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Abstract. Let T = U |T | be the polar decomposition of a bounded linear

operator T on a Hilbert space. The transformation eT = |T | 12 U |T | 12 is called

the Aluthge transformation and eTn means the n-th Aluthge transformation.

In this paper, firstly, we show that eT = V U |eT | is the polar decomposition of
eT , where |T | 12 |T ∗| 12 = V

ŕŕ|T | 12 |T ∗| 12
ŕŕ is the polar decomposition. Secondly,

we show that eT = U | eT | if and only if T is binormal, i.e., [|T |, |T ∗|] = 0,
where [A, B] = AB − BA for any operators A and B. Lastly, we show that
eTn is binormal for all non-negative integer n if and only if T is centered, i.e.,
{T n(T n)∗, (T m)∗T m : n and m are natural numbers} is commutative.
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1. INTRODUCTION

In what follows, a capital letter means a bounded linear operator on a complex
Hilbert space H. An operator T is said to be positive (denoted by T > 0) if
(Tx, x) > 0 for all x ∈ H. Let T = U |T | be the polar decomposition of T .
In [1], Aluthge defined a transformation T̃ = |T | 12 U |T | 12 which was later called
the Aluthge transformation. Aluthge transformation is very useful, and many
authors have obtained results by using it. Mainly, these results were on non-
normal operators, for example [2], [8] and [12]. Moreover, for each non-negative
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integer n, Jung, Ko and Pearcy defined the n-th Aluthge transformation T̃n in [8]
as

T̃n = ˜(T̃n−1) and T̃0 = T.

One of the authors showed some properties of the n-th Aluthge transformation
on operator norms as parallel results to those of powers of operators in [13], [14],
[15] and [16]. On the other hand, the polar decomposition of Aluthge transforma-
tion was discussed in [1], but the complete solution of this problem has not been
obtained. In Section 2, we will obtain the polar decomposition of the Aluthge
transformation.

An operator T is said to be binormal if [|T |, |T ∗|] = 0, where |T | = (T ∗T )
1
2

and [A, B] = AB − BA for operators A and B. Binormality of operators was
defined by Campbell in [3], and he showed some properties of binormal operators
in [4]. An operator T is said to be centered if the following sequence

. . . , T 3(T 3)∗, T 2(T 2)∗, TT ∗, T ∗T, (T 2)∗T 2, (T 3)∗T 3, . . .

is commutative, which is defined in [10]. Morrel and Muhly showed some properties
of centered operators, and obtained a nice structure of centered operators. An
operator T is said to be quasinormal if T ∗TT = TT ∗T . Relations among these
operator classes are easily obtained as follows:

quasinormal ⊂ centered ⊂ binormal.

We remark that binormal operators are called weakly centered operators in [11].
In Section 3, we obtain a characterization of binormal operators via Aluthge

transformation. Most results on T̃ show that it generally has better properties
than T . However, we have an example of a binormal operator T such that T̃
is not binormal. In this section, we also obtain an equivalent condition to the
binormality of T̃k for all k = 0, 1, 2, . . . , n.

In Section 4, we will show a characterization of centered operators.

2. POLAR DECOMPOSITION OF THE ALUTHGE TRANSFORMATION

In this section we show the polar decomposition of the Aluthge transformation as
follows:

Theorem 2.1. Let T = U |T | and

(2.1) |T | 12 |T ∗| 12 = V
∣∣∣|T | 12 |T ∗| 12

∣∣∣

be the polar decompositions. Then T̃ = V U |T̃ | is also the polar decomposition.

By Theorem 2.1, we can obtain the polar decomposition of the n-th Aluthge
transformation for all natural number n, because the partial isometry which ap-
pears in the polar decomposition of T̃ is only the product of two partial isometries.
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Proof of Theorem 2.1. (i) Proof of T̃ = V U |T̃ |.
V U |T̃ | = V U(|T | 12 U∗|T |U |T | 12 )

1
2 U∗U = V (|T ∗| 12 |T | |T ∗| 12 )

1
2 U

= V
∣∣∣|T | 12 |T ∗| 12

∣∣∣ U = |T | 12 |T ∗| 12 U by (2.1)

= |T | 12 U |T | 12 = T̃ .

(ii) We will show N(T̃ ) = N(V U).

V Ux = 0 ⇔ |T | 12 |T ∗| 12 Ux = 0 by N(V ) = N(|T | 12 |T ∗| 12 )

⇔ |T | 12 U |T | 12 x = 0

⇔ T̃ x = 0,

that is, N(V U) = N(T̃ ).

(iii) By (ii), we have N(V U)⊥ = N(|T̃ |)⊥ = R(|T̃ |). Then for any x ∈
N(V U)⊥, there exists a sequence {yn}∞n=1 ⊂ H such that x = lim

n→∞
|T̃ |yn. Then

we obtain

‖V Ux‖ = ‖V U lim
n→∞

|T̃ |yn‖ = ‖ lim
n→∞

V U |T̃ |yn‖ = ‖ lim
n→∞

T̃ yn‖ by (i)

= lim
n→∞

‖T̃ yn‖ = lim
n→∞

‖ |T̃ |yn‖ = ‖ lim
n→∞

|T̃ |yn‖ = ‖x‖,
that is, V U is a partial isometry.

Therefore the proof is complete by (i), (ii) and (iii).

3. APPLICATIONS TO BINORMAL OPERATORS

In this section we first show a characterization of binormal operators via Aluthge
transformation.

Theorem 3.1. Let T = U |T | be the polar decomposition. Then

T̃ = U |T̃ | ⇐⇒ T is binormal.

Remark 3.2. Usually, T̃ = U |T̃ | in Theorem 3.1 is not the polar decompo-
sition since N(U) = N(T̃ ) does not hold (see Proposition 3.9).

Proof of Theorem 3.1. Proof of (⇒). By the assumption T̃ = U |T̃ |, we have

|T | 12 |T ∗| 12 = |T | 12 U |T | 12 U∗ = T̃U∗ = U |T̃ |U∗ > 0,

then |T | 12 |T ∗| 12 = |T ∗| 12 |T | 12 , that is, T is binormal.
Proof of (⇐). If T is binormal, then we have 0 6 |T | 12 |T ∗| 12 =

∣∣|T | 12 |T ∗| 12
∣∣.

Then

T̃ = |T | 12 U |T | 12 = |T | 12 |T ∗| 12 U =
∣∣|T | 12 |T ∗| 12 ∣∣U

= UU∗(|T ∗| 12 |T | |T ∗| 12 )
1
2 U = U(|T | 12 U∗|T |U |T | 12 )

1
2 = U |T̃ |.

Hence the proof is complete.
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For each p > 0, an operator T is said to be p-hyponormal if (T ∗T )p > (TT ∗)p.
In particular, 1-hyponormality is called hyponormality and 1

2 -hyponormality is
called semi-hyponormality. An operator T is said to be ∞-hyponormal if T is
p-hyponormal for all p > 0 which is defined in [9]. An operator T is said to be
paranormal if ‖T 2x‖ > ‖Tx‖2 for all unit vector x ∈ H. It is well known that the
following relations among these classes of operators hold for 0 < q < p:

∞-hyponormal ⊂ p-hyponormal ⊂ q-hyponormal ⊂ paranormal.

As an application of Theorem 3.1, we have a result on hyponormality of
paranormal operators as follows:

Corollary 3.3. Let T = U |T | be paranormal and T̃ = U |T̃ |. Then T is
binormal and hyponormal.

We note that T is ∞-hyponormal in Corollary 3.3 since binormality and
hyponormality ensure ∞-hyponormality.

To prove Corollary 3.3, we need the following result:

Theorem A. ([4]) Let T be a binormal operator. If T is also paranormal,
then T is hyponormal.

Proof of Corollary 3.3. By Theorem 3.1 and T̃ = U |T̃ |, T is binormal. Hence
T is binormal and paranormal, then T is hyponormal by Theorem A.

Campbell obtained a binormal operator T such that T 2 is not binormal in
[4], and Furuta obtained an equivalent condition for binormality of T 2 when T is
binormal as follows:

Theorem B. ([6]) Let T = U |T | be the polar decomposition of T . If T is
binormal, then T 2 is binormal if and only if the following four properties hold:

(i) [(U2)∗U2, U2(U2)∗] = 0;
(ii) [U2(U2)∗, U∗|T | |T ∗|U ] = 0;
(iii) [(U2)∗U2, U |T | |T ∗|U∗] = 0;
(iv) [U∗|T | |T ∗|U,U |T | |T ∗|U∗] = 0.

On the other hand, as a nice application of Furuta inequality [7], Aluthge
showed that if T is p-hyponormal for 0 < p 6 1

2 , then T̃ is (p + 1
2 )-hyponormal

in [1]. This result states that T̃ has a better property than T . Hence one might
expect that T̃ is also binormal if T is binormal. But there is a counterexample for
this expectation as follows:

Example 3.4. There exists a binormal operator T such that T̃ is not binor-
mal.

Let T =




0 0 5
1
2

√
3

2 0√
3

2
−1
2 0


 and T = U |T | be the polar decomposition. Then

T is binormal since

T ∗T · TT ∗ = TT ∗ · T ∗T =

(
25 0 0
0 1 0
0 0 25

)
,
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and also |T | = (T ∗T )
1
2 =

( 1 0 0
0 1 0
0 0 5

)
, so that U = T |T |−1 =




0 0 1
1
2

√
3

2 0√
3

2
−1
2 0


.

Therefore T̃ = |T | 12 U |T | 12 =




0 0
√

5
1
2

√
3

2 0√
15
2

−√5
2 0


. We get that

(T̃ )∗T̃ · T̃ (T̃ )∗ =


 20 −√3 0
−5
√

3 2 0
0 0 25




and

T̃ (T̃ )∗ · (T̃ )∗T̃ =


 20 −5

√
3 0

−√3 2 0
0 0 25


 .

Hence T̃ is not binormal.
Here we shall show an equivalent condition for binormality of T̃ as follows:

Theorem 3.5. Let T = U |T | be the polar decomposition of a binormal op-
erator T . Then the following assertions are equivalent:

(i) T̃ is binormal;
(ii) [U2|T |(U2)∗, |T |] = 0.

As a preparation of this discussion, we shall state the following lemma which
is a modification of Theorem 2 of [5].

Lemma C ([5]). Let A,B > 0 and [A,B] = 0. Then

[PN(A)⊥ , PN(B)⊥ ] = [PN(A)⊥ , B] = [A,PN(B)⊥ ] = 0,

where PM is the projection onto a closed subspace M.

We remark that if T is binormal, then the following assertion holds by
Lemma C.

(3.1) [|T |, |T ∗|] = [U∗U,U |T |U∗] = [|T |, UU∗] = [U∗U,UU∗] = 0.

Proof of Theorem 3.5. First, we note that T is binormal if and only if

(3.2) [U |T |U∗, |T |] = 0.

Then we obtain

(3.3) [U |T |U∗, U2|T |(U2)∗] = 0

since
U2|T |(U2)∗ · U |T |U∗ = U · U |T |U∗ · |T | · U∗

= U · |T | · U |T |U∗ · U∗ by (3.2)

= U |T |U∗ · U2|T |(U2)∗.
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Therefore we have

(3.4)

|T̃ |2|T̃ ∗|2 = |T | 12 U∗|T |U |T | 12 · |T | 12 U |T |U∗|T | 12
= U∗ · U |T | 12 U∗ · |T | · U |T |U∗ · U2|T |(U2)∗ · U |T | 12 U∗ · U
= U∗{|T | · U2|T |(U2)∗}U |T |2U∗U by (3.2) and (3.3)

= U∗{|T | · U2|T |(U2)∗}U |T |2

and

(3.5)

|T̃ ∗|2|T̃ |2 = |T | 12 U |T |U∗|T | 12 · |T | 12 U∗|T |U |T | 12
= U∗ · U |T | 12 U∗ · U2|T |(U2)∗ · U |T |U∗ · |T | · U |T | 12 U∗ · U
= U∗{U2|T |(U2)∗ · |T |}U |T |2U∗U by (3.2) and (3.3)

= U∗{U2|T |(U2)∗ · |T |}U |T |2.
Proof of (ii) ⇒ (i). By (3.4) and (3.5), we have (i).
Proof of (i) ⇒ (ii). Since T̃ is binormal, we have

{U2|T |(U2)∗ · |T |}U |T |2 = UU∗{U2|T |(U2)∗ · |T |}U |T |2
= UU∗{|T | · U2|T |(U2)∗}U |T |2 by (3.4) and (3.5)

= {|T |UU∗ · U2|T |(U2)∗}U |T |2 by (3.1)

= {|T | · U2|T |(U2)∗}U |T |2,
that is, U2|T |(U2)∗ · |T | = |T | · U2|T |(U2)∗ on

R(U |T |2) = N(|T |2U∗)⊥ = N(UU∗)⊥ = R(UU∗).

In other words,

(3.6) U2|T |(U2)∗ · |T | · UU∗ = |T | · U2|T |(U2)∗ · UU∗

holds. Hence, we have

U2|T |(U2)∗ · |T | = U2|T |(U2)∗ · UU∗ · |T |
= U2|T |(U2)∗ · |T | · UU∗ by (3.1)

= |T | · U2|T |(U2)∗ · UU∗ by (3.6)

= |T | · U2|T |(U2)∗.

Therefore the proof is complete.

Next we show the following result on binormality of T̃n for a non-negative
integer n.

Theorem 3.6. Let T = U |T | be the polar decomposition. Then for each
non-negative integer n, the following assertions are equivalent:

(i) T̃k is binormal for all k = 0, 1, 2, . . . , n;
(ii) [Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n + 1.

We prepare the following lemmas in order to prove Theorem 3.6.
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Lemma 3.7. Let T be the polar decomposition. For each natural number n,
if

[Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n,

then the following properties hold:
(i) Uk|T |α(Uk)∗ =

{
Uk|T |(Uk)∗

}α for any α > 0 and for all k = 1, 2, . . . ,
. . . , n + 1;

(ii) [Uk|T |α(Uk)∗, |T |] = [Uk|T |α(Uk)∗, U∗U ] = 0 for any α > 0 and all
k = 1, 2, . . . , n;

(iii) Us|T |α(Us)∗U t = Us|T |α(Us−t)∗ and

(U t)∗Us|T |α(Us)∗ = Us−t|T |α(Us)∗

for any α > 0 and all natural numbers s and t such that 1 6 t 6 s 6 n + 1;
(iv) [Us|T |α(Us)∗, U t|T |α(U t)∗] = 0 for any α > 0 and all natural numbers

s and t such that s, t ∈ [1, n + 1];
(v) [(Uk)∗|T ∗|αUk, |T ∗|] = [(Uk−1)∗|T |αUk−1, U |T |U∗] = 0 for any α > 0

and all k = 1, 2, . . . , n;
(vi) (Us)∗|T |αUs(U t)∗ = (Us)∗|T |αUs−t and

U t(Us)∗|T |αUs = (Us−t)∗|T |αUs

for any α > 0 and all natural numbers s and t such that 1 6 t 6 s 6 n;
(vii) Un+1|T̃ |(Un+1)∗ = Un+1|T | 12 (Un+1)∗ · Un|T | 12 (Un)∗.

Proof. (i) We have only to prove the following: If [Uk|T |(Uk)∗, |T |] = 0 for
all k = 1, 2, . . . , n, then Un+1|T |α(Un+1)∗ =

{
Un+1|T |(Un+1)∗

}α. We prove this
by induction on n, and also we remark that

(3.7) [Uk|T |(Uk)∗, U∗U ] = 0 for all k = 1, 2, . . . , n

by Lemma C and the assumption.
Case n = 1.

U2|T |α(U2)∗ = U(U |T |U∗)αU∗

= U(U∗U)2α(U |T |U∗)αU∗

= U(U∗U · U |T |U∗ · U∗U)αU∗ by (3.7)

= (UU∗UU |T |U∗U∗UU∗)α

= {U2|T |(U2)∗}α.

Assume that (i) holds for some natural number n. We show that it holds for
n + 1.

Un+2|T |α(Un+2)∗

= U
{
Un+1|T |α(Un+1)∗

}
U∗

= U
{
Un+1|T |(Un+1)∗

}α
U∗ by the inductive hypothesis

= U(U∗U)2α
{
Un+1|T |(Un+1)∗

}α
U∗

= U
{
U∗U · Un+1|T |(Un+1)∗ · U∗U

}α
U∗ by (3.7)

=
{
UU∗UUn+1|T |(Un+1)∗U∗UU∗}α

=
{
Un+2|T |(Un+2)∗

}α
.



310 Masatoshi Ito, Takeaki Yamazaki and Masahiro Yanagida

(ii) By the assumption, (i) and Lemma C, we have (ii).
(iii) By using (ii) repeatedly, we have

Us|T |α(Us)∗U t = U
{
Us−1|T |α(Us−1)∗ · U∗U

}
U t−1

= U
{
U∗U · Us−1|T |α(Us−1)∗

}
U t−1 by (ii)

= U2
{
Us−2|T |α(Us−2)∗ · U∗U

}
U t−2

= U2
{
U∗U · Us−2|T |α(Us−2)∗

}
U t−2 by (ii)

= U3
{
Us−3|T |α(Us−3)∗ · U∗U

}
U t−3

= · · ·
= U t

{
Us−t|T |α(Us−t)∗ · U∗U

}

= U t
{
U∗U · Us−t|T |α(Us−t)∗

}
by (ii)

= U t · Us−t|T |α(Us−t)∗

= Us|T |(Us−t)∗,

so that Us|T |α(Us)∗U t = Us|T |α(Us−t)∗ and (U t)∗Us|T |α(Us)∗ = Us−t|T |α(Us)∗.
(iv) We may assume t < s.

Us|T |α(Us)∗ · U t|T |α(U t)∗ = Us|T |α(Us−t)∗ · |T |α(U t)∗ by (iii)

= U t
{
Us−t|T |α(Us−t)∗ · |T |α}

(U t)∗

= U t
{|T |α · Us−t|T |α(Us−t)∗

}
(U t)∗ by (ii)

= U t|T |α · Us−t|T |α(Us)∗

= U t|T |α(U t)∗U t · Us−t|T |α(Us)∗ by (iii)

= U t|T |α(U t)∗ · Us|T |α(Us)∗.

(v) Since |T ∗| = U |T |U∗, we easily obtain

[(Uk)∗|T ∗|αUk, |T ∗|] = [(Uk−1)∗|T |αUk−1, U |T |U∗]

for any α > 0 and all k = 1, 2, . . . , n, and also we have

(Uk−1)∗|T |αUk−1 · U |T |U∗

= (Uk−1)∗|T |α · Uk|T |U∗

= (Uk−1)∗
{|T |α · Uk|T |(Uk)∗

}
Uk−1 by (iii)

= (Uk−1)∗
{
Uk|T |(Uk)∗ · |T |α}

Uk−1 by the assumption

= U |T | · (Uk)∗|T |αUk−1 by (iii)

= U |T |U∗ · (Uk−1)∗|T |αUk−1

for any α > 0 and all k = 1, 2, . . . , n.
(vi) Since T ∗ = U∗|T ∗| is polar decomposition of T ∗, we have

(Us+1)∗|T ∗|αUs+1(U t)∗ = (Us+1)∗|T ∗|αUs+1−t

and
U t(Us+1)∗|T ∗|αUs+1 = (Us+1−t)∗|T ∗|αUs+1
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for any α > 0 and all natural numbers s and t such that 1 6 t 6 s 6 n by (v) and

(iii). So we get

(Us)∗|T |αUs(U t)∗ = (Us)∗|T |αUs−t and U t(Us)∗|T |αUs = (Us−t)∗|T |αUs.

(vii) By using (ii) and (iii), we have

Un+1|T̃ |(Un+1)∗ = Un+1(|T | 12 U∗|T |U |T | 12 )
1
2 (Un+1)∗

= Un(U |T | 12 U∗ · |T | · U |T | 12 U∗)
1
2 (Un)∗

= Un · U |T | 12 U∗ · |T | 12 · (Un)∗ by (ii)

= Un+1|T | 12 (Un+1)∗ · Un|T | 12 (Un)∗ by (iii).

Therefore the proof of Lemma 3.7 is complete.

Lemma 3.8. Let T = U |T | be the polar decomposition and n be a natural

number. If

[Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n,

then the following assertions are equivalent:
(i) [Un+1|T |(Un+1)∗, |T |] = 0.
(ii) [Un|T̃ |(Un)∗, |T̃ |] = 0.

Proof. At first, we remark that [U |T | 12 U∗, |T |] = 0 by (ii) of Lemma 3.7, and

also we have

(3.8)
|T̃ | = (|T | 12 U∗|T |U |T | 12 )

1
2 = U∗(U |T | 12 U∗ · |T | · U |T | 12 U∗)

1
2 U

= U∗ · |T | 12 · U |T | 12 U∗ · U = U∗|T | 12 U |T | 12 .

Case n = 1. Since [U |T | 12 U∗, |T |] = 0, we have

U |T̃ |U∗ = U(|T | 12 U∗|T |U |T | 12 )
1
2 U∗ = (U |T | 12 U∗ · |T | · U |T | 12 U∗)

1
2

= (|T | 12 · U |T |U∗ · |T | 12 )
1
2 = |(T̃ )∗|.

Hence [U |T̃ |U∗, |T̃ |] = [|(T̃ )∗|, |T̃ |], i.e. T̃ is binormal, so that we can prove this

case by Theorem 3.5.

Next, we shall prove that Lemma 3.8 holds for each natural number n such

that n > 2.

Here, suppose that [Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n. Then we
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have

(3.9)

Un|T̃ |(Un)∗ · |T̃ |
=

{
Un|T | 12 (Un)∗ · Un−1|T | 12 (Un−1)∗

}
·
{

U∗|T | 12 U |T | 12
}

by (3.8) and Lemma 3.7 (vii)

= Un|T | 12 (Un)∗ · Un−1|T | 12 (Un−1)∗ · (U∗U)2U∗|T | 12 U |T | 12
= U∗U · Un|T | 12 (Un)∗ · U∗U · Un−1|T | 12 (Un−1)∗ · U∗|T | 12 U |T | 12

by Lemma 3.7 (ii)

= U∗ · Un+1|T | 12 (Un+1)∗ · Un|T | 12 (Un)∗ · |T | 12 · U |T | 12
= U∗

{
Un+1|T | 12 (Un+1)∗ · |T | 12

}
Un|T | 12 (Un)∗U |T | 12
by Lemma 3.7 (ii)

= U∗
{

Un+1|T | 12 (Un+1)∗ · |T | 12
}

Un|T | 12 (Un−1)∗|T | 12
and

(3.10)

|T̃ | · Un|T̃ |(Un)∗

=
{

U∗|T | 12 U |T | 12
}
·
{
Un|T | 12 (Un)∗ · Un−1|T | 12 (Un−1)∗

}

by (3.8) and Lemma 3.7 (vii)

= U∗|T | 12 U · Un|T | 12 (Un)∗ · Un−1|T | 12 (Un−1)∗ · |T | 12
by Lemma 3.7 (ii)

= U∗|T | 12 · Un+1|T | 12 (Un+1)∗U · Un−1|T | 12 (Un−1)∗ · |T | 12
by Lemma 3.7 (iii)

= U∗
{
|T | 12 · Un+1|T | 12 (Un+1)∗

}
Un|T | 12 (Un−1)∗|T | 12 .

Proof of (i) ⇒ (ii). Since [Un+1|T |(Un+1)∗, |T |] = 0, we have [Un|T̃ |(Un)∗,
|T̃ |] = 0, that is, (ii) holds for n by (3.9) and (3.10).

Proof of (ii) ⇒ (i). Assume [Un|T̃ |(Un)∗, |T̃ |] = 0. Then we have
{

Un+1|T | 12 (Un+1)∗ · |T | 12
}

Un|T | 12 (Un−1)∗|T | 12

= UU∗
{

Un+1|T | 12 (Un+1)∗ · |T | 12
}

Un|T | 12 (Un−1)∗|T | 12

= UU∗
{
|T | 12 · Un+1|T | 12 (Un+1)∗

}
Un|T | 12 (Un−1)∗|T | 12 by (3.9) and (3.10)

=
{
|T | 12 · UU∗ · Un+1|T | 12 (Un+1)∗

}
Un|T | 12 (Un−1)∗|T | 12 by (3.1)

=
{
|T | 12 · Un+1|T | 12 (Un+1)∗

}
Un|T | 12 (Un−1)∗|T | 12 .

It is equivalent to

Un+1|T | 12 (Un+1)∗ · |T | 12 = |T | 12 · Un+1|T | 12 (Un+1)∗
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on R(Un|T | 12 (Un−1)∗|T | 12 ). On the other hand, since N(U) = N(|T |), we obtain

R(Un|T | 12 (Un−1)∗|T | 12 ) = N(|T | 12 Un−1|T | 12 (Un)∗)⊥

= N(Un|T | 12 (Un)∗)⊥

= N(|T | 14 (Un)∗)⊥

= N(U(Un)∗)⊥

= R(UnU∗).

Therefore we have

(3.11) Un+1|T | 12 (Un+1)∗ · |T | 12 · Un(Un)∗ = |T | 12 · Un+1|T | 12 (Un+1)∗ · Un(Un)∗,

so that

Un+1|T | 12 (Un+1)∗ · |T | 12
= Un+1|T | 12 (Un+1)∗ · |T | 12 · Un(Un)∗ by Lemma 3.7 (vi)

= |T | 12 · Un+1|T | 12 (Un+1)∗ · Un(Un)∗ by (3.11)

= |T | 12 · Un+1|T | 12 U∗ · (Un)∗ by Lemma 3.7 (iii)

= |T | 12 · Un+1|T | 12 (Un+1)∗,

that is, (i) holds for n.
Hence the proof is complete.

In order to prove Theorem 3.6, we also use the following:

Proposition 3.9. Let T = U |T | be the polar decomposition of a binormal
operator T . Then T̃ = U∗UU |T̃ | is also the polar decomposition of T̃ .

The proof is easily obtained by applying the following result.

Theorem D ([5]). Let T1 = U1|T1| and T2 = U2|T2| be the polar decompo-
sitions of T1 and T2 respectively. If T1 doubly commutes with T2 (i.e., [T1, T2] = 0
and [T1, T

∗
2 ] = 0), then T1T2 = U1U2|T1| |T2| is also the polar decomposition

of T1T2, that is, U1U2 is a partial isometry with N(U1U2) = N(|T1| |T2|) and
|T1| |T2| = |T1T2|.

Proof of Proposition 3.9. Since |T | 12 = U∗U |T | 12 and |T ∗| 12 = UU∗|T ∗| 12
are the polar decompositions of |T | 12 and |T ∗| 12 respectively, then |T | 12 |T ∗| 12 =
U∗UUU∗|T | 12 |T ∗| 12 is the polar decomposition of |T | 12 |T ∗| 12 by Theorem D. There-
fore we have that

T̃ = U∗UUU∗ · U |T̃ | = U∗UU |T̃ |
is also the polar decomposition of T̃ by Theorem 2.1.
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Proof of Theorem 3.6. We shall prove Theorem 3.6 by induction on n. We
remark that if [Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n + 1, then we have

(3.12) [Un+1|T̃ |(Un+1)∗, |T |] = [Un+1|T̃ |(Un+1)∗, U∗U ] = 0

by (vii) of Lemma 3.7 and Lemma C.
Case n = 1. Was already shown in Theorem 3.5.
Suppose that Theorem 3.6 holds for some natural number n. (i) holds for

n + 1 if and only if

T̃k is binormal for all k = 0, 1, 2, . . . , n + 1.

By putting S = T̃ , it is equivalent to

(3.13) T and S̃k are binormal for all k = 0, 1, 2, . . . , n.

Since S = U∗UU |S| is the polar decomposition by Proposition 3.9, (3.13) holds if
and only if

(3.14)

T is binormal and

[(U∗UU)k|S|{(U∗UU)k}∗, |S|] = [U∗U · Uk|T̃ |(Uk)∗ · U∗U, |T̃ |] = 0

for all k = 1, 2, . . . , n + 1

by the inductive hypothesis. On the other hand, if we assume (i) or (ii), then

[Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n + 1

by the inductive hypothesis, so that (3.14) is equivalent to

(3.15) T is binormal and [Uk|T̃ |(Uk)∗, |T̃ |] = 0 for all k = 1, 2, . . . , n + 1

by (3.12) and U∗U |T̃ | = U∗U(|T | 12 U∗|T |U |T | 12 )
1
2 = |T̃ |. Moreover Lemma 3.8

assures that (3.15) is equivalent to

[Uk|T |(Uk)∗, |T |] = 0 for all k = 1, 2, . . . , n + 2,

i.e. (ii) holds for n + 1.
Hence the proof is complete.

4. CHARACTERIZATION OF CENTERED OPERATORS

In [10], Morrel and Muhly obtained properties of centered operators as follows:

Theorem E. ([10]) Let T = U |T | be the polar decomposition of a centered
operator T . Then the following assertions hold:

(i) Un is a partial isometry for all natural number n;
(ii) the operators {(Un)∗|T |Un}∞n=1 commute with one another;
(iii) Tn = Un

{|T | · U∗|T |U · · · (Un−1)∗|T |Un−1
}

is the polar decomposition
for all natural number n.

Moreover, they showed a characterization of centered operators as follows:
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Theorem F. ([10]) Let T = U |T | be the polar decomposition and U be
unitary. Then T is a centered operator if and only if the operators

{(Un)∗|T |Un}∞n=−∞

commute with one another.

In this section, we show the following characterization of centered operators
which is an extension of (ii) of Theorem E and Theorem F.

Theorem 4.1. Let T = U |T | be the polar decomposition. Then the following
assertions are mutually equivalent:

(i) T is centered;
(ii) [|Tn|, |(Tm)∗|] = 0 for all natural numbers n and m;
(iii) [|Tn|, |T ∗|] = 0 for all natural number n;
(iv) operators {(Un)∗|T |Un, Un|T |(Un)∗, |T |}∞n=1 commute with one another;
(v) [Un|T |(Un)∗, |T |] = 0 for all natural number n;
(vi) T̃n is binormal for all non-negative integer n.

To prove Theorem 4.1, we will prepare the following lemmas.

Lemma 4.2. Let T be the polar decomposition. For each natural numbers n
and m, if

(4.1) [Uk|T |(Uk)∗, |T |] = 0 for all k = 0, 1, 2, . . . , m + n− 2,

then the following assertions are equivalent:
(i) [Um|T |(Um)∗, |Tn|] = 0;
(ii) [Um+n−1|T |(Um+n−1)∗, |T |] = 0.

Proof. We prove Lemma 4.2 by induction on n. The case n = 1 is obvious.
Assume that Lemma 4.2 holds for some natural number n and each natural

number m. Then we prove that it holds for n + 1 and each natural number m.
Here, let m be a natural number and suppose that (4.1) holds for n + 1, i.e.,

(4.2) [Uk|T |(Uk)∗, |T |] = 0 for all k = 0, 1, 2, . . . ,m + n− 1.

Then

(4.3) [U |T |U∗, |Tn|] = [UU∗, |Tn|] = 0

holds by the inductive assumption and Lemma C, and also we have

(4.4)

|Tn+1|2 = |T |U∗|Tn|2U |T |
= U∗ · U |T |U∗ · |Tn|2 · U |T |
= U∗ · |Tn|2 · U |T |U∗ · U |T | by (4.3)

= U∗|Tn|2U |T |2.
Therefore, we have

(4.5)

|Tn+1|2 · Um|T |(Um)∗ = U∗|Tn|2U |T |2 · Um|T |(Um)∗ by (4.4)

= U∗|Tn|2U · Um|T |(Um)∗ · |T |2 by (4.2)

= U∗ {|Tn|2 · Um+1|T |(Um+1)∗
}

U |T |2
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and

(4.6)

Um|T |(Um)∗ · |Tn+1|2
= Um|T |(Um)∗ · U∗|Tn|2U |T |2 by (4.4)

= U∗ {
Um+1|T |(Um+1)∗ · |Tn|2} U |T |2 by Lemma 3.7 (iii).

Proof of (ii) ⇒ (i). Assume that (ii) holds for n + 1. Since

[Um+(n+1)−1|T |(Um+(n+1)−1)∗, |T |] = [U (m+1)+n−1|T |(U (m+1)+n−1)∗, |T |] = 0,

we have
[Um+1|T |(Um+1)∗, |Tn|] = 0

by the inductive assumption. Hence we obtain

[|Tn+1|, Um|T |(Um)∗] = 0,

that is, (i) holds for n + 1 by (4.5) and (4.6).
Proof of (i) ⇒ (ii). Assume that (i) holds for n + 1. Then we have

Um+1|T |(Um+1)
∗ · |Tn|2 · U |T |2

= UU∗
{

Um+1|T |(Um+1)
∗ · |Tn|2

}
U |T |2

= UU∗
{
|Tn|2 · Um+1|T |(Um+1)

∗}
U |T |2 by (4.5) and (4.6)

= |Tn|2 · UU∗ · Um+1|T |(Um+1)
∗ · U |T |2 by (4.3)

= |Tn|2 · Um+1|T |(Um+1)
∗ · U |T |2,

that is,
Um+1|T |(Um+1)

∗ · |Tn|2 = |Tn|2 · Um+1|T |(Um+1)
∗

holds on
R(U |T |2) = N(|T |2U∗)⊥ = N(UU∗)⊥ = R(UU∗).

Then we have

(4.7) Um+1|T |(Um+1)
∗ · |Tn|2 · UU∗ = |Tn|2 · Um+1|T |(Um+1)

∗ · UU∗,

so we obtain

Um+1|T |(Um+1)
∗ · |Tn|2 = Um+1|T |(Um+1)

∗ · UU∗ · |Tn|2
= Um+1|T |(Um+1)

∗ · |Tn|2 · UU∗ by (4.3)

= |Tn|2 · Um+1|T |(Um+1)
∗ · UU∗ by (4.7)

= |Tn|2 · Um+1|T |(Um+1)
∗
.

Hence we have

[U (m+1)+n−1|T |(U (m+1)+n−1)∗, |T |] = [Um+(n+1)−1|T |(Um+(n+1)−1)∗, |T |] = 0,

that is, (ii) holds for n + 1 by the inductive assumption.
Therefore the proof is complete.



On the polar decomposition 317

Lemma 4.3. Let T = U |T | be the polar decomposition. For each natural
number n, if

[Uk|T |(Uk)
∗
, |T |] = 0 for all k = 0, 1, 2, . . . , n− 1,

then
|(Tn)∗| = U |T |U∗ · U2|T |(U2)

∗ · · ·Un|T |(Un)∗.

Proof. We prove Lemma 4.3 by induction on n.
The case n = 1 is obvious. Assume that Lemma 4.3 holds for some natural

number n. Then we show that it holds for n + 1.
By the inductive assumption, we have

(4.8) |(Tn)∗| = U |T |U∗ · U2|T |(U2)
∗ · · ·Un|T |(Un)∗.

Then we obtain

|(Tn+1)∗|
=(U |T | · |(Tn)∗|2 · |T |U∗)

1
2

=
{

U |T |
(
U |T |U∗ · U2|T |(U2)

∗ · · ·Un|T |(Un)∗
)2

|T |U∗
} 1

2

by (4.8)

=
{

U |T | · U |T |2U∗ · U2|T |2(U2)
∗ · · ·Un|T |2(Un)∗ · |T |U∗

} 1
2

by Lemma 3.7 (iv)

=
{

U |T |(U∗U)n+1 · U |T |2U∗ · U2|T |2(U2)
∗ · · ·Un|T |2(Un)∗ · |T |U∗

} 1
2

=
{
U |T | · U∗U · U |T |2U∗ · U∗U · U2|T |2(U2)

∗ · U∗U · · ·U∗U

· Un|T |2(Un)∗ · U∗U · |T |U∗} 1
2 by Lemma 3.7 (ii)

=
{

U |T |U∗ · U2|T |2(U2)∗ · U3|T |2(U3)
∗ · · ·Un+1|T |2(Un+1)

∗ · U |T |U∗
} 1

2

=U |T |U∗ · U2|T |(U2)∗ · U3|T |(U3)
∗ · · ·Un+1|T |(Un+1)

∗
by Lemma 3.7 (iv).

Therefore the proof is complete.

Proof of Theorem 4.1. Proofs of (i) ⇒ (ii), (ii) ⇒ (iii) and (iv) ⇒ (v) are
obvious, and also the equivalence relation between (v) and (vi) was already proved
in Theorem 3.6. Thus, we have only to prove (iii) ⇒ (v), (v) ⇒ (iv), (v) ⇒ (ii)
and (ii) ⇒ (i).

Proof of (iii) ⇒ (v). Firstly [U |T |U∗, |T |] = 0 and [U |T |U∗, |T 2|] = 0 ensures
[U2|T |(U2)∗, |T |] = 0 by Lemma 4.2. Secondly [Uk|T |(Uk)∗, |T |] = 0 for k = 1, 2
and [U |T |U∗, |T 3|] = 0 ensures [U3|T |(U3)∗, |T |] = 0 by Lemma 4.2. By repeating
this method, we have (v).

Proof of (v) ⇒ (iv). By (v), [Un|T |(Un)∗, |T |] = 0 holds for all natural
numbers n. Then we have

(4.9) [(Un−1)∗|T |(Un−1), U |T |U∗] = 0
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by (v) of Lemma 3.7. Hence

(Un)∗|T |Un · |T | = U∗ {
(Un−1)∗|T |Un−1 · U |T |U∗} U

= U∗ {
U |T |U∗ · (Un−1)∗|T |Un−1

}
U by (4.9)

= |T | · (Un)∗|T |Un,

that is, [(Un)∗|T |Un, |T |] = 0 holds for all natural numbers n.
Moreover we obtain

(Un)∗|T |Un · Um|T |(Um)∗

= (Un)∗
{|T | · Un+m|T |(Un+m)∗

}
Un by Lemma 3.7 (iii)

= (Un)∗
{
Un+m|T |(Un+m)∗ · |T |} Un by (v)

= Um|T |(Um)∗ · (Un)∗|T |Un by Lemma 3.7 (iii),

that is, [(Un)∗|T |Un, Um|T |(Um)∗] = 0 holds for all natural numbers n and m.
Hence we have (iv).
Proof of (v) ⇒ (ii). By (v) and Lemma 4.3, we have

(4.10)
|(Tm)∗|

= U |T |U∗ · U2|T |(U2)∗ · · ·Um|T |(Um)∗ for all natural number m,

and also by (v) and Lemma 4.2, we have

(4.11) [Um|T |(Um)∗, |Tn|] = 0 for all natural numbers m and n.

Hence we obtain (ii) from (4.10) and (4.11).
Finally, we show (ii) ⇒ (i). For s > t, we have

|T s|2|T t|2 = (T t)∗ · |T s−t|2 · |(T t)∗|2 · T t

= (T t)∗ · |(T t)∗|2 · |T s−t|2 · T t by (ii)

= |T t|2|T s|2

and
|(T s)∗|2|(T t)∗|2 = T t · |(T s−t)∗|2 · |T t|2 · (T t)∗

= T t · |T t|2 · |(T s−t)∗|2 · (T t)∗ by (ii)

= |(T t)∗|2|(T s)∗|2,
so that we have (i).

Therefore the proof is complete.
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