 1

s (x′′, x′;y) dx′′,

which now becomes
∫ 1

0
ds

∫ (
pt−s(x, x′′;y) − p∞(x′′, y)

)
∂x′f 1

s (x′′, x′;y) dx′′.

We have (see Proposition 3)
∫ 1

0
ds

∫
|pt−s(x, x′′;y) − p∞(x′′, y)||∂x′f 1

s (x′′, x′;y)|dx′′

≤ C

∫ 1

0
s−1/2 ds

∫ 1 + |x|m
(1 + t)k(1 + |x′′|j )s

−d/2 exp
(
−c|x′ − x′′|2

s

)
dx′′

≤ C
1 + |x|m

(1 + t)k(1 + |x′|j ) .

The second inequality follows from the estimates

|∂xq̄∞(x, y)| =
∣∣∣∣∂x

∫ ∞
0

ds

∫
dx′p∞(x′, y)f 1

s (x′, x;y)

∣∣∣∣

=
∣∣∣∣∂x

∫ ∞
0

ds

∫
dx′L∗

yp∞(x′, y)p̄s(x
′, x;y)

∣∣∣∣

≤
∣∣∣∣∂x

∫ 1

0
ds

∫
dx′L∗

yp∞(x′, y)p̄s(x
′, x;y)

∣∣∣∣

+
∣∣∣∣∂x

∫ ∞
1

ds

∫
dx′L∗

yp∞(x′, y)[p̄s(x
′, x;y) − p̄∞(x, y)]

∣∣∣∣

≤ C

∫ 1

0
ds

∫
dx′ 1

1 + |x′|j
1

sd/2 exp
(
−c

|x′ − x|2
s

)
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+C

∫ ∞
1

ds

∫
dx′ 1

1 + |x′|j
1 + |x′|m

(1 + |x|m′
)(1 + s)k

≤ C

1 + |x|m′

since j can be chosen arbitrarily large, in particular, greater than m′ + d and, as
usual, k > 1. �

We now study the derivative ∂xq̄t . Arguing as above, we can show that for fixed t

and any δ ≤ t/2,

∂xq̄t (x, x′;y) =
∫ δ

0
ds

∫
Rd

∂ps

∂x
(x, x′′;y)

∂L̄

∂y
(x′′, y)p̄t−s(x

′′, x′;y) dx′′

+
∫ t−δ

δ
ds

∫
Rd

∂ps

∂x
(x, x′′;y)

∂L̄

∂y
(x′′, y)p̄t−s(x

′′, x′;y) dx′′(31)

+
∫ t

t−δ
ds

∫
Rd

∂L̄∗

∂y
(x′′, y)

∂ps

∂x
(x, x′′;y)p̄t−s(x

′′, x′;y) dx′′.

We can prove the following theorem.

THEOREM 8. Assume that conditions (Hb), (Ha) and (H 1+α,1) hold. Then
for all k,m′ ≥ 0, there exist real numbers C,m such that for all y ∈ R

�, x, x′ ∈ R
d

and all t ≥ 1,

|∂xq̄t (x, x′;y)| ≤ C
1 + |x|m

(1 + |x′|m′
)(1 + t)k

.

PROOF. We choose δ = 1/2 in formula (31). We can estimate the right-hand
side of (31), using Propositions 2 and 3. We obtain that the absolute value of
∂xq̄t (x, x′;y) is bounded by a constant times

∫ 1/2

0
s−(d+1)/2 ds

∫
Rd

exp
[
−c

|x − x′′|2
s

]
1 + |x′′|m

(1 + t − s)k(1 + |x′|j ) dx′′

+
∫ t−1/2

1/2
ds

∫
Rd

1 + |x|m
(1 + s)k(1 + |x′′|j )

1 + |x′′|j ′

(1 + t − s)k
′
(1 + |x′|m′

)
dx′′

+
∫ t

t−1/2
ds

∫
Rd

1 + |x|m
(1 + s)k(1 + |x′′|j ) (t − s)−d/2 exp

[
−c

|x′ − x′′|2
t − s

]
dx′′,

from which the result follows, using the assumption j > j ′ + d , Lemma 2 and the
freedom of choice of the various parameters. �

For small t we can establish the following estimate. It is the only place where
we will use (H 2+α,1) in this section.
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PROPOSITION 4. Under condition (H 1+α,1), for any 0 < t ≤ 1,

|∂xq̄t (x, x′;y)| ≤ C

t(d+1)/2
exp

(
−c

|x − x′|2
t

)
.(32)

If (H 2+α,1) is valid then also

|∂x′ q̄t (x, x′;y)| ≤ C

t(d+1)/2 exp
(
−c

|x − x′|2
t

)
.(33)

PROOF. We have, with some bounded coefficients α(·) and β(·),
∂x′ q̄t (x, x′;y)

=
∫ t

0
ds

∫
dx′′ps(x, x′′;y)∂x′f 1

t−s(x
′′, x′;y)

=
∫ t/2

0
ds

∫
dx′′ [α1(x

′′, y)ps(x, x′′;y)

+β1(x
′′, y)∂x′′ps(x, x′′;y)

]
∂2
x′x′′p̄t−s(x

′′, x′;y)

+
∫ t

t/2
ds

∫
dx′′ [α2(x

′′, y)ps(x, x′′;y)

+β2(x
′′, y)∂x′′ps(x, x′′;y)

+γ (x′′, y)∂2
x′′ps(x, x′′;y)

]
∂x′p̄t−s(x

′′, x′;y)

with some α1, α2, β1, β2, γ . It follows from the above estimates that∣∣∣∣
∫ t

0
ds

∫
dx′′ps(x, x′′;y)∂x′f 1

t−s(x
′′, x′;y)

∣∣∣∣

≤ C

∫ t/2

0
ds

∫
dx′′ 1

(t − s)(d+2)/2
exp

(
−c

|x − x′′|2
t − s

)

× 1

s(d+1)/2
exp

(
−c

|x′ − x′′|2
s

)

+C

∫ t

t/2
ds

∫
dx′′ 1

(t − s)(d+1)/2
exp

(
−c

|x − x′′|2
t − s

)

× 1

s(d+2)/2 exp
(
−c

|x′ − x′′|2
s

)

≤ C

td/2 exp
(
−c

|x − x′|2
t

)[∫ t/2

0

ds

(t − s)
√

s
+

∫ t

t/2

ds√
t − ss

]

≤ C

t(d+1)/2
exp

(
−c

|x − x′|2
t

)
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which gives assertion (33). Inequality (32) follows similarly under (H 1+α,1) from
the representation

∂xq̄t (x, x′, y) =
∫ t

0
ds

∫
dx′′ (∂xps(x, x′′, y)

)
f 1

t−s(x
′′, x′, y)

=
∫ t/2

0
ds

∫
dx′′ (∂xps(x, x′′, y)

)(
∂yL̄(x′′)

)
p̄t−s(x

′′, x′, y)

−
∫ t

t/2
ds

∫
dx′′ [∂2

xx′′pt−s(x, x′′, y)
][

β(x′′, y)∂x′′p̄s(x, x′′, y)
]

+ lower order terms,

which again leads to estimations

∫ t/2

0
ds

∫
dx′′ 1

(t − s)(d+2)/2 exp
(
−c

|x − x′′|2
t − s

)

× 1

s(d+1)/2 exp
(
−c

|x′ − x′′|2
s

)

+C

∫ t

t/2
ds

∫
dx′′ 1

(t − s)(d+1)/2 exp
(
−c

|x − x′′|2
t − s

)

× 1

s(d+2)/2
exp

(
−c

|x′ − x′′|2
s

)

≤ C

t(d+1)/2
exp

(
−c

|x − x′|2
t

)
.

Inequality (32) and Proposition 4 are thus proved. �

The same note as at the end of Section 4.3 applies here.

4.5. Higher order derivatives ∂
j
y pt , j ≥ 2. We now want to study the tensor

valued function of t, x, x′, y:

p
(j)
t (x, x′;y) := ∂j−1

y qt (x, x′;y) = ∂j
y pt (x, x′;y)

for j ≥ 2 by induction.

THEOREM 9. Assume (H2+α,j ), the existence of (matrix or tensor)-functions

p
(i)
t (x, x′;y) := ∂i

ypt (x, x′;y)

for any 0 ≤ i ≤ j − 1, the existence of the limits p
(i)∞ (x′, y) as t → ∞ and the
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following inequalities: for any m′, k there exist C,m such that

∣∣∂x′p(i)
t (x, x′;y)

∣∣ ≤ Ct−(d+1)/2exp
(−c|x − x′|2/t

)
, 0<t≤1,

∣∣∂x′p(i)
t (x, x′;y) − ∂x′p(i)∞ (x′, y)

∣∣ ≤ C
1 + |x|m

(1 + |x′|m′
)(1 + t)k

, t > 1,

∣∣∂x′p(i)∞ (x′, y)
∣∣ ≤ C

(1 + |x′|m′
)
.

Then there exists ∂
j
ypt (x, x′;y) =: p(j)

t (x, x′;y), there exists a limit

lim
t→∞p

(j)
t (x, x′;y) =: p(j)∞ (x′, y)

and

∣∣p(j)
t (x, x′;y) − p(j)∞ (x′, y)

∣∣ ≤ C
1 + |x|m

(1 + |x′|m′
)(1 + t)k

, t > 1,

∣∣∂x′p(j)
t (x, x′;y)

∣∣ ≤ Ct−(d+1)/2exp(−c|x − x′|2/t), 0<t≤1,

∣∣∂x′p(j)
t (x, x′;y) − ∂x′p(j)∞ (x′, y)

∣∣ ≤ C
1 + |x|m

(1 + |x′|m′
)(1 + t)k

, t > 1,

∣∣∂x′p(j)∞ (x′)
∣∣ ≤ C

(1 + |x′|m′
)(1 + t)k

.

If, moreover, for all i ≤ j − 1,

∣∣∂xp
(i)
t (x, x′;y)

∣∣ ≤ Ct−(d+1)/2 exp
(−c|x − x′|2/t

)
, 0 < t ≤ 1,

and

∣∣∂xp
(i)
t (x, x′;y)

∣∣ ≤ C

(1 + |x′|m′
)(1 + t)k

, t ≥ 1,

then the following inequalities hold true:
∣∣∂xp

(j)
t (x, x′;y)

∣∣ ≤ Ct−(d+1)/2 exp
(−c|x − x′|2/t

)
, 0 < t ≤ 1,

and

∣∣∂xp
(j)
t (x, x′;y)

∣∣ ≤ C

(1 + |x′|m′
)(1 + t)k

.
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PROOF. We define p
(j)
t by the formula [cf. with (27)]

p
(j)
t (x, x′;y)

:=
∫ t

0
ds

∫
pt−s (x

′′, x′;y)
∑

0≤i<j

p(i)(x, x′′;y)Li,j (x
′′, y) dx′′(34)

with

Li,j = Ci
j

∂j−iL

∂yj−i

and repeat the arguments from Section 4.3—the first induction step—to show that
indeed

p
(j)
t (x, x′;y) = ∂yp

(j−1)
t (x, x′;y).

The other assertions of Theorem 9 follow immediately from results proved above
for p̄t and q̄t with p̄t = p

(j)
t , L̄i = Li,j [cf. induction assumptions (ISj )]. �

Note that some assertions of the last theorem hold true under a weaker
assumption (H 1+α,j ), similar to the previous section.

5. PDE solution bounds.

5.1. First derivative q
f
t = ∂yp

f
t . We now establish the differentiability of p

f
t

with respect to y under less restrictive assumptions than needed for the transition
density pt . Firstly, we study the case f (x, t) ≡ g(x), that is, when the function f

does not depend on t . Let g(x), x ∈ R
d , g ∈ Hα ,

|g(x)| ≤ C(1 + |x|k).
The result of this subsection is the following theorem.

THEOREM 10. Assume that the conditions (Hb), (Ha) and either ((H2+α,1)+
(g ∈ Cα)) or ((Hα,1)+ (g ∈ C2+α)) hold. Then for each t > 0, x, x′ ∈ R

d , y ∈ R
�,

pt(x, g;y) is differentiable in the variable y, and the gradient ∂ypt (x, g;y) is
given by the formula

∂ypt (x, g, y) = qt(x, g;y)

:=
∫ t

0
ds

∫
Rd

ps(x, x′′;y)
∂L

∂y
(x′′, y)pt−s (x

′′, g;y) dx′′.
(35)

The function qt is bounded and continuous in y for any t > 0, x, x′.
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PROOF. Under assumption (H2+α,1) + (g ∈ Cα) all assertions follow from
considerations in Theorem 5 with additional integration with respect to x′ variable.
Under assumption (Hα,1) + (g ∈ C2+α) the same calculus becomes even easier
due to the bound ‖pt(·, g, y)‖2+α ≤ C‖g‖2+α where C does not depends on t

([8], combination of Theorems 3.6 and 3.5). �

5.2. Behavior of the first derivative q
f
t as t → ∞. Recall the notation

f 1
t (x, g;y) = ∂L

∂y
pt (x, g;y).

We need to show that the following integral converges:
∫ ∞

0
dt

∫
Rd

[qt (x, g;y) − q∞(g, y)]dx′,

where

q∞(g, y) = lim
t→∞qt(x, g;y) = ∂yp∞(g, y),

and we have the representation

q∞(g, y) :=
∫ t

0
ds

∫
dx′′p∞(x, x′′;y)f 1

s (x′′, g;y).

More precisely, we now show the following theorem.

THEOREM 11. Assume that conditions (Hb), (Ha) and either ((H2+α,1) +
(g ∈ Hα)) or ((Hα,1) + (g ∈ C2+α)) hold. Then for each k, there exists C,m ∈ R

such that for all y ∈ R
�, x ∈ R

d , t ≥ 1,

|qt (x, g;y) − q∞(g;y)| ≤ C
1 + |x|m
(1 + t)k

,

|q∞(g, y)| ≤ C,

and moreover,

q∞(g, y) = ∂yp∞(g, y).

The same assertion is valid for the second derivative, ∂2
ypt (x, g, y) under

assumption either ((H 1+α,2) + (g ∈ Hα)) or ((Hα,2) + (g ∈ C2)). Moreover, for
any k, there exists C,m ∈ R such that for all y ∈ R

�, x ∈ R
d , t ≥ 1,

|∂xqt (x, g;y)| ≤ C
1 + |x|m
(1 + t)k

.

Finally, for any t > 0 and y, pt(·, g, y) ∈ C2+α .
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PROOF. Similarly to the previous theorem, again under assumption
((H 2+α,1) + (g ∈ Cα)), the proof follows from considerations in Theorem 5
with additional integration with respect to x′ variable, while under assump-
tion ((Hα,1) + (g ∈ C2+α))—from the same calculus due to the bound ‖pt(·,
g, y)‖2+α ≤ C‖g‖2+α . The assertion concerning ∂xp

(j)
t (x, g, y) follows from

the inequalities of Theorem 8 after integration with respect to variable x′. The
last assertion, pt(·, g, y) ∈ C2+α , is classical; see [8], Theorem 3.5 or [12],
Chapter 4. �

PROOF OF THEOREM 2. For the case j > 0, the proof follows from
Theorems 10 and 11 and the linearity of the operator g → pt(x, g, y) which
implies the formula

∂j
y pt (x, f, y) =

j∑
�=0

C�
j (∂

�
ypt )(x, g, y)

∣∣
g=∂

j−�
y f

.

The case j = 0 is implied by Theorem 1, also for j = 0, after integration with
respect to the variable x′. �
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