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Abstract. Pore-scale modeling and simulation of reactive flow in porous media has
a range of diverse applications, and poses a number of research challenges. It is known
that the morphology of a porous medium has significant influence on the local flow
rate, which can have a substantial impact on the rate of chemical reactions. While
there are a large number of papers and software tools dedicated to simulating either
fluid flow in 3D computerized tomography (CT) images or reactive flow using pore-
network models, little attention to date has been focused on the pore-scale simulation
of sorptive transport in 3D CT images, which is the specific focus of this paper. Here
we first present an algorithm for the simulation of such reactive flows directly on
images, which is implemented in a sophisticated software package. We then use
this software to present numerical results in two resolved geometries, illustrating the
importance of pore-scale simulation and the flexibility of our software package.
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1 Introduction

Understanding and controlling reactive flow in porous media is important for
a number of environmental and industrial applications, including oil recovery,
fluid filtration and purification, combustion and hydrology [26, 32]. Tradition-
ally, the majority of theoretical and experimental research into transport within
porous media has been carried out at macroscopic (Darcy) scale. However, the
pore-scale morphology of the porous medium can considerably influence the
velocity, pressure and solute fields, resulting in a Darcy-scale description be-
ing inaccurate. Due to this, direct numerical simulation promises to be a very
useful computational tool in a wide range of fields, and in combination with
experimental studies, can be used to determine quantities of interest that are
not experimentally quantifiable [7].

Significant progress over the past 10–15 years in the pore-scale simulation
of single phase flow has resulted in the computation of permeability tensors
for natural and technical porous media becoming a standard procedure. A
number of academic as well as commercial software tools, capable of processing
3D computerized tomography (CT) images in addition to virtually generating
porous media, are available, for example Avizo, GeoDict and Ingrain [3,12,16].
Most of those software tools have the additional ability of simulating two-phase
immiscible flow at the pore-scale directly on a computational domain obtained
through the segmentation of 3D CT images, often using the lattice Boltzmann
(LB), the level set or volume of fluid methods. In contrast, substantially less
work on the direct numerical simulation of reactive flow has been performed,
and only a few software tools with this capability exist. A limited number of
computational studies examining reactive transport where the reactions only
occur within the fluid phase (and not at a surface) exist [22,25]. In contrast, the
literature and computational tools examining full 3D pore-scale reactive flow
where the reactions occur at the pore wall (surface reactions) is sparse. The
majority of such existing studies and available numerical simulation packages
use pore-network mathematical models (see, for example, [23,30] and literature
therein), for which the geometry needs to be converted into an idealized series
of connected pores and throats to represent the porous medium. During this
process information on the morphology of the underlying media can be lost
(see, for example, [20] and [23]). In contrast, we describe the transport of a
generic solute through the Navier–Stokes (NS) system of equations coupled to
a convection-diffusion (CD) equation, where the computational domain is rep-
resented by a voxelized geometry, with each individual voxel either representing
solid or fluid. The CD equation is complemented by boundary conditions which
describe various types of surface reactions comprising a Robin boundary condi-
tion for the solute coupled to an ordinary differential equation (ODE) describing
the dynamics of the adsorption at the pore wall. Our goal is to describe the
transport and reaction of sub–micron particles, for which inertial effects of the
individual particles are negligible, motivating our choice of the solute transport
model in addition to its applicability to a broad range of problems. Discrete
models, where each particle is modeled as an individual entity, are necessary
when considering larger particles, for example with a radius greater than one
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micron, for which inertial effects become important. Several commercial soft-
ware packages, for example GeoDict [12], solve a range of discrete mathematical
models describing colloid transport and adsorption. However, numerical sim-
ulation of these models is often significantly more computationally expensive
than a continuous mathematical model and accounting for different reaction
kinetics is usually not possible in such packages. To solve the systems of equa-
tions on the voxelized domain, we use a sophisticated software package, called
Pore–Chem, which uses cell centered finite volume (FV) methods to numer-
ically solve 3D solute transport with surface reactions at the pore-scale. In
particular the software package has the ability to solve the systems of equa-
tions modeling colloidal reactive transport on a geometrical domain obtained
directly through imaging techniques, such as computerized tomography, which
allows for a very accurate spatial description of the computational domain.

Reactive flow in porous media is intrinsically a multiscale problem. The
goal of our developments is to support problems where scale separation is pos-
sible and in cases where it is not possible. The first case, where the separation
of scales is viable, is usually the focus of asymptotic homogenization theory.
In the second case, when scale separation is not possible, numerical upscal-
ing methods like multiscale finite element methods are often applied. During
the homogenization procedure, when applicable, certain assumptions are im-
posed, allowing for the derivation of macroscopic (Darcy scale) equations from
the microscale formulation, with effective parameters, such as the permeabil-
ity and the effective reaction rate, obtained through solution of a cell prob-
lem [13]. A number of studies have employed homogenization theory to derive
a macroscopic description of sorptive reactive transport for particular param-
eter regimes. The homogenization of solute transport in porous media in the
presence of surface reactions has been performed for both high Péclet numbers
(convection dominated regime) [1, 2], and when the Péclet number is of order
one [14,18,28]. In addition to being able to solve cell problems in a number of
settings, our software has the ability of solving a much broader class of problems
at the pore-scale, without being restricted by the assumptions required dur-
ing homogenization. Furthermore, it provides the possibility to study various
different types of surface reactions described by different kinetics.

The remainder of the paper is organized as follows. In Section 2 the mathe-
matical model is presented and cast into dimensionless variables. The method
of achieving a numerical solution to the system of equations is outlined in Sec-
tion 3, and illustrative results using this method are presented in Section 4.
Finally, conclusions are drawn in Section 4.3.2.

2 Mathematical model

We now detail the mathematical model, which describes the transport and
reaction of a generic solute at a 2D interface within a 3D pore-scale resolved
geometry, where we assume that the number of solute particles is sufficiently
large that representation within a continuum framework is valid.

Let us denote the spatial domain of interest by Ω, an open subset of R3.
We assume that we can decompose Ω into a solid domain, denoted by Ωs, and

Math. Model. Anal., 22(5):671–694, 2017.



674 O. Iliev, Z. Lakdawala, K. Neßler, T. Prill, Y. Vutov, Y. Yang, J. Yao

a fluid domain, denoted by Ωf , such that Ω = Ωs ∪Ωf . Denoting the external
boundary of our domain, being the closure of Ω, by ∂Ω, we partition this into
an inlet, ∂Ωin, an outlet, ∂Ωout, and external walls, ∂Ωwall, so that

∂Ω = ∂Ωin ∪ ∂Ωout ∪ ∂Ωwall.

We note that, although we here consider only one inlet and one outlet, extension
to consider multiple inlets and outlets is straightforward [9]. Finally, we denote
the interfacial boundary between the fluid and solid portions of the domain by
Γ = Ωf ∩Ωs, which we assume is reactive.

In order to describe the flow of fluid through the porous media, by appealing
to the conservation of momentum and assuming changes in temperature are
negligible, the incompressible Navier–Stokes equations are used [6]:

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ µ∇ · (∇v) ,

∇ · v = 0,

x ∈ Ωf , t > 0,
(2.1a)

(2.1b)

where v(x, t) [m/s] and p(x, t) [Pa] are the velocity and pressure of the fluid
respectively, while µ ≥ 0 [Pa s] and ρ ≥ 0 [kg/m3] are the viscosity and the
density of the fluid which we assume are constants [6]. Suitable boundary
conditions on ∂Ω are given by

v = Vin, x ∈ ∂Ωin,

p = Pout, x ∈ ∂Ωout,

v = 0, x ∈ ∂Ωwall,

t > 0,

(2.2a)

(2.2b)

(2.2c)

where Vin [m/s] is the inlet velocity which is positive in the selected coordinate
system, Pout [Pa] is the pressure at the outlet, and n is the normal to the
boundary ∂Ω pointing into the fluid. Although here we have used no-slip and
no-flux flow conditions for the external walls, symmetry or periodic boundary
conditions can also be imposed which may be more appropriate depending
on the problem to be solved. Further boundary conditions are required to be
specified on the reminder of the boundary to Ωf , being the fluid–solid interface.
To allow for the slip of flow along the fluid–solid interface, and the inclusion of
additional effects such as charged fluids or matrices, we use the Navier–Maxwell
slip conditions, given by

v · n = 0, v · t = βn ·
(

∇v + (∇v)
T
)

· t, x ∈ Γ, t > 0, (2.3)

where β [m] is the slip length on x ∈ Γ measured per unit length, t is any
unit tangent to the surface such that t · n = 0, and the superscript T denotes
the transpose. When β = 0 then the standard no-slip and no-flux boundary
conditions for the flow are enforced on Γ . We specify initial conditions through

v(x, 0) = v0(x), p(x, 0) = p0(x), x ∈ Ωf , (2.4)

where v0 [m/s] and p0 [Pa] are known functions. We discuss the choice for
these in Section 3.
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We denote the concentration of the solute within the fluid by c(x, t), mea-
sured in particle number per m3. Appealing to the conservation of mass, as-
suming no fluid–phase reactions occur and ignoring inertial effects, the spatio–
temporal evolution of the solute concentration is given by

∂c

∂t
+∇ · (vc) = D∇ · (∇c) , x ∈ Ωf , t > 0, (2.5)

where D ≥ 0 [m2/s] is the solute diffusion coefficient which we assume to be
scalar and constant. We assume a known concentration of the solute at the
inlet, and prescribe zero flux of the solute at the outlet and on the external
walls as follows:

c = cin, x ∈ ∂Ωin, t > 0,

∇c · n = 0, x ∈ ∂Ωout ∪ ∂Ωwall,
t > 0,

(2.6a)

(2.6b)

where cin > 0, measured in particle number per m3, is assumed to be constant.

2.1 Models for surface reactions

We are required to specify boundary conditions for c(x, t) on x ∈ Γ , to de-
scribe the surface reactions occurring here. In general, there are two stages of
adsorption of a particle from the bulk solution to the solid surface. The first
stage involves the diffusion of particles from the bulk solution to the subsurface
and the second stage then involves the transfer of particles from the subsurface
to the surface. After the adsorption of a molecule at the interface, there is a
reorientation of the colloid molecules at the surface, which results in a change
in the surface tension [17]. Assuming that both the rate of diffusion of the
particle from the bulk to the subsurface, and the rate of the transfer of the
particles from the subsurface to the surface are important in determining the
overall rate of reaction, we use a mixed kinetic–diffusion adsorption description,
given by

−D∇c · n =
∂m

∂t
= f(c,m), x ∈ Γ, t > 0, (2.7)

herem(x, t) is the surface concentration of the particle under consideration [17],
measured in units of particle number per unit surface area, which contrasts with
c(x, t) being measured in units of number per unit volume. The function f(c,m)
describes the kinetics of the rate of change of the surface concentration on the
reactive boundary [10]. Equation (2.7) states that the change in the surface
concentration is equal to the flux across the surface, where the movement from
the bulk to the surface is termed adsorption, and movement from the surface
to the bulk is termed desorption. If Γ is nonreactive then f = 0, so the
adsorbed concentration on this boundary type remains constant, and a no-flux
boundary condition for the solute concentration is prescribed. For reactive
boundaries, the choice of f and its dependence on c and m is highly influential
in correctly describing the reaction dynamics at the solid–fluid interface. A
number of different isotherms exist for describing these dynamics, dependent
on the solute attributes, the order of the reaction, and the interface type.

Math. Model. Anal., 22(5):671–694, 2017.
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The simplest of these is the Henry isotherm, which assumes a linear rela-
tionship between the surface pressure and the number of adsorbed particles,
and takes the form

f = κac− κdm, x ∈ Γ, t > 0, (2.8)

here κa ≥ 0 [m/s] is the rate of adsorption and κd ≥ 0 [1/s] is the rate of desorp-
tion at the reactive boundary. Equation (2.8) states that the rate of adsorption
is proportional to the concentration of particles in solution at the reactive sur-
face. As such, the rate of adsorption predicted does not saturate at higher
surface concentrations. However, physically we expect the rate of adsorption
to decrease as the quantity of adsorbed particles increases and the available sur-
face area for adsorption decreases. Even though the Henry isotherm predicts
no limit to surface concentration and does not model any interaction between
the particles, it has been used in a large number of analytical studies due to
its linearity.

The Langmuir adsorption isotherm was the first to be derived mathemat-
ically, and is suitable to describe the adsorption of a monolayer of localized
non-ionic non-interacting molecules at a 2D solid interface, and a derivation
from statistical physics may be found in [4]. It is also frequently used to de-
scribe the adsorption of molecules at a solid–liquid interface, and is described
by

f = κac (1−m/m∞)− κdm, x ∈ Γ, t > 0, (2.9)

herem∞ > 0 is the maximal possible adsorbed surface concentration, measured
in number per unit area, at the reactive boundary. In comparison to the Henry
isotherm, the Langmuir isotherm predicts a decrease in the rate of adsorption
as the adsorbed concentration increases due to the reduction in available ad-
sorption surface. The Henry isotherm, given in Equation (2.8), is a linearization
of Equation (2.9), explaining why it produces an accurate representation only
at low surface concentrations.

We make the assumption that the adsorption or desorption of our solute
does not alter the position of the reactive boundary, which in the case of small
volumes of particles being adsorbed is sufficiently accurate. By the conservation
of mass, such an assumption implies any adsorption or desorption on the surface
is represented by a corresponding increase or decrease in the density of the solid
material through time. In some cases, for example when the molecules are big or
the number being adsorbed is large, interface evolution needs to be considered
and may be achieved in a similar manner to [8, 24, 27]. This is particularly
important in the application of rock dissolution and precipitation, where large
geometrical changes are observed.

To close the system of equations, we impose the initial conditions

c(x, 0) = c0(x), x ∈ Ωf , m(x, 0) = m0(x), x ∈ Γ, (2.10)

where c0 and m0 are known.
Our problem is, therefore, described by two systems of equations with one–

way coupling; the incompressible NS equations, described by (2.1) –(2.4) and
the CD equation described by (2.5)–(2.6), with reactive boundaries conditions
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(2.7), initial conditions (2.10), and a description of the reaction kinetics, for
example Equation (2.8) or (2.9). We now cast the equations into dimensionless
variables, before detailing the methods used to obtain a numerical solution.

2.2 Nondimensionalization

Using a caret notation to distinguish the dimensionless variable from its di-
mensional equivalent, we let

x = Lx̂, v = Vinv̂, t = Lt̂/Vin, p = Pout + ρV 2
inp̂,

c = cinĉ, m = cinLm̂, M = cinL
3M̂,

where L > 0 is a typical length scale of the computational domain and Vin =
‖Vin‖. As our computational domain consists of voxels, the relationship be-
tween each voxel and its material property is conserved upon nondimension-
alization, while the length, area and volume of each voxel scales with L, L2

and L3 respectively. Given this, we let Ω̂, Ω̂s and Ω̂f , with boundaries ∂Ω̂in,

∂Ω̂out, ∂Ω̂wall and Γ̂ represent the dimensionless versions of the equivalent di-
mensional domains and boundaries, where the voxel size is scaled accordingly.
In dimensionless variables, we, therefore, have

(

∂v̂

∂t̂
+ v̂ · ∇̂v̂

)

= −∇̂p̂+
1

Re
∇̂2v̂,

∇̂ · v̂ = 0,

∂ĉ

∂t̂
+ ∇̂ · (v̂ĉ) =

1

Pe
∇̂ ·

(

∇̂ĉ
)

,

x̂ ∈ Ω̂f , t̂ > 0,

(2.11a)

(2.11b)

(2.11c)

where Re = LρVin

µ , Pe = VinL
D are the global Reynolds and Péclet numbers

respectively, being the ratio between the inertial and viscous forces and the
ratio between advective and diffusive transport rates respectively. Boundary
conditions for the NS system are given by

v̂ = n, x̂ ∈ ∂Ω̂in,

p̂ = 0 and ∇̂v̂ · n = 0 x̂ ∈ ∂Ω̂out,

v̂ = 0, x̂ ∈ ∂Ω̂wall,

v̂ · ·n, v̂ · t = β̂n ·

(

∇̂v̂ +
(

∇̂v̂
)T

)

· t, x̂ ∈ Γ̂ ,

t̂ > 0,

(2.12a)

(2.12b)

with β̂ = β/L, and the boundary conditions for the Convection-Diffusion-
Reaction, CDR, equation are given by

1

Pe
∇̂ĉ · n =

∂m̂

∂t̂
= f̂(ĉ, m̂), x̂ ∈ Γ̂ ,

ĉ = 1, x̂ ∈ ∂Ω̂in,

∇̂ĉ · n = 0, x̂ ∈ ∂Ω̂out ∪ ∂Ω̂wall.

t̂ > 0.

(2.13a)

(2.13b)

(2.13c)

Math. Model. Anal., 22(5):671–694, 2017.
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In the case of the Henry isotherm, we have

f̂ = DaIaĉ−DaIdm̂, x̂ ∈ Γ̂ , t̂ > 0, (2.14)

whereas, nondimensionalization of the Langmuir isotherm yields

f̂ = DaIaĉ

(

1−
m̂

m̂∞

)

−DaIdm̂, x̂ ∈ Γ̂ , t̂ > 0, (2.15)

where m̂∞ =
m∞

cinL
. In (2.14) and (2.15) the Damköhler numbers are given by

Daa =
κa

Vin
and Dad =

κdL

Vin

and describe the ratio of the rate of reaction (either adsorptive or desorptive)
to the rate of advective transport. The initial conditions are given by

v̂(x̂, 0) = v̂0(x̂), p̂(x̂, 0) = p̂0(x̂), ĉ(x̂, 0) = ĉ0(x̂), x̂ ∈ Ω̂f ,

m̂(x̂, 0) = m̂0(x̂), x̂ ∈ Γ̂ ,

(2.16a)

(2.16b)

where

v̂0(x̂) =
v0(x)

Vin
, p̂0(x̂) =

p0(x)− Pout

ρV 2
in

, ĉ0(x̂) =
c0(x)

cin
, m̂0(x̂) =

m0(x)

cinL
.

We now proceed to discuss the numerical methods used to obtain an ap-
proximate solution to our dimensionless system of equations given by (2.11),
with boundary conditions given by (2.12)–(2.15) and initial conditions specified
through (2.16).

3 Numerical methods

The full system of equations cannot be solved using analytical techniques, and
so numerical methods need to be employed to calculate an approximate solu-
tion. We employ FV methods to numerically solve our system of equations,
motivated by their local mass conserving properties. Other methods, for ex-
ample LB or finite difference methods may also be used for solving the flow
problem. We note that our CD solver is completely compatible with LB meth-
ods (the compatibility of our solver with finite difference methods depends on
the grid selection). Although the authors are not aware of a detailed compari-
son of the performance of FV and LB methods in solving the NS equations at
the pore-scale, some incomplete internal studies indicate that LB methods can
be advantageous for geometries with a very low porosity and a high tortuosity,
while FV methods are favorable in other cases. Due to the one-way coupling
between our two systems of equation, the velocity and pressure solutions are
at steady state. For the sake of generality, we consider the unsteady equations,
and begin by solving the system of equations describing the fluid flow, namely
(2.11a), (2.11b) along with (2.12a)–(2.12b), to obtain a steady state numerical
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solution where ∂v̂
∂t̂

= 0 is satisfied. This is achieved using a Chorin fractional
timestepping method and we refer the reader to [19] and [31] for full details
and for further references, where the methods used are described.

Once the solution of v̂ is obtained, we proceed to solve the system of
equations describing the solute transport and reaction, (2.11c) along with the
boundary conditions (2.13a)–(2.15) and initial conditions (2.16), using a FV
method with a cell-centered grid. For the sake of brevity, full details of the
numerical method employed are not given, we assume hat the reader is familar
with the basis of FV methods. Firstly, dimensionless time is uniformly parti-
tioned into Q time points, denoted by t̂0, t̂1, . . . t̂Q−1 with t̂k = k∆t̂, where ∆t̂
is the dimensionless timestep size. Then the spatial domain, Ω̂, is split into P
non-overlapping cubic finite volumes, Bl for l = 0, 1, . . . P1, which span the 3D
computational domain, such that Ω̂ = ∪P−1

l=0 Bl. Considering a single represen-
tative finite volume, Bl, we denote its six faces by Fl,j with center x̂j where
the subscript j = e, w, n, s, t, b denotes the east, west, north, south, top and
bottom faces respectively. Integration of (2.11c) over the control volume, Bl,
and time interval [t̂k, t̂k+1], upon application of the divergence theorem, yields

∫

Bl

ĉ(x̂, t̂k+1) dV −

∫

Bl

ĉ(x̂, t̂k) dV +

∫ t̂k+1

t̂k

∫

∂Bl

v̂ĉ · n dS dτ

=
1

Pe

∫ t̂k+1

t̂k

∫

∂Bl

∇̂ĉ · n dV dτ,

where ∂Bl is the boundary of Bl, so that ∂Bl =
∑

j=e,w,n,s,t,b Fl,j . Denoting
the center of the finite volume by xc and using the approximations

∫

Fl,j

φ(x̂, t̂) dS = Âjφ(x̂j , t̂) and

∫

Bl

φ(x̂, t̂) dS = |Bl|φ(x̂c, t̂),

for some scalar function φ for j = n, s, e, w, t, b, where Âj is the area of the face
Fl,j , we have

|Bl|
(

ĉ(x̂c, t̂
k+1)− ĉ(x̂c, t̂

k)
)

+

∫ t̂k+1

t̂k

(

Âe [v̂ĉ]x̂e
− Âw [v̂ĉ]

x̂x
+ Ân [v̂ĉ]x̂n

− Âs [v̂ĉ]x̂s
+Ât [v̂ĉ]x̂t

−Âb [v̂ĉ]x̂b

)

dτ=
1

Pe

∫ t̂k+1

t̂k

(

Âe

[

∂ĉ

∂x̂

]

x̂e

−Âw

[

∂ĉ

∂x̂

]

x̂w

+ Ân

[

∂ĉ

∂ŷ

]

x̂n

)

dτ+
1

Pe

∫ t̂k+1

t̂k

(

− Âs

[

∂ĉ

∂ŷ

]

x̂s

=Ât

[

∂ĉ

∂ẑ

]

x̂t

−Âb

[

∂ĉ

∂ẑ

]

x̂b

)

dτ.

Denoting ĉj(τ) = ĉ(x̂j , τ) and v̂j(τ) = v̂(x̂j , τ) for j = n, s, e, w, t, b, c, by first
order finite difference methods we have

|Bl|
(

ĉc(t̂
k+1)− ĉc(t̂

k)
)

+

∫ t̂k+1

t̂k
Âev̂eĉe − Âwv̂w ĉw+Ânv̂nĉn − Âsv̂sĉs + Âtv̂tĉt

− Âbv̂bĉb dτ =

∫ t̂k+1

t̂k

2

Pe

(

Âe
ĉe − ĉc
δx̂

− Âw
ĉc − ĉw

δx̂
+ Ân

ĉn − ĉc
δŷ

)

dτ

Math. Model. Anal., 22(5):671–694, 2017.
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+

∫ t̂k+1

t̂k

2

Pe

(

−Âs
ĉc − ĉs
δŷ

+ Ât
ĉt − ĉc
δẑ

− Âb
ĉc − ĉb
δẑ

)

dτ,

where δx̂, δŷ and δẑ are the width, length and height of the control volume Bl.
By virtue of using voxelized geometry, we know that δx̂ = δŷ = δẑ, Âj = (δx̂)

2

for all j = n, s, e, w, t, b, and |Bl| = (δx̂)
3
. By the implicit Euler method, we,

therefore, have

δx̂
(

ĉk+1
c − ĉkc

)

∆t̂
+ v̂k+1

e ĉk+1
e − v̂w ĉ

k+1
w + v̂k+1

n ĉk+1
n − v̂k+1

s ĉk+1
s + v̂k+1

t ĉk+1
t

− v̂k+1
b ĉk+1

b =
2

Peδx̂

(

ĉk+1
e +ĉk+1

w +ĉk+1
n +ĉk+1

s + ĉk+1
t + ĉk+1

b − 6ĉk+1
c

)

, (3.1)

where ĉkj = ĉ(x̂j , t̂
k) for j = n, s, e, w, t, b, c. In the case that one of the faces

of the control volume lies on a boundary, the appropriate boundary conditions
must be discretized; for the inlet, outlet and solid (or symmetry) boundaries
this is straightforward due to the Dirichlet and zero Neumann boundary con-
dition imposed there via (2.13b) and (2.13c). Therefore, we omit the details
for the discretization of the boundary conditions on the external boundary ∂Ω̂.
The appropriate discretization of the reactive boundary conditions, prescribed
on the fluid–solid interface through (2.13a) and the corresponding description
of the reaction kinetics, here either (2.14) or (2.15), is slightly more involved
and deserves a more detailed discussion.

In a fully implicit and coupled discretization the resulting discrete equa-
tions are nonlinear and the Newton method needs to be used. In a broad class
of practically interesting problems we have considered to date, we have not
faced very strong coupling between the dissolved and adsorbed concentrations.
Therefore, a fully implicit and coupled discretization was not required and we
have found that an operator splitting approach, or just a Picard linearization,
has worked well. In this approach, the dissolved particle concentration is com-
puted at t̂ = t̂k+1/2, and then the value is used to compute the deposited mass
at the time t̂ = t̂k+1. Runge–Kutta methods, or other methods for numeri-
cally solving stiff ODEs, are also straightforward to implement, and may be a
subject of future studies if required. In order to illustrate the method used in
Pore–Chem, we describe the discretization for the Langmuir isotherm, which
is achieved as follows. Firstly (2.15) is substituted into (2.13a), which is then
split into a Robin boundary condition and an ordinary differential equation:

−
1

Pe
∇̂ĉ · n = DaIaĉ (1− m̂/m̂∞)−DaIdm̂,

∂m̂

∂t̂
= DaIaĉ (1− m̂/m̂∞)−DaIdm̂.

x̂ ∈ Γ̂ , t̂ > 0.
(3.2a)

(3.2b)

If DaIaĉ/m̂∞+DaId = 0, then either ĉ = DaId = 0 or DaIa = DaId = 0. In both of

these cases, by (2.15), f̂ = 0 and so no reactions occur at the spatiotemporal
point under consideration, in which case, by (3.2a), we have ∇̂ĉ · n = 0 and
a zero Neumann boundary condition, which is straightforward to implement.
Otherwise, if DaIa

ĉ
/m̂∞ + DaId > 0, assuming that ĉ(x̂, t̂) is constant over the



On the Pore-Scale Modeling and Simulation of Reactive Transport 681

time period in question, namely t̂ ∈ [t̂k, t̂k+1], and equal to ĉ(x̂) at each spatial
point, (3.2b) may be integrated to give

m̂(x̂, t̂k+1) =
DaIaĉ(x̂)−B exp

(

−
(

DaIaĉ(x̂)m̂
−1
∞ +DaId

)

t̂k+1
)

DaIaĉ(x̂)m̂
−1
∞ +DaId

, x̂ ∈ Γ̂ , t̂ > 0.

(3.3)

Here B is a constant of integration which may be evaluated at t̂ = t̂k to give

B =
(

DaIaĉ(x̂)
(

1−m̂(x̂, t̂k)m̂−1
∞

)

−DaIdm̂(x̂, t̂k)
)

exp
((

DaIaĉ(x̂)m̂
−1
∞ +DaId

)

t̂k
)

.
(3.4)

Upon substitution into (3.3), we have

m̂(x̂, t̂k+1) =
DaIaĉ(x̂, t̂

k)−
(

DaIaĉ(x̂, t̂
k)

(

1− m̂(x̂, t̂k)m̂−1
∞

)

−DaIdm̂(x̂, t̂k)
)

DaIaĉ(x̂, t̂
k)m̂−1

∞ +DaId

× exp
(

−
(

DaIac(x̂, t̂
k)m̂−1

∞ +DaId
)

(∆t̂)
)

,

for x̂ ∈ Γ̂ , t̂ > 0, where we have approximated ĉ(x̂) by ĉ(x̂, t̂k). This is done to
prevent nonlinear terms in unknown variables from appearing in the discretized
version of (2.13a). Discretization of the other two isotherms is implemented in
a similar manner.

Consequently, we may approximate the Robin boundary condition, (2.13a),
on the reactive face Fl,j ∈ Γ̂ for j = e, w, n, s, t, b using finite difference methods
fully implicitly as follows:

−

(

2n

Pe δx̂
+DaIa

)

ck+1
j + 2n

ck+1
c

Pe δx̂
= −

(

DaIa
m̂∞

+DaId

)

[(

DaIam̂
k
j

−
(

DaIac
k
j

(

1− m̂k
j m̂

−1
∞

)

−DaIdm̂
k
j

)

exp
(

−
(

DaIac
p
mm̂−1

∞ +DaId
)

(∆t)
)

]

/
(

DaIac
k
j m̂

−1
∞ +DaId

)

, (3.5)

where n = ±1 is the direction of the outward pointing normal. Using (3.5),
the appropriate terms are assembled, along with (3.1) minus the relevant dif-
fusive flux term, for the finite volume on which the reactive surface lies into a
matrix Ak+1 and vector gk+1, where Ak+1ĉk+1 = gk+1 and ĉk+1 is a vector of
the dimensionless solutions ĉ(x̂, t̂k+1) at the discretized points of the computa-
tional domain. Once all the terms for all the finite volumes within the domain
have been assembled into Ak+1 and gk+1, the equation Ak+1ĉk+1 = gk+1 is
solved using a biconjugate gradient stabilized method to give the updated fluid
concentration, ĉk+1, at each discrete spatial point in Ω̂f , while the updated
adsorbed concentration, m̂k+1, is given by (3.4). Time is then updated, the
next timestep considered, and we proceed in the usual manner until the final
time point is reached.

Numerical simulation are performed in PoreChem and a schematic, outlin-
ing the numerical algorithm used, is given in Figure 1. In the following section,
the dimensionless equations are solved, but we present results in dimensional
quantities.
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Figure 1. Flow chart to illustrate how numerical computation of the transport with
surface reactions is implemented within Pore–Chem, with main features indicated only.
The light red ovals indicate input files, while the yellow ovals indicate output files. The
green and the blue rectangular boxes indicate steps involved for the flow and efficiency
solvers respectively, while the dark red boxes indicate steps involved in both. The white

ovals indicate decision making steps. In the case that the dimensional system of equations
is being solved, the appropriate dimensionless quantities of interest are replaced by the

dimensional equivalent.
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4 Results

We present illustrative results, using the numerical method outlined in Sec-
tion 3, on two separate computational domains, a real geometry and a vir-
tually generated geometry, for two applications where surface reactions are
important. The first set of simulations is performed on a portion of palatine
sandstone, obtained using micro computerized tomography (µ–CT) by Frieder
Enzmann at the Johannes Gutenberg University of Mainz. Surface reactions are
highly important in many fields of the Earth sciences, including calcite growth,
oxidation–reduction reactions, formation of biofilms, to name only a few [26].
The second set of simulations is performed on a computational domain virtu-
ally constructed to be representative of a commercially available microfiltration
functionalized membrane. The use of functionalized membranes is a promising
method for removing contaminants from water, and involves treating the pore
walls of the membrane so that they adsorb certain microorganisms or drugs.
Such membranes have pore sizes on the sub-micron scale and the resolution pro-
vided by µ–CT imaging techniques is not high enough to give representative
images, motivating the use of a virtually generated geometry.

(a) Rock geometry

(b) Membrane geometry

Figure 2. The two computational domains under consideration, plotted in 3D on the
left-hand side of the figure, and in 2D through a representative cross section on the

right-hand side of the figure. Figure 2a shows the palatine sandstone geometry obtained
through µ–CT, with a voxel size of 1.4× 10−6 m. Figure 2b shows a virtually generated

geometry which aims to reproduce the morphology of a commercially available
microfiltration membrane, with a voxel length of 7.03× 10−8 m (3 s.f.) This geometry was
created using the software GeoDict [12], and a comparison to experimentally evaluated

quantities is made in [11].

The two computational domains under consideration are shown in Figure 2.

Math. Model. Anal., 22(5):671–694, 2017.
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Furthermore, we demonstrate that the developed algorithms and software suit-
able for solving upscaling problems. To do this, we consider two multiscale
problems. The cell problems defined at microscale are solved by PoreChem
and respective effective (averaged) properties are computed. Next, macroscopic
(homogenized, averaged) problems are solved using these effective coefficients,
and the results are compared to the averaged solution of the microscale prob-
lems, the latter being computed with PoreChem.

∂Ωout

∂Ωin

Γ

∂Ωwall

Figure 3. Schematic to illustrate the computational domain. The solid microfiltration
membrane is show in grey while the water is shown in white. Voxels are added to the top

and bottom of the domain, at the inlet and outlet, to enable free–flow to develop. Modified,
with permission, from [11].

For the numerical simulations presented in the first two subsections, a dead–
end setup is used, with a schematic illustrating the domain and boundary
conditions shown in Figure 3. Layers of pure water voxels are added at the
inlet and at the outlet, as shown in Figure 2 and illustrated in Figure 3, to
allow free flow to develop. This results in a total computational domain size of
200× 200× 220 voxels for the sandstone geometry, and 100× 100× 120 voxels
for the membrane geometry.

4.1 Fluid flow

As described in Section 3, we are first required to solve for the fluid flow.
PoreChem was extensively validated for solving various flow problems by com-
paring computational results with analytical solutions, experimental results,
and comparing to published benchmark solutions, such as lid driven cavity,
backward step, etc. These are standard tests when developing new software
for flow simulations, and details are not discussed here. Further on, in the
particular case of flow in porous media, PoreChem solution were compared to
the solutions provided by the commercial software tool GeoDict [12], the lat-
ter being extensively validated in comparison with Lab measurements. Recall,
that our main target is simulation of reactive flows, but for completeness we
first show two illustrative simulations of the flow. We assume that the fluid
generates no slip as it passes over the membrane, and we set the slip length, β,
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to be zero so that, by (2.3), there is zero normal and tangential velocity at the
fluid–solid interface, Γ . We set inflow velocities to be typical for the application
under consideration, and use Vin = 1 mm/s for the membrane geometry and
Vin = 0.01 mm/s for the rock geometry. The parameters chosen for the inlet
velocities, using the viscosity and density of water at 25 degrees centigrade,
yield small Reynolds numbers; Re = 3.2 × 10−3 in the case of the rock geom-
etry and Re = 7.83 × 10−3 for the membrane geometry. Therefore, the fluid
flow in both computational domains is in a Stokes regime. Solving (2.11a) and
(2.11b), along with the boundary conditions (2.12a)–(2.12b), numerically until
steady–state is achieved, yields the solutions as reproduced in Figure 4. Due
to our assumption that the maximal possible number of adsorbed particles is
sufficiently small to ignore the effects of geometry modification, these remain
constant through time. Examination of Figure 4 reveals the dependence of the
local velocity field on the morphology of the computational domains.

(a) Velocity magnitude, rock (b) Pressure, rock

(c) Velocity magnitude, membrane (d) Pressure, membrane

Figure 4. Velocity magnitude, 4a and 4c, and pressure, 4b and 4d, fields, measured in
mm/s and kPa respectively for both the computational domains considered. Due to our
assumption that the adsorption of the solute does not alter the geometry, these remain
constant throughout the experimental time frame. The black boxes shows the outline for
the entire computational domain, where we exclude the additional voxels embedded at the

inlet and the outlet for 3D plotting purposes.
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4.2 Contaminant transport

We now turn our attention to solving the reactive flow. Illustrative parameters
are used, and we employ the Langmuir isotherm, given by Equation (2.9), for
both geometries. For the rock geometry, cin is set arbitrarily at
6× 10−17 number/mm3, and the initial concentration of the fluid contami-
nant is set to be zero. In contrast, for the membrane geometry, we choose
cin arbitrarily to be 2 × 104 number/mm3 and we set the initial concentra-
tion of fluid contaminant to be equal to the inflow boundary condition, so
that ĉ0(x̂) = 1 for x̂ ∈ Ω̂f . For both geometries we set the quantity of ad-
sorbed contaminant initially to be zero, m̂0(x) = 0. Furthermore, for the
membrane geometry, we set the dimensionless maximal surface concentration
of adsorbed contaminant, m̂∞, to be 10−4, which equates to a dimensional
value of m∞ = 0.014 number/mm2, while for the rock geometry m̂∞ is set
to be 2 × 10−6. Due to the form of the equations, the choice of cin does not
influence the dimensionless system of equations describing the transport and
reaction of the contaminant given by (2.11c) along with the boundary condi-
tions (2.13a)–(2.15), except for the parameter m̂∞. Therefore, increasing or
decreasing cin for fixed m̂∞ purely scales the dimensional concentration (both
fluid and adsorbed) by a constant factor.

F
lu
id

1

A
d
s
o
r
b
e
d

0.8 s 0.16 s 0.24 s 0.32 s

1

Figure 5. Numerical results at 0.8 s intervals for the fluid concentration, c, and the
adsorbed concentration, m, of contaminant in the rock geometry, where Daa = 5,

Dad = 0.029 and Pe = 4.

Figure 5 illustrates the concentration of both the fluid phase and the ad-
sorbed contaminant concentration over time for the rock geometry, where we
use Daa = 5, Dad = 0.029 and Pe = 4. As time progresses we see a front of
high concentration of fluid concentration propagating down the domain. Due
to the low maximal surface concentration, m̂∞, we see that the adsorbed con-
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Figure 6. Numerical results at 5× 10−5 s intervals for the fluid concentration, c, and the
adsorbed concentration, m, of contaminant in the membrane geometry, where we use

Daa = Dad = 10 and Pe = 10.

centration attains a maximal value quickly, so that by 0.32 seconds in time,
the adsorbed concentration on the walls of the open pores is almost identically
equal to m∞.

In contrast, for the membrane geometry, where we use the parameters
Pe = 10 and Daa = Dad = 10, we see different dynamics to those observed in
the rock geometry, both due to the different reaction coefficients chosen and
also due to the different initial conditions. As time progresses, the fast rates of
reaction result in a depletion of the dissolved concentration at the pore wall in
Figure 6 and a dependence of both the dissolved and adsorbed concentrations
on the local membrane morphology.

4.3 Upscaling of reactive flow

The main motivation for developing PoreChem is to use it in upscaling of
multiscale problems describing reactive flow in porous media. To demonstrate
PoreChem’s capability, and at the same time to validate the software, we solve
two reactive flow problems. The first one concerns upscaling of Taylor disper-
sion for reactive transport through a pore. The second one concerns upscaling
of reactive flow through porous media.

4.3.1 Upscaling of Taylor dispersion through a pore

Rigorous derivation of the upscaled model can be found in [21], comparison
with direct numerical simulation can be found in [29]. Here we repeat their
simulations, using PoreChem for the direct simulation at pore scale. The com-
putational domain is a single 2D pore (e.g., 2D channel), with length L = 5

Math. Model. Anal., 22(5):671–694, 2017.
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and height H = 1. The microscale equations are the same as described above.
The Henry isotherm is used to describe the surface reaction. Let us recall the
upscaled 1D advection diffusion reaction equation from [21].

∂C

∂t
+Q

(

2

3
+

4k H

45 D

)

∂C

∂x
+

k

H

(

1−
kH

3D

)

C =

(

D +
8

945

H2Q2

D

)

∂2C

∂x2
,

where x ∈ (0, 1) , t > 0, D ≥ 0 [m2/s] is the solute diffusion coefficient which
we assume to be scalar and constant, and k is the reaction rate. We assume
a known concentration of the solute at the inlet, and prescribe zero flux of
the solute at the outlet. The above equation is solved in Mathematica. The
results from the microscale simulations with PoreChem and the macroscale 1D
problem for different Pe numbers are presented at Figure 7. The figures show
the concentration of the solute species at the outlet over time.
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Figure 7. Comparison of numerical results obtained for different Pe numbers solving the
microscale problem and the upscaled 1D ADR equation.

The results for fixed Pe number and different reaction rates k are presented
at Figure 8.
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Figure 8. Comparison of numerical results obtained for different Pe numbers solving the
microscale problem and the upscaled 1D ADR equation.

4.3.2 Upscaling of reactive flow in porous media

Starting from the microscale (pore scale) model of reactive flow described
above, different upscaled equations can be derived, depending on the ratio
between convection, diffusion and reaction, and depending on the heterogeneity
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of the porous media. Detailed discussion on this diversity is beyond the scope
of this paper, here we will just show that the software tool PoreChem can be
used in solving cell problems defined in homogenization approaches, as well as
in direct numerical simulation at microscale. For simplicity,we will consider
the case where diffusion dominates, when homogenization results in a simple
convection diffusion reaction equation.

Figure 9. Pore scale flow with surface reaction: Geometry at microscale.

More specifically, at microscale we consider a simple periodic geometry, see
Figure 9. The geometry is composed of a varying number of unit cells with
pore space P and a square obstacle with boundary Γ . The domain has been
scaled such that its length is fixed to unity. The upscaled model obtained from
homogenization (i.e. ǫ ց 0, where ǫ is the length of the unit cell divided by
the total length of the microscopic domain) then reads as

∂C

∂t
+ U

∂C

∂x
+KC = A

∂2C

∂x2
, x ∈ (0, 1), t > 0,

where the effective parameters U , A and K can be computed from the micro-
scopic ones. The parameter K is the effective reaction rate, and is given as
follows:

K =
|Γ |

|P |
ǫκa,

where κa is the rate of adsorption from (2.8), |P | and |Γ | ǫ are the measures
of the pore space and the obstacles boundary per unit area. The velocity U is
the average velocity in the pore space computed according to

U =
1

|P |

∫

P

v1(y)dy,

where v1 is the first component of ~v. Here, U is simply determined by the
velocity at the inlet.

The effective diffusivity, following the homogenization approach (see, e.g.,
[14]) is calculated from solution of the following cell problem for the functions
ci(x), where i ∈ {1, 2, 3}:

−∇ · (D∇ci(y)) = 0, y ∈ P,

−~n ·D∇ci(y) = n ·D~ei, y ∈ Γ,
(4.1)

with periodic boundary condition at the cell boundaries. The effective diffu-
sivity used in the macro model is then calculated from the solution of (4.1) by

Aij =
1

|P |

∫

P

D(δij +
∂

∂yi
cj(y))dy,
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where A is the diffusion coefficient of the solute species. Yet, only the com-
ponent A11 enters the macro problem. From the numerical solution of (4.1) it
was determined that A = A11 ≈ 0.77D.

Simulations with 5, 10 and 20 periodicity cells are performed to study the
effect of ǫ. The parameters were chosen, such that for the micromodel with 20
cells Pe = VinL

D = 2, DaI = ka

Vin
= 0.01 and DaII = kaL

D = 0.02, with unity
as the characteristic length scale. For different cell numbers, the microscopic
reaction rates have been scaled with ǫ such that K remains constant. For the
macromodel this leads to Pe = UL

A = 3.47, DaI = KL
U = 0.4 and DaII =

KL2

A = 1.39. Results obtained for 10 periodicity cells are shown in Figure 10.

Figure 10. Concentrations in the microscopic domain at t = 0.015,t = 0.1 and t = 1.5.

Figure 11 shows a comparison between the macroscopic model with the
concentration of the microscopic model averaged over a slice normal to the
flow direction.
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Figure 11. Comparison of the averaged concentration profile of the micro solution over
the length and macro model solution.

The corresponding errors, i.e. the difference between micro- and macro-
model is shown in Figure 12. It can be seen that for small times one can
observe larger errors between the averaged microscale solution and the solu-
tion of the upscaled 1D ADR equation, especially close to the inlet. At the
same time, the error decreases fast in time and with increasing distance from
the inlet.

Table 1 shows the errors for different number if periodicity cells in the
microscale simulations. Convergence with respect to ǫ is clearly shown.
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Figure 12. Difference between the micro model average in Figure 11 and macro model
solution.

Table 1. Maximum and L2 errors between the micro and macro solution.

t = 0.1 t = 0.25 t = 1.5

5 cells
‖cmic − cmac‖L∞

0.0320 0.0159 0.0078
‖cmic − cmac‖L2

0.0112 0.0053 0.0025

10 cells
‖cmic − cmac‖L∞

0.0179 0.0090 0.0037
‖cmic − cmac‖L2

0.0057 0.0030 0.0012

20 cells
‖cmic − cmac‖L∞

0.0122 0.0064 0.0019
‖cmic − cmac‖L2

0.0042 0.0028 0.0006

Conclusions

We have presented an algorithm for solving solute transport at the pore-scale
within a resolved porous medium, with reversible surface adsorption at the
pore wall. A pore-scale description of reactive transport, as opposed to a de-
scription at the Darcy scale, allows for a very accurate representation of the
processes of interest. The system of equations comprise the NS equations and a
CD equation, with Robin boundary conditions coupled to an ODE accounting
for the surface reactions. Assuming that each particle is sufficiently small in
size not to alter the flow of the fluid within the computational domain, and
that its reaction at the wall does not significantly alter the pore-scale geome-
try, there is a one–way coupling between the NS and CD systems of equations.
Although, for simplicity, we consider one species of solute and examine only
surface reactions, extension to several different species of solute with both vol-
umetric and surface reactions is straight forward and implemented within our
software package Pore–Chem. The algorithm presented employs a FV method,
and in this paper we have particularly focused on the discretization method
used to solve the reactive boundary conditions for the adsorption and desorp-
tion at the interface. Illustrative numerical results, using our software package
Pore–Chem, are presented on two separate geometries. The first of these is a 3D
µ–CT image of a piece of Palatine Sandstone rock, while the second geometry is
virtually generated within GeoDict [12] to be representative of a commercially
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available functionalized membrane. The results demonstrate the potential of
such a numerical package, with the ability to solve reactive transport directly
on images and on virtually generated geometries, in further progressing the
understanding of the interplay between the transport and reaction rates at the
pore-scale. In a future publication, currently in preparation, we will investigate
the influence of the computational domain morphology on the reaction dynam-
ics, and investigate the effect of different parameter regimes on the numerical
results and quantities of interest.

Although we consider just one type of reactive boundary in this paper, being
the whole of the internal solid–fluid interface, our software package easily allows
one to specify different boundary types to allow for different types of solid ma-
terials each with their own specific reaction rate or kinetic description. Here we
have presented numerical simulations using the Henry and Langmuir isotherms,
in order to illustrate our software package. More complex descriptions of the
reaction kinetics exist to describe non-localized adsorption and particles which
interact. For example, the Frumkin isotherm describes localized adsorption
and is also implemented within our software package.

The advantages of using a pore-scale description are multiple. Firstly, it
allows us to simulate reactive transport over a range of different parameter
regimes, and in particular, outside the applicability region of the equivalent
upscaled model. In highly disordered media the Péclet number can significantly
vary locally, which poses problems for asymptotic upscaling methods, but not
for a pore-scale description. Secondly, different kinetic models for the reactions
can be used without the need to re–perform the upscaling procedure. In the
future we plan to extend the algorithm in order to solve coupled multiscale
problems using the heterogeneous multiscale method, in a similar manner to [5]
and [15]. Such a development will enable problems at larger spatial scales to
be considered, which could aid further research into the influence of pore-scale
processes in a number of highly interesting and important research applications.
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