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Abstract. The notion of Zero Knowledge Proofs (of knowledge) [ZKP] is cen-
tral to cryptography; it provides a set of security properties that proved indispens-
able in concrete protocol design. These properties are defined for any given input
and also for any auxiliary verifier private state, as they are aimed at any use of the
protocol as a subroutine in a bigger application. Many times, however, moving
the theoretical notion to practical designs has been quite problematic. This is due
to the fact that the most efficient protocols fail to provide the above ZKP prop-
erties for all possible inputs and verifier states. This situation has created various
problems to protocol designers who have often either introduced imperfect pro-
tocols with mistakes or with lack of security arguments, or they have been forced
to use much less efficient protocols in order to achieve the required properties. In
this work we address this issue by introducing the notion of “protocol portabil-
ity,” a property that identifies input and verifier state distributions under which a
protocol becomes a ZKP when called as a subroutine in a sequential execution
of a larger application. We then concentrate on the very efficient and heavily em-
ployed “Generalized Schnorr Proofs” (GSP) and identify the portability of such
protocols. We also point to previous protocol weaknesses and errors that have
been made in numerous applications throughout the years, due to employment
of GSP instances while lacking the notion of portability (primarily in the case of
unknown order groups). This demonstrates that cryptographic application design-
ers who care about efficiency need to consider our notion carefully. We provide
a compact specification language for GSP protocols that protocol designers can
employ. Our specification language is consistent with the ad-hoc notation that
is currently widely used and it offers automatic derivation of the proof protocol
while dictating its portability (i.e., the proper initial state and inputs) and its secu-
rity guarantees. Finally, as a second alternative to designers wishing to use GSPs,
we present a modification of GSP protocols that is unconditionally portable (i.e.,
ZKP) and is still quite efficient. Our constructions are the first such protocols
proven secure in the standard model (as opposed to the random oracle model).

1 Introduction

Motivation. Zero knowledge proofs [28] [ZKP], and zero knowledge proofs and argu-
ments of knowledge in particular, are a central tool in cryptosystem and protocol design.
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These tools allow a designer to enforce parties to assure others that they take specified
actions consistent with their internal knowledge state [26]. Properties of ZKP are de-
fined over all inputs i.e., they provide security and correctness properties independently
of input distribution. A shortcoming of ZKP’s is that depending on the underlying lan-
guage it can be hard to come up with efficient protocols. This has lead to the design of
specialized protocols for specific language classes that occur often in applications. A
celebrated example that has proven to be very useful in the design of efficient crypto-
graphic schemes is known as Generalized Schnorr Proofs (extending the original sem-
inal proof [37] to various algebraic settings like unknown order modular groups that
arise in the context of the RSA cryptosystem). These protocols are at the heart of many
efficient cryptographic systems and have been employed in a great number of schemes
including: anonymous e-cash, anonymous voting, group signatures, distributed signing,
distributed decryption, verifiable encryption, fair exchange, ring signatures, and creden-
tial systems. These schemes capitalized on the high efficiency of Schnorr’s method and
constitute, perhaps, the most extensive application of zero knowledge theory to practice
so far. Further, a shorthand notation introduced in [14, 15] for GSP has been exten-
sively employed in the past and contributed to the wide employment of these protocols
in cryptographic design. This notation suggested using e.g., PK(α : y = gα) to de-
note a proof of the discrete logarithm logg y and it appeared in many works to describe
quite complex discrete logarithm based relations, e.g., [3, 7–11, 13, 24, 25, 30–34, 38–
43]. What has been often overlooked though is the fact that Generalized Schnorr Proofs
are not zero-knowledge proofs of knowledge! This is a consequence of the fact that
the security properties of such protocols are affected by the input distribution of the in-
volved parties. Interestingly, despite the long line of works in the proper formalization
of zero-knowledge proofs, this aspect has been largely overlooked, mainly due to the
fact that it is only critical from an application-oriented efficiency point of view rather
than a theoretical feasibility point of view. Let us illustrate the phenomenon with two
examples:

Example 1. Consider the language L = {〈n, g, h, y〉 | ∃s, t : y = gsht mod n} ⊆
Lin = N4

k where Nk is all k-bit numbers and the following variation of the standard
Schnorr proof: the prover sends the value u = gs0ht0 for some random integers s0, t0;
upon receiving u the verifier responds with some integer c and finally the prover re-
sponds with s1 = s0 − c · s and t1 = t0 − c · t (calculated over the integers). The
verifier returns 1 if and only if u = ycgs1ht1 mod n. This protocol has been used nu-
merous times (see e.g., [23, 15, 1]). However the protocol is not a proof of knowledge:
on the one hand, in the case that the factorization of n is easy, it is feasible to design
a knowledge extractor that in expected polynomial time can recover the witness to the
statement when interacting with any convincing prover. Nevertheless such extractor can
only succeed for certain choices of y as the above protocol can make the verifier accept
with high probability even for “malformed” y’s that satisfy y = ζgsht where ζ is a
small order element of Z∗n. Furthermore, when the factorization of n is difficult, the
knowledge extractor cannot even take advantage of Chinese remaindering to process
the values submitted by the prover; in such case ensuring the verifier that a convincing
prover is indeed in possession of a witness becomes even more elusive. In addition, ob-
serve that the zero-knowledge property is affected by the way the protocol is executed,
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and in particular the statistical zero-knowledge aspect of the above protocol depends on
the relative sizes of s0, s and t0, t.
Example 2. Consider the language L = {〈n, g, y〉 | ∃s, r : y = gs

2
hr}. A way for

designing an efficient protocol for this language is to have the prover provide a commit-
ment C = gshr

′
and then prove simultaneously the knowledge of the commitment C as

well as the commitment Cs using two instances of the protocol in example 1. Clearly,
in this case we will have to deal with similar issues as in example 1, but furthermore we
will have an additional difficulty to simulate the value C as part of the zero-knowledge
simulator. For choices of the values of g, h, n where 〈h〉 happens to be a subgroup of
Z∗n different than 〈g〉 it can be the case that C is not sufficiently hiding its gs compo-
nent. For example 〈h〉 can be the subgroup of quadratic residues in Z∗n and g a quadratic
non-residue; this choice would be leaking one bit about the committed value s.

The above two cases exemplify the fact that there are many efficient protocols that
are not zero-knowledge proofs but they may potentially be used as such as long as they
are employed over a suitable input generation. It follows that given the state of the art
what is badly missing is a methodological, i.e, a formal way to guide cryptographic
protocol designers under what conditions (on input and verifier’s state) it is safe to de-
ploy these efficient protocols as subroutines in a larger application context. Identifying
such safety conditions and attaching them to a protocol is what we call “identifying the
protocol’s portability.”

We say that a protocol is portable with safety conditions defined by a class of input
generators, for the class over which it retains the properties of zero-knowledge proof of
knowledge. The lack of properly identifying this notion has created a number of crucial
protocol problems on previously published works. For example, the work of [23] has
been cited extensively and its results were used directly to justify the proof of knowl-
edge properties of various proposed schemes. This was done without realizing that some
of the security arguments in [23] are incorrect, which was finally noticed (and corrected
but without providing a formal protocol framework) by Damgård and Fujisaki [21] five
years after the publication of the original paper. Further, in various cases the possibility
of a biased input generation and reference string contribution by one of the parties was
not considered (either in the model or as an omission or as an oversight) and this led to
other works pointing out actual problems in these cases. For example, see the attack of
[16] on [1] that illustrates how a malicious key generation leads to a soundness attack
in the underlying signing protocol that, in turn, enables a framing attack in the group
signature scheme. Another example is the attack of [29] on [5] that takes advantage of
a malicious parameter generation to break the zero-knowledge property of the protocol
construction. In both cases the required properties can be preserved by ensuring proper
parameter generation (as it was argued in [2] and [5] respectively). These previous prob-
lem instances highlight the need of having a proper formalism that identifies conditions
for porting efficient protocols as zero-knowledge proofs.

Our Contributions.

1. We introduce the notion of portability for proofs of knowledge protocols which
identifies input and initial constraints under which a protocol can be employed and
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have the zero-knowledge proof properties. First, we define the notion of an input-
generator for a proof protocol and we formalize the properties of soundness and
zero-knowledge conditional on a given input generator. The portability of the pro-
tocol is defined, in turn, by identifying classes of input generators for which the
protocol is sound and zero-knowledge (thus, can be deployed safely). Note that un-
conditional portability characterizes protocols that retain their properties for any
input distribution (i.e., this notion coincides with regular zero-knowledge proofs of
knowledge).

2. We then identify a large class of input generation and soundness parameters over
which Generalized Schnorr Proofs (GSP) are portable. This clarifies the correct
way to employ the highly popular protocol description notation introduced in [14,
15] for GSP mentioned above. Based on our results the (frequently lacking and
often erroneous) security analysis of all these previous works is streamlined and
presented in a unified way. Indeed, the notation PK(α, . . . : y = gα, . . .) was origi-
nally suggested for a few specific protocols without clear semantics and syntax for
the notation nor with a way to derive a concrete protocol for the notation. Subse-
quently, the notation was extended by many authors and was also used in different
(algebraic) settings thereby opening gaps between statement made in the notation
and the security properties offered by the protocol that the authors seemingly had
in mind. Sometimes, the notation has also been used with no particular protocol in
mind but just to describe any protocol (e.g., a generic zero-knowledge proof pro-
tocol) that proves knowledge of a witness to the statement. This leads to our next
contribution.

3. We introduce a new notation PKspec for specifying GSP proofs that puts forth the
soundness guarantees provided by the protocol specified by it. Our notation can
be used as a black-box in protocol design and the respective security proofs. To
illustrate our notation, as an example, consider two parties that jointly compute the
values U, V, n such that U, V ∈ Z∗n and one of them wishes to demonstrate a certain
structural relationship between them. This goal will be specified syntactically in the
following way (for example):

PKspec(α1, α2 : (V = hα1gα2 in Z∗n) ∧ α1 ∈ [−∞ . . .+∞] ∧ α2 ∈ [L . . . R])
→ (α1, α2 : (V = ζ · hα1gα2 in Z∗n)∧ α1 ∈ [−∞ . . .+∞]∧ α2 ∈ [L′ . . . R′])

Note that the specification is divided into two parts, the one appearing in the first
line is what the protocol designer (ideally) wishes to ensure and the second is what
will actually be ensured by the Schnorr protocol (in particular, the values ζ1, ζ2
will be selected from some small subgroup and the range [L′, R′] may be extended
compared to [L,R]). Based on our work, a protocol designer may write a GSP
specification as above and then rely on our analysis for the proof of a security
and soundness (which assures portability of the GSP protocol to his/ her specific
context).

4. To complete the tool kit for protocol designers, we introduce an efficient extension
of GSP protocols that is unconditionally portable. This construction is proven cor-
rect and secure in the standard model, whereas the only previously known efficient
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protocols — known as the class of Σ+ protocols [5] — were shown secure in the
random oracle idealization.

5. The identification of portability for Generalized Schnorr Proofs facilitates the cor-
rect and secure design of efficient protocols. To illustrate the power of our frame-
work in this context we consider two well-known cryptographic constructions from
different subareas. We show how the employment of our GSP framework clarifies
their design and the assumptions they depend on, and assures their security while
coping with previously presented attacks. We first consider the original scalable
group signature scheme by Ateniese et al. [1] mentioned earlier. Recently, [16]
presented an attack (which is actually based on considering the extended setting
of dishonest group manager at the system’s setup phase, something not originally
anticipated; see [2] for a discussion). Employing the GSP framework, in turn, al-
lows us to clarify the settings where the protocol of [1] is secure and highlights the
exact requirements on the joint input to the proof of knowledge. As a side benefit
our framework also shows how the scheme can be made more efficient. Next, we
consider the efficient divisible e-cash scheme of Chan et al. [17]; the security of
this scheme was never analyzed properly (and originally the scheme as published
had problems). Employing our GSP framework here, we reveal the exact crypto-
graphic assumptions required for the modified scheme to be secure (something that
even the corrected version [18] has been lacking).

Due to lack of space the above contributions are included in the full version of the
paper available in [12].

How to use the results of this paper in cryptographic protocol design. Here we com-
ment briefly on the way our results can be used in cryptographic design. Suppose that
in a certain cryptographic system a party is required to execute a proof that involves a
series of discrete-log relations expressed in the widely used ad-hoc PK notation. Using
Theorem 1 the designer can obtain the corresponding PKspec expression and, by the
same theorem also automatically get the GSP protocol implementing the proof. Then
the designer examines the input generation that preceeds the protocol which is defined
by the system execution until the moment the GSP protocol should be invoked; if the
conditions of Theorem 1 are satisfied then the soundness and the zero-knowledge prop-
erty are implied immediately. If on the other hand, the conditions of Theorem 1 are not
met, then the designer may use the unconditionally portable transformations of GSP
protocols presented in section 6. For two concrete examples the reader can refer to the
full version of the paper [12].

2 Preliminaries

Notations. A function f : N → R is called negligible if for all c ∈ R there exists
ν0 ∈ N so that for all ν ≥ ν0 it holds that f(ν) < ν−c. When a random variable x
is distributed according to the probability distribution X with support S we will write
Probx←X [x = s] for the probability that x takes the value s ∈ S. Let x, y be two
random variables with the same support S(ν) distributed according to the probability
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distributions X(ν), Y (ν) where ν ∈ N. We say that x, y are statistically indistinguish-
able if the function f(ν) := 1

2

∑
s∈S(ν) |Probx←X(ν)[x = s]−Proby←Y (ν)[y = s]|

is a negligible function. If m ∈ N we will use the notation [m] to denote the set
{0, . . . ,m− 1}. In general we will denote by L some language typically over alphabet
{0, 1} unless otherwise specified. If L is an NP language,RL will be the corresponding
polynomial-time relation, i.e., L = {φ | ∃w : (φ,w) ∈ RL}.
Interactive Protocols. Let Π = (P, V ) be a protocol where P, V are probabilistic in-
teractive Turing machines (ITM). The view of P inΠ is a random variable that contains
all messages exchanged with V as well as the contents of all tapes of P . Two protocols
Π1 = (P1, V1), Π2 = (P2, V2) can be concatenated if we execute first (P1, V1) and
then write the private outputs of P1, V1 to the input tapes of P2, V2 respectively and
start the execution of (P2, V2). We allow parties to output a special symbol ⊥ to sig-
nify that they “reject” a certain interaction. In the context of sequentially composed
protocols, producing a ⊥ symbol at some intermediate stage would signify that a party
refuses to continue with the execution (and the final output of the party becomes ⊥
which may interpreted as reject in the context of zero-knowledge proofs). For a given
protocol Π = (P, V ) we will say that the two ITM’s V, V ′ are indistinguishable pro-
vided that in the context of the Π interaction it is impossible for any adversarial P to
distinguish whether it is communicating with V or V ′ (the notion is defined similarly
for the case of the ITM’s P, P ′).

3 Portability of Zero-Knowledge Proofs

A zero-knowledge proof protocol Σ = (P, V ) for a language L enables P to demon-
strate to V that a joint input t belongs to an NP language L provided that the prover
possesses a witness w such that (t, w) ∈ RL. Soundness and zero-knowledge of such
protocols should hold for any input distribution. Here we consider the (non-limiting)
case that the prover and the verifier collaboratively construct the input t to the proof
protocol by engaging in a protocol Π (dubbed the “input-generator”); at this preamble
stage we denote the two parties by Pin, Vin to highlight their relation with the actual
prover and verifier. The output of this preamble stage will be the input to the actual
prover and verifier.

Definition 1. Let Lin ∈ BPP,L ∈ NP with L ⊆ Lin. ConsiderΠ , a two-party protocol
Π = 〈Pin, Vin〉 where each party may reject returning ⊥ while if Pin terminates suc-
cessfully it returns a pair 〈t, wP 〉 and similarly Vin returns 〈t′, wV 〉 where t, t′ ∈ Lin.
The protocolΠ is called an input generator for L, if for all executions that neither party
returns ⊥ it holds that (t, wP ) ∈ RL and t = t′.

Next we define statistical zero-knowledge proofs of knowledge over input genera-
tors. The definition follows the standard ZK notion with the only difference being that
the input instead of being totally adversarial (i.e., universally quantified) is produced
by an input generator protocol Π . The parties are allowed to be adversarial during this
input generation stage. In particular for soundness we allow the prover to bias the input
generation and in formalizing soundness the knowledge extractor will be interacting
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with the malicious prover in both stages (with rewinding power only during the sec-
ond stage, i.e., the proof system). Regarding zero-knowledge we condition on all input
generation executions that the honest prover agrees to execute the proof system and we
require the existence of a simulator that can simulate the view of any malicious verifier.
Note further that to support design flexibility we will allow the prover to show that the
input belongs to a possibly extended language Lext.

Definition 2. The two party protocol Σ = 〈P, V 〉 is a zero-knowledge proof of knowl-
edge over the input generator Π = 〈Pin, Vin〉 for L with knowledge error parameters
(Lext, κ) and zero-knowledge distance ε if these properties are satisfied:
(1) Completeness: it holds that both Pin and Vin terminate successfully with overwhelm-
ing probability and subsequently V accepts the interaction with the prover P with over-
whelming probability.
(2) Soundness: For any pair of (P ∗in, P

∗) we denote by πP∗in ,P∗ the probability that P ∗

convinces V on inputs generated by P ∗in and Vin (where πP∗in ,P∗ is taken over the entire
probability space of (P ∗in, Vin), (P ∗, V )). We say thatΣ is sound overΠ , if there is some
Kin, such that: (i) Kin and Vin are indistinguishable as ITM’s, (ii) for any P ∗ there is
some K for which it holds that for any P ∗in: K on input the view of Kin and the output
of P ∗in, it returns w′ such that (t, w′) ∈ RLext where t is the statement that is determined
in the input generation stage between P ∗in and Kin with probability of success at least
c · πP∗in ,P∗ where c ∈ R while running in time polynomial in (πP∗in ,P∗ − κ)−1.
(3) Zero-knowledge: Σ is statistical ZK over Π , if there exists an Sin, such that (i) Sin

and Pin are indistinguishable as ITMs, (ii) for any V ∗, there is a simulator S, such that
for any V ∗in : the random variable that equals the view of V ∗ when interacting with P on
input generated by Pin, V

∗
in is distinguishable with distance at most ε from the random

variable that equals the output of S given as input the view of Sin and the output of V ∗in .

We next introduce the notion of portability of a protocol:

Definition 3. The two party protocol Σ = 〈P, V 〉 is said to be portable over the class
of input generators W if for all Π ∈ W it holds that Σ a zero-knowledge proof of
knowledge over Π . IfW contains all possible protocols then the protocol Σ is said to
be unconditionally portable.

Ensuring portability from semi-honest behavior. Suppose that a given protocol hap-
pens to be a zero-knowledge proof of knowledge for some input-generatorΠ as long as
the prover and the verifier are semi-honest at the input generation stage. In such an oc-
casion one can generically compile a protocol Σ∗ from Π and Σ so that Σ∗ becomes a
zero-knowledge proof of knowledge overΠ using the transformation from semi-honest
to malicious behavior put forth in [26] (see also [27], section 7.4). Note that while this
is feasible, it is not particularly efficient given that it requires expensive steps such as
coin-flipping combined with generic zero-knowledge proofs to ensure that no party is
deviating from the input distribution (recall that much of cryptographic protocol de-
sign is motivated by avoiding generic inefficient tools). Our results will demonstrate
that such generic techniques can be substituted by much more efficient ones for the
particular class of protocols we consider (i.e., generalized Schnorr proofs).
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Comparison to common-reference-string/bare model ZK. Zero-knowledge proofs
are sometimes modeled in the common-reference string model, cf. [20] (or the common
random string model, [36]); in this setting there is an explicit separation between the
input of parties and the reference string that is assumed to be honestly generated and
provided to the parties. A common-reference-string ZK protocol is supposed to satisfy
the security properties conditional on the distribution of the reference string that no
party can bias. By comparison, in our setting there is no unbiased reference string that is
independent of the proof’s statement that can be used to assist in the proof of soundness
or zero-knowledge. While here we deal mainly with the bare model, it is worth noting
that even the availability of a common reference string does not eliminate the issues of
context dependent contributed inputs.
Relaxed Knowledge Extraction. In our formulation, the knowledge extractor only en-
sures that the prover possesses knowledge of a witness showing that t belongs to an
extended language Lext. If L = Lext the soundness definition will ensure that the in-
teractive input belongs to L (as in the standard definition of ZK), however we will
also consider slightly different languages Lext. The reason for this relaxation is that by
extending the language one may obtain more efficient protocols which is our primary
concern. Naturally this will allow the prover to convince the verifier to accept despite
the fact that the interactive input may be in the “gray area” Lext − L. Note that in
principle we will always be able to modify the interactive input proof of knowledge so
that L = Lext (if one does not mind the additional computation overhead that will be
incurred).
Sigma Protocols. Our applications will focus on protocols 〈P, V 〉 that are called Σ-
protocols, i.e., a three-move protocol in which the prover goes first, the verifier responds
with a random challenge from {0, 1}k, the prover responds, and finally the verifier either
accepts or rejects based on the prover’s response. All conversations in a Σ-protocol are
of the form 〈com, c, res〉 (commitment, challenge, response). These protocols typically
consider the setting where the verifier is restricted to be “honest” during the interactive
proof 〈P, V 〉 when proving the zero-knowledge property. While we will follow this,
however, we will still allow the verifier to be totally adversarial in the input building
stage. This is justified as the honest verifier setting can be transformed using numerous
techniques to the fully adversarial verifier setting (e.g. see [35, 20]) and these techniques
readily apply to our setting.
Variations of the definition. In our definition we focused on knowledge extraction
following the definition of [6] (note that in our protocols the knowledge error will be
κ = 2−k where k is a parameter). Moreover we formulated zero-knowledge in the sta-
tistical sense. It is easy to reformulate the definition by strengthening zero-knowledge
(e.g., perfect zk) or relaxing it (e.g., computational zk). Moreover, soundness can be
relaxed to require only language membership from the prover (instead of knowledge
extraction), or defined with a specialized knowledge extractor that extracts two accept-
ing conversations with the same first move and then reconstructs the witness. Further,
in applications the protocols can be made non-interactive employing the Fiat-Shamir
heuristics [22] and then use the forking Lemma [35] for extraction in the random ora-
cle model. These alternative definitions are well understood in the context of building
efficient zero-knowledge proofs and can be ported into our setting.
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On the input generation stage. In an actual system, the input generator protocol
〈Pin, Vin〉 may abstract many parties and involve interactions between many partici-
pants. From a ZK security point of view, Pin will comprise the “prover side” (i.e., the
side that is interested in preserving zero-knowledge) and Vin will comprise the “verifier
side” (i.e., the side of the system that is interested in in preserving soundness). In a
multi-party system, we will be interested in primarily two input generators: in the first
one, Pin will include only the prover and (if it exists) any party the prover trusts while
Vin will include all other participants. In the second one, Vin will include the verifier and
(if it exists) any party the verifier trusts, while Pin will include all other participants. If
a protocol is portable over both of these input generators then it can be safely deployed
in the given system.

A central tool in our design is the notion of safeguard groups that we introduce next.

4 Safeguard Groups

A safeguard group is specified by a sampler algorithm Ssg that on input 1ν returns a
tuple 〈G, g,M, k, ζ〉; where G is a description of an Abelian group that contains an
implementation of G’s binary operator, inverse computation, the encoding of 1 as well
as the description of a polynomial-time group membership test that, given any string, it
decides whether it is a proper encoding of a group element; g is a generator of G; M is
an approximation of the order of g in G; and k is a security parameter that is related to
the length of the order of small-order group elements. Note that we will use the same
notation for the description of a group G and the group itself. Regarding the remaining
elements of the tuple we have that g ∈ G, ζ ⊆ G,M ∈ N with further properties to be
specified below.

Definition 4. A safeguard group sampler Ssg satisfies the following (where 〈G, g,M, k,
ζ〉 ← Ssg(1ν)):

C1. The exponent of G is not divisible by the square of any k-bit integer.
C2. The order m of g in G has no k-bit integer divisor, and M satisfies that (M −

m)/M = negl(ν).
C3. ζ contains only a polynomial (in ν) number of elements; they all have a known (say

part of the subgroup description) k-bit integer order.
C4. Small-Order Property. It is hard to find k-bit order elements of G outside ζ.

Formally, it holds that for all PPT A, Prob[(v 6∈ ζ) ∧ (v has k bit order); v ←
A(1ν , τ); τ = (G, g,M, k, ζ)← Ssg(1ν)] = negl(ν).

C5. Strong-Root Property. Given z ∈ 〈g〉 it is hard to find e > 1 and u ∈ G such that
ue = z. Formally, it holds that for all PPT A, Prob[(ue = z) ∧ (e > 1); 〈u, e〉 ←
A(1ν , τ, z); z ←R 〈g〉; τ = (G, g,M, k, ζ)← Ssg(1ν)] = negl(ν).

We remark that properties C3-C4 are not really essential and can be dropped at the ex-
pense of loosing tightness in some of our proof reductions and notational presentation;
we opt to enforce them as they make the presentation of the results more succinct and
are easily satisfied for the known examples of safeguard groups.
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Example 1. A safeguard group distribution can be built as follows: sample n as a safe
composite so that n = pq, p = 2p′ + 1, q = 2q′ + 1, where p′, q′ are prime numbers
larger than 2k, set G = Z∗n and let g be a generator of quadratic residues modulo n.
Finally set ζ = {1,−1} andM = bn4 c. Property C1 is immediate as the exponent of Z∗n
is 2p′q′. Observe also that the properties C2 and C3 are easily satisfied. Indeed, it is easy
to see that M is sufficiently close to p′q′. Next observe that a violation of property C4
would mean the recovery of any other element that has a k-bit order outside {1,−1};
this would violate the factoring assumption (only the four square roots of 1 are k-bit
order elements in Z∗n based on our selection of n). Property C5 amounts to the Strong-
RSA assumption with the target challenge being an arbitrary element of the quadratic
residues; this is a variant of the strong RSA problem that has been utilized extensively
in previous works (e.g., [19]).

Example 2. A second safeguard group is over the group G = Z∗n2 where n is sampled
as before, i.e., n = pq, p = 2p′+1, q = 2q′+1, so that g is a generator of the subgroup
of square n-th residues; as before we select p′, q′ larger than 2k and ζ = {1,−1}.

We remark that in both the above examples it is not necessary to select n as a safe
composite, i.e., we may allow p′ and q′ to be composite numbers themselves as long
as they have no small divisors (of k-bits). In practical settings where we will employ
safeguard groups, the parameter k may be required to be in the range from 80 to 256
bits.

Properties of Safeguard Groups. In the first lemma below regarding safeguard groups
we show that based on the properties of the safeguard group it is hard for an adver-
sary to produce arbitrary powers of a chosen power of a group element. This lemma
is an important building block of our general proof protocol. We remark that various
restricted special case incarnations of this lemma have appeared in the literature (the
most basic of which is referred to as Shamir’s trick and corresponds to case (i) in the
proof of lemma). These special incarnations are too restricted to be useful in our setting
and thus there is need for putting forth the lemma that is formulated as follows:

Lemma 1. Let τ = 〈G, g,M, k, ζ〉 ← Ssg(1ν) be a safeguard group distribution. Sup-
pose that A is a PPT that given τ and a random z ∈ 〈g〉 returns y ∈ G and t,m ∈ Z
such that yt = zm with 1 ≤ gcd(t,m) < |t| and t is a k-bit integer. It holds that the
success probability of A is negligible in ν.

Our main result regarding safeguard groups is Lemma 3. We show that any adver-
sary that is given any number of bases from the 〈g〉 subgroup of the safeguard group
is incapable of producing an entirely arbitrary discrete-log representation of a power of
his choosing within G. Before stating the main lemma, we show an auxiliary lemma.

Lemma 2. Let A,B be two integers with A > B and A = πB + v with 0 ≤ v < B
and let X be a random variable with X ←R [A]. Let Y = X mod B. The statistical
distance of the distribution of Y and the uniform distribution over ZB is at most v/A.
Let Y ′ = bX/Bc. The statistical distance of the uniform distribution over {0, . . . , π}
and the distribution of Y ′ is at most 1/(π + 1).
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Lemma 3. Let B1, . . . , Br ←R 〈g〉, 〈G, g,M, k, ζ〉 ← Ssg(1ν) be a safeguard group
distribution, and let A be a PPT that on input G, g,M, k, ζ, B1, . . . , Br it outputs inte-
gers e1, . . . , er, t and y ∈ G such that with probability α: |t| > 1 and

∏r
i=1B

ei
i = yt

where t is a k-bit number and ∃i : t 6 | ei. Then the Strong-Root property is violated
with probability at least α/(2r + 1)− η where η is a function negligible in ν.

5 The Portability of Generalized Schnorr Proofs

In this section we discuss the portability of Generalized Schnorr Proofs. In particular
we will identify a wide class of input generators so that under the right conditions these
protocols are portable.
GSP-specs. A generalized Schnorr proof (GSP) operates on a statement t that involves
a number of groups and group elements (“bases”) with public and secret exponents. To
any such statement t we will associate the following:

i. A set of symbolic variables denoted by X = {α1, . . . , αr} with |X | = r.
ii. A sequence of group descriptions G1, . . . ,Gz as well as the descriptions of z sub-

groups ζ1, . . . , ζz of G1, . . . ,Gz respectively, so that the exponent of each ζi is (at
most) a k-bit integer. The description of the subgroup ζi will be typically given as
a list of elements (i.e., these subgroups are small). It may be the case that ζi = {1}.

iii. The group elements Ai,j ∈ Gi for j = 0, . . . , r where Ai,j will be the base for the
variable αj in group Gi.

iv. The range limits Lj , Rj , Lext
j , Rext

j ∈ Z ∪ {−∞,∞} such that Lj < Rj , and
Lext
j ≤ Lj , Rj ≤ Rext

j for j = 1, . . . , r.

Next we give an explicit syntax notation and semantics for specifying the language
L that the prover wishes to convince the verifier the statement t belongs to. We define
two languages L and Lext:

L =
{
t ∈ Lin | ∃ xi ∈ Z :

z∧
i=1

( r∏
j=0

A
xj

i,j = Ai,0

)
∧

r∧
j=1

(
xj ∈ [Lj , Rj ]

)}

Lext =
{
t ∈ Lin | ∃ xi ∈ Z :

z∧
i=1

( r∏
j=0

A
xj

i,j = ζi ·Ai,0
)
∧

r∧
j=1

(
xj ∈ [Lext

j , Rext
j ]
)}

We will use the following syntax to refer to a proof of knowledge for the language
L whose soundness is only ensured in the extended language Lext; we call this notation
a GSP-spec τ .

PKspec
(
X :

r∏
j=1

A
αj

1,j = A1,0(in G1) . . . ∧ α1 ∈ [L1, R1] ∧ . . . ∧ αr ∈ [Lr, Rr]
)

→
(
X :

r∏
j=1

A
αj

1,j = ζ1·A1,0(in G1) . . .∧α1 ∈ [Lext
1 , Rext

1 ]∧. . .∧αr ∈ [Lext
r , Rext

r ]
)
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Note that left-hand side of the above notation (i.e., the first line) is the statement of
the proof whereas the right-hand side (namely, the second line) is the actual (extended)
statement that will be guaranteed to hold (recall Definition 2). Note that in the extended
statement the ranges [Lj , Rj ] will be extended to [Lext

j , Rext
j ] and the unit element of

the group is extended to be any element in the (small) subgroup ζi for the i-th equation.
The specification allows for a wide range of proofs including polynomial relations

among the secret and inequality statements of secrets. We refer to in the full version of
the paper [12] for a discussion on what is covered by this specification and how it can
be extended, in particular to include also ∨-connectives or tighter ranges.

GSP input generators. A GSP input generator Π = 〈Pin, Vin〉 that is consistent with
a GSP-spec τ is a two party protocol that determines the parameters: z (the number of
groups), r (the number of symbolic variables), k (a parameter related to group selection
and the soundness property) and whose public output t includes the description of all
groups, bases and ranges of the GSP-spec as described in the items (i)-(iv) above.

The Generalized Schnorr Protocol ΣGSP
τ . For any GSP-spec τ one can design a

Sigma protocol based on Schnorr’s proof by introducing appropriate range checking
and compensating for the fact that groups of unknown order are used with computations
over the integers.

The protocol is based on two parameters k, l for free variables α1, . . . , αr such
that αj takes values in the range [Lj , Rj ]. Below we set mj = Rj − Lj . Suppose
the prover is in possession of the witnesses x1, . . . , xr; the prover selects first the ran-
dom values tj ∈R [−2k+lmj , 2k+lmj ] and computes the values Bi =

∏r
j=1A

tj
i,j .

The prover terminates the first stage of computation by transmitting B1, . . . , Bz . The
verifier selects c ∈R {0, 1}k and responds by sending c to the prover. The prover, in
response computes the integers sj = tj − c · (xj − Lj) and sends them to the ver-
ifier. The verifier returns 1 if and only if for all j ∈ {1, . . . , r} it holds that sj ∈
[−2k+lmj−(2k−1)mj , 2k+lmj ] as well as for all i ∈ {1, . . . , z} it holds thatBi ∈ Gi

and
∏r
j=1A

sj

i,j =Gi Bi(A
−1
i,0 ·

∏r
j=1A

Lj

i,j )
c.

Portability of ΣGSP
τ . We will next identify a class of input generators Π for a given

GSP-spec τ over which ΣGSP
τ is portable as a zero-knowledge proof of knowledge.

Recall that Π defines the respective inputs (t, w) for the prover and t for the verifier.
We first describe the setting where some special care needs to be paid when arguing the
security of ΣGSP

τ . These settings involve variables that are “unsafe”:

Definition 5. (Unsafe Variables) For a GSP-spec τ , a symbolic variable αj ∈ X
is called unsafe if it satisfies at least one of the following three conditions: (1) it is
involved in an equation over a group Gi over a base element that is of unknown order
to the verifier (i.e., the order of the base is not included in the group’s description); (2)
the range [Lj , Rj ] is non-trivial (i.e., it is not the range (−∞,+∞) ); (3) the variable
appears across various bases that have known but different order.

The presence of unsafe variables may introduce problems in the knowledge extrac-
tion argument and make the protocol fail the soundness property. Still, unsafe variables
can be tolerated provided they appear in conjunction to safeguard groups (cf. Defini-
tion 4). The following definition defines input-generators that are suitable for the Σext

τ
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protocol in the presence of unsafe variables. In a nutshell it says that for a GSP-input
generator protocol Π , a certain group will be called a safeguard group for Π as long
as there exists a simulator that playing the role of the verifier, it can “plug-in” a safe-
guard group generated by Ssg in black-box fashion in the interaction with Pin without
Pin noticing, even if Pin is acting adversarially.

Definition 6. For any GSP-input-generator protocol Π = 〈Pin, Vin〉, a group Gi and
the bases Ai,j1 , . . . , Ai,jv ∈ Gi will be called respectively a safeguard group for
Π and its safeguard bases there exists a polynomial-time simulator SV s.t. for any
adversarial party P ∗in in the protocolΠ , SV receives as input 〈G, g,M, k, ζ, g1, . . . , gv〉
where 〈G, g,M, k, ζ〉 ← Ssg(1ν) and g` = gs` with s`

¢← [M ], and satisfies the
property that the input t produced by the interaction of P ∗in and SV contains a group
Gi and bases Ai,j1 , . . . , Ai,jv that satisfy Gi = G and Ai,j1 = g1, . . . , Ai,jv = gv and
the view of P ∗in when interacting with Vin is indistinguishable from the view of P ∗in when
interacting with SV .

An equation
∏r
j=1A

αj

i,j = Ai,0 over a safeguard group for Π will be called a “safe-
guarding equation.” Armed with the above we next identify a class of input generators
for which the generalized Schnorr proof ΣGSP

τ is portable.

Theorem 1. (Portability of Generalized Schnorr Proofs) Let τ be a GSP-spec. The
protocolΣGSP

τ is portable for honest verifiers, for all input generatorsΠ consistent with
τ provided that (I) the generated input t ∈ Lin has no unsafe variable, or (II) the five
following conditions hold: (i) Each unsafe variable appears at least once as an exponent
over a safeguard base. (ii) There is an ordering i1, . . . , iz of all the equations so that
(1) i1 is a safeguarding equation with all its free variables over safeguard bases, and
(2) in safeguarding equation iw for w > 1 it holds that all free variables of equation iw
appear over safeguard bases or have appeared at least once in a previous safeguarding
equation. (iii) If Gi is a safeguard group then it has description 〈Gi, gi,Mi, k, ζi〉 (i.e.,
all safeguard groups share the same k). (iv) Lext

j = Lj − 2k+l+2(Rj −Lj) and Rext
j =

Rj+2k+l+2(Rj−Lj). (v) The knowledge error κ is c ·(2−k+r ·Advroot) for a suitable
c ∈ R and the zero-knowledge distance is ε = r · 2−l.
Example. Suppose that Vin selects an RSA-modulus n which is a multiple of two safe
primes, a quadratic residue base g ∈ Z∗n as well as h ¢← 〈g〉. Vin transmits n, g, h to Pin.
In turn, Pin sends y = guhv mod n where u ¢← [dn4 e] and v ∈ [2e] for some e ∈ N.
The input4 t generated by Pin, Vin in this case is the vector 〈n, g, h, y〉. Suppose now
that the prover P wishes to demonstrate to the verifier V that she knows u, v in their
respective ranges such that y = guhv mod n. It is easy to see that Z∗n can play the role
of a safeguard group for the input generator described above with ζ = {−1,+1} and
that the conditions of Theorem 1 are satisfied, thus the protocol ΣGSP

τ can be used to
ensure to V that y = ±guhv mod n and u ∈ [−Eu, dn4 e + Eu], v ∈ [−Ev, 2e + Ev]
where Eu = 2k+l+2 · dn4 e, Ev = 2k+l+2+e.

4 In this simple example, it could be that y leaks some information about u, v to Vin (which
recall it may be an entity that includes more parties beyond the verifier); this does not affect
the zero-knowledge property over this input generator which — as it is the case with regular
ZK proofs — is concerned only with information leaks during the P, V interaction.
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6 Unconditionally Portable Protocols for GSP-specs

Theorem 1 of the previous section describes a class of input-generators for which the
generalized Schnorr proof protocol can be used in a safe way. Nevertheless, it may be
very well the case that we would like to use a proof for a GSP-spec outside this class
of input generators. In the remaining of the section we describe an efficient protocol
enhancement to the basic generalized Schnorr protocol that is unconditionally portable.

B1, . . . , Bz

c
s1, . . . , sr

P : x1, . . . , xr

V
C = grgx1

1 . . . gxu
u mod n

Pin Vin

P : x1, . . . , xr

Pin Vin

n, g, g1, . . . , gu

Π,Σext
τ Π+,Σext+

τ

Com(·)
validateCom(·)

ψ = Com(C,B0)

safeguard group
and bases

commitment

V

c

s0, s1, . . . , sr

log(g1), . . . , log(gu)

open ψ

resψ

B1, . . . , Bz

ψ, comψ

P : x1, . . . , xr

V

Fig. 1. Illustration of the transformation of Σext
τ over input generator Π to the Σext+

τ .

The Σext,+
τ protocol. Consider any input generator Π for which Theorem 1 does not

apply, i.e., (Π,Σext
τ ) is not a zero-knowledge proof over Π . We next show one mod-

ification of Σext
τ into a protocol Σext+

τ so that Σext+
τ is a protocol that is universally

portable as a zero-knowledge proof.
The protocol Σext+

τ operates as follows: The verifier first selects a safeguard group
〈Z∗n, g,M = bn/4c, k,V = {−1, 1}〉 where 〈g〉 = QR(n) together with a number of
safeguard bases g1, . . . , gu ∈ 〈g〉 where u is the number of variables that are unsafe.
We will denote the discrete-logarithm values of g` base g as ρ`. The verifier also selects
a prime P such that (P − 1)/2 is also prime and satisfies (P − 1)/2 > n as well as two
elements of order (P−1)/2 in Z∗P denoted byG,H whereH is randomly selected from
〈G〉. When these elements are received the prover will check that P, (P−1)/2 ∈ Prime,
(P − 1)/2 > n and that G,H ∈ QR(P ) (i.e., that H ∈ 〈G〉). We denote AdvDLOG
an upper bound on the probability that any polynomial-time bounded algorithm has
in returning logG(H) given G,H,P . Next, the prover computes a commitment of the
form C = grgx1

1 . . . gxu
u (modn) (which is an extended Pedersen commitment over the

safeguard group); note that r ¢← [2l+3M ] where l is the security parameter related to
the zero-knowledge distance and x1, . . . , xu are the witnesses of P . Intuitively, what
will happen next can be interpreted as follows: the prover and the verifier will include
in the GSP-spec τ the safeguarding equation (C = grgx1

1 . . . gxu
u ( in Z∗n)) as one of

the equations that are needed to be shown (we call the extended GSP-spec τ+) but the
prover will not reveal C. This is because the parameters of the safeguard group were
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selected by the verifier and thus the prover is at risk of revealing some information about
the witnesses.

Instead, the (P, V ) protocol interaction for τ+ will be modified as follows: the
prover P will make a commitment ψ1 to the valueC denoted by ψ1 = Gr

∗
HC mod P .

Similarly, the prover P will not submit the value B0 (that corresponds to the com-
mitment equation (C = grgx1

1 . . . gxu
u ( in Z∗n))); instead it will submit a commitment

ψ2 = Gr
∗
0HB0 mod P . We call ψ = (ψ1, ψ2). Next, the prover P will need to show

that ψ is well-formed; this is easy as ψ1, ψ2 are Pedersen commitments, so it suffices to
prove knowledge of r∗ and C in ψ1 and prove knowledge of r∗0 and B0 in ψ2. We de-
note the Σ proof for the ψ commitment as comψ, c, resψ . These additional proofs can
be composed in parallel AND composition with the GSP protocol ΣGSP

τ and do not
incur any additional round complexity. After the verifier receives all values and accepts
the proofs (except for the equation over the safeguard group), it submits to the prover
the values ρ1, . . . , ρu who in turn checks whether g` = gρ` . In this case, the prover
opens the commitments ψ1, ψ2, and now the verifier is able to complete the verification
as described in the Σext

τ protocol. We illustrate the transformation in figure 1.
Remark. This transformation generalizes and improves the setting of the Σ+ proof
method introduced in [5]; it obviates the need of random oracles (their soundness ar-
gument was in the random oracle model). We note that if the number of rounds is at
premium then it is possible to reduce them to 3 by giving up on other aspects of the
protocol in terms of security or efficiency. Specifically, one can either have the verifier
demonstrate to the prover that the safeguard group is properly selected in an “offline”
stage (that will not be counting towards the rounds of the actual protocol) or assuming
the existence of an auxiliary input that is honestly distributed (an approach shown in
[4]).

We next prove our protocol secure for a type of “partly honest” verifiers that may
operate maliciously in the safeguard group selection (i.e., the first move of the Σext+

τ

protocol) but still select the challenge honestly (in the third move of the protocol). We
choose to do this for ease of presentation as there are standard techniques that can be
applied to port the protocol to the entirely malicious verifier setting (much like how an
honest verifier zero-knowledge protocol can be ported to the zero-knowledge setting).

Theorem 2. For any GSP-spec τ and any consistent input generator Π , the protocol
Σext,+
τ is an (unconditionally portable) zero-knowledge proof of knowledge over Π

against partly honest verifiers for the same Lext
` , Rext

` parameters as Theorem 1, knowl-
edge error κ = c(2−k + AdvDLOG + r · Advroot) for some c ∈ R and zero-knowledge
distance (r + 1)2−l.

7 Demonstrative Applications and Extensions

In the full version of the paper available in [12] we provide two demonstrative applica-
tions of our framework as well as a number of possible extensions to it. The full version
also includes proofs for all the statements in this version.
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