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1DEPT. OF MATHEMATICS,

RUTGERS UNIVERSITY,
NEW BRUNSWICK, NJ 08903

2DEPT. OF COMPUTER SCIENCE,
WORCESTER POLYTECHNIC INSTITUTE,

WORCESTER, MA 01609
3DEPT. OF COMPUTER SCIENCE,

RUTGERS UNIVERSITY,
NEW BRUNSWICK, NJ 08903

Received January 31, 1995; revised April 2, 1998

Abstract: Paul Seymour conjectured that any graph G of order n and minimum
degree at least k

k+1n contains the kth power of a Hamilton cycle. We prove the
following approximate version. For any ε > 0 and positive integer k, there is an n0
such that, if G has order n ≥ n0 and minimum degree at least ( k

k+1 + ε)n, then G

contains the kth power of a Hamilton cycle. c© 1998 John Wiley & Sons, Inc. J Graph Theory

29: 167–176, 1998
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1. INTRODUCTION

1.1. Notations and Definitions

For basic graph concepts see the monograph of Bollobás [1].

c© 1998 John Wiley & Sons, Inc. CCC 0364-9024/98/030167-10
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+ will sometimes be used for disjoint union of sets.V (G) andE(G) denote the
vertex-set and the edge-set of the graphG. (A, B, E) denotes a bipartite graph
G = (V, E), whereV = A + B, andE ⊂ A × B. For a graphG and a subset
U of its vertices,G|U is the restriction toU of G. N(v) is the set of neighbors of
v ∈ V . Hence,|N(v)| = deg(v) = degG(v), the degree ofv. δ(G) stands for
the minimum, and∆(G) for the maximum degree inG. ForA ⊂ V (G), we write
N(A) = ∩v∈AN(v), the set of common neighbors.N(x, y, z, · · ·) is shorthand
for N({x, y, z, · · ·}). WhenA, B are disjoint subsets ofV (G), we denote by
e(A, B) the number of edges ofG with one endpoint inA and the other inB. In
particular, we writedeg(v, U) = e({v}, U) for the number of edges fromv to U .
For nonemptyA andB,

d(A, B) =
e(A, B)
|A‖B|

is thedensity of the graph betweenA andB.

Definition 1. The bipartite graphG = (A, B, E) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |d(X, Y ) − d(A, B)| < ε,

otherwise it isε-irregular.
We will often say simply that ‘‘the pair(A, B) is ε-regular’’ with the graphG
implicit.

Definition 2. (A, B) is (ε, δ)-super-regular if it is ε-regular and

deg(a) > δ|B| for all a ∈ A,deg(b) > δ|A| for all b ∈ B.

1.2. Powers of Cycles

Thekth power of a graphG is the graph obtained fromG by joining every pair of
vertices with distance at mostk in G. We will write Ck andP k for thekth power
of a cycle and a path.

Let G be a graph onn ≥ 3 vertices. A classical result of Dirac [2] (see also
[1]) asserts that ifδ(G) ≥ n/2, thenG contains a Hamilton cycle. As a natural
generalization of Dirac’s theorem, Pósa conjectured the following in 1962.

Conjecture 1 (Ṕosa). Let G be a graph onn vertices. If δ(G) ≥ 2
3n, thenG

contains the square of a Hamilton cycle.
Later, in 1974, Seymour [13] generalized this conjecture.

Conjecture 2 (Seymour). Let G be a graph onn vertices. If δ(G) ≥ k
k+1n,

thenG contains thekth power of a Hamilton cycle.
Seymour indicated the difficulty of the conjecture by observing that the truth of

this conjecture would imply the notoriously difficult Hajnal–Szemeŕedi theorem
[10] (see below).
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The problem has received significant attention lately. In the direction of Conjecture
1, first Jacobson (unpublished) showed that ifδ(G) ≥ 5

6n, then the conclusion of
the conjecture holds. Faudree, Gould, Jacobson, and Schelp [8] confirmed the
conclusion withδ(G) ≥ (3

4 + ε)n+C(ε). Later the same authors improved this to
δ(G) ≥ 3

4n. By using a result in [9], Ḧaggkvist (unpublished) gave a very simple
proof for the caseδ(G) ≥ 3

4n+1 andn ≡ 0 (mod 4). Fan and Ḧaggkvist [3] lowered
the bound toδ(G) ≥ 5

7n. Fan and Kierstead [4] improved this further toδ(G) ≥
17n+9

24 , and Faudree, Gould, and Jacobson [7] toδ(G) ≥ 7
10n. Finally, Fan and

Kierstead [5] improved the condition to the almost optimalδ(G) ≥ (2
3 +ε)n+C(ε).

(They also announced that the same holds withε = C = 0, if one wants only the
square of a Hamiltonpath.)

However, for the general Conjecture 2, the only result available is in the above-
mentioned article of Faudree et al. [8], which states that for anyε > 0 and positive
integerk there is aC(ε, k) such that, if ann-graphG satisfies

δ(G) ≥
(

2k − 1
2k

+ ε

)
n + C(ε, k),

thenG contains thekth power of a Hamilton cycle.
Here we prove the following approximate version of the Seymour conjecture.

Theorem 1. For anyp > 0 and positive integerk there is ann0 = n0(p, k) such
that, if G has ordern ≥ n0 and minimal degree

δ(G) ≥
(

k

k + 1
+ p

)
n, (1)

thenG contains thekth power of a Hamilton cycle.

2. MAIN TOOLS

In the proof, the Regularity Lemma of the third author plays a central role. Here
we will use the following variation of the lemma.

Lemma 1 (Regularity Lemma—Degree form). For everyε > 0 there is an
M = M(ε) such that ifG = (V, E) is any graph andd ∈ [0, 1] is any real number,
then there is a partition of the vertex-setV into l + 1 sets(so-called clusters)
V0, V1, . . . , Vl, and there is a subgraphG′ = (V, E′) with the following properties:

• l ≤ M,

• |V0| ≤ ε|V |,
• all clustersVi, i ≥ 1, are of the same sizeL ≤ dε|V |e.
• degG′(v) > degG(v) − (d + ε)|V | for all v ∈ V,

• G′|Vi = ∅ (Vi are independent inG′),
• all pairs G′|Vi×Vj , 1 ≤ i < j ≤ l, are ε-regular, each with a density0 or

exceedingd.
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This form can easily be obtained by applying the original Regularity Lemma (with
a smaller value ofε), adding to the exceptional setV0 all clusters incident to many
irregular pairs, and then deleting all edges between any other clusters where the
edges either do not form a regular pair, or they do but with a density at mostd.

Our other main tool is a coloring theorem of Hajnal and Szemerédi, which says
that every graph withnvertices and maximum degree∆(G) ≤ k is(k+1)-colorable
with all color classes of sizebn/(k +1)c or dn/(k +1)e. We have already pointed
out the close connection between Seymour’s problem and the Hajnal–Szemeŕedi
theorem, namely, the truth of Conjecture 2 would imply the latter theorem. We use
the theorem in the following complementary form.

Lemma 2 (Hajnal, Szemeŕedi [10]). Let G be a graph onn = sk vertices. If
δ(G) ≥ k−1

k n thenG containss vertex-disjoint cliques of orderk.

3. OUTLINE OF THE PROOF

The proof borrows many elements from [11].
We will assume throughout the article thatn is sufficiently large. We apply the

Regularity Lemma (Lemma 1) forG, with d = p/3 andε small enough, compared
to p, to get a partition ofV = ∪0≤i≤lVi and a subgraphG′ as described in the
lemma. We will assume that the number of clusters is divisible byk + 1:

l = s(k + 1)

(by adding a few clusters to the exceptional setV0, if necessary). We define the
following so-calledreduced graph R:The vertices ofR are the clustersVi, i ≥ 1,
in the partition and there is an edge between two clusters if they form anε-regular
pair in G′ with density exceedingd. SinceG′ still satisfies condition (1) withp
replaced byp/2, an easy calculation shows that each clusterVi, i ≥ 1, has a degree
(in R) at least (

k

k + 1
+ d

)
l. (2)

Let us apply Lemma 3 forR to get a covering ofV (R) by vertex disjoint cliques
of orderk + 1. Denote these cliques byK1, K2, . . . , Ks.

In each cliqueKi we take an arbitrary ordering of thek + 1 clusters, and we
denote the clusters in this order byV i

1 , V i
2 , . . . , V i

k+1. We think of this sequence as
a cycle of lengthk + 1, where we have all the possible chords.

The rough idea of the proof is the following: We find thekth power of a path in
K1 by going around the cycle as many times as we can. Then we connect this path
to K2 with the use of a few extra vertices, then find thekth power of a path inK2,
etc. However, for technical reasons we will start with constructing the connecting
paths between the subsequent cliques (for the last oneKs the next one isK1).
This will be the first part of the proof. In the second part, we will take care of the
exceptional vertices and make some adjustments to achieve that the distribution of



ON THE POSA-SEYMOUR CONJECTURE 171

the vertices inside each clique is perfect, i.e., there are the same number of vertices
in each cluster of the clique. Finally, in the last part of the proof, we string the
vertices inside each clique into thekth power of a path.

3.1. Connecting the Cliques

We are repeatedly going to use the following fact, which is a consequence of (2).

Fact 1. LetV1, V2, . . . , Vk+1 bek + 1 arbitrary clusters inR. Then

|NR(V1, V2, . . . , Vk+1)| ≥ (k + 1)dl.

In other words, every set ofk +1 clusters has a large common neighborhood set
in R.
We construct the connecting path betweenK1 andK2; the remainings−1 connect-
ing paths are constructed in exactly the same way. First, we determine the sequence
of clusters from which the connecting path will use vertices. This sequence will
be the square of a path inR (however, it will not be a simple path). Our goal is to
define a sequence of cliques of sizek + 1 in R

K0, K1, . . . , Kt (3)

with the following properties:

• K0 = K1, K
t = K2,

• |Ki+1 ∩ Ki| = k for every0 ≤ i ≤ t − 1,
• t = O(k2).

For this purpose, ifK andK ′ are two cliques of sizek + 1, for every clusterC in
R\(K∪K ′), we determine a label`K,K′(C) = (a, b), 0 ≤ a ≤ k+1, 0 ≤ b ≤ k+1
in the following way:

a = degR(C, K) andb = degR(C, K ′).

We are going to use the following fact.

Fact 2. The number of clustersC with `K,K′(C) = (k + 1, k) or (k, k + 1) is at
least(k + 1)dl.

We construct the sequence in (3) in two steps. First, we construct two sequences
of cliques of sizek + 1 : A1, A2, . . . , At1 andB1, B2, . . . , Bt2 with the following
properties:

(a) A1 = K1, B1 = K2,
(b) |Ai+1 ∩ Ai| = k, |Bj+1 ∩ Bj | = k for every0 ≤ i ≤ t1 − 1, 0 ≤ j ≤ t2 − 1,
(c) either

degR(C, At1) ≥ k for everyC ∈ Bt2 , (4)

or

degR(C ′, Bt2) ≥ k for everyC ′ ∈ At1 . (5)
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We construct these two sequences in the following way.A1 = K1, B1 = K2
and assume thatA1, . . . , Ai andB1, . . . , Bj are already constructed, but (c) does
not hold forAi andBj . Using Fact 2 we can find a clusterC with `Ai,Bj (C) =
(k, k + 1) or (k + 1, k), say(k, k + 1). In Bj there must be a clusterC ′ with
degR(C ′, Ai) ≤ k − 1. To getBj+1, we removeC ′ from Bj and we addC. We
repeat this procedure until (c) holds. From the fact that one application of this
procedure strictly increases the number of edges inR between the two cliques,
it follows that, in at most(k + 1)2 = O(k2) steps, we can achieve (c). Thus,
t1 + t2 = O(k2). In the second step of the construction of the clique sequence in
(3), we construct a clique sequence

D0, D1, . . . , Dk+1,

which forms a gradual transition betweenAt1 andBt2 . More precisely, first we
assume that in (c) (4) holds. Then we will haveDi ⊂ At1 ∪Bt2 and|Di ∩Bt2 | = i.
The construction is the following.D0 is justAt1 . To getD1, we addV 2

1 to D0 and
we remove the cluster fromD0 = At1 , which is not adjacent toV 2

1 (if there is any).
If all the clusters inD0 are adjacent toV 2

1 , then we remove an arbitrary cluster from
D0. In general, to getDi+1 from Di, 0 ≤ i ≤ k, we addV 2

i+1 to Di and remove
the cluster fromDi ∩ D0, which is not adjacent toV 2

i+1 (if there is any). If all the
clusters inDi ∩ D0 are adjacent toV 2

i+1, then we remove an arbitrary cluster from
Di ∩D0. Second, if in (c) (5) holds, then we do the same procedure backwards, we
construct the gradual transition backwards fromBt2 (starting withDk+1) to At1

(ending atD0). (As a referee noticed, here, we used a somewhat abusive notation
when addedV 2

1 , V 2
2 , · · · to the setsD0, D1, . . ., since here clusters fromBt2 were

used, and they are not necessarily numbered the same way as the corresponding
ones inB1 = K2.)

The desired clique sequence in (3) is obtained in the following way:

A1, A2, . . . , At1 , D1, D2, . . . , Dk, Bt2 , . . . , B1.

For this sequence we use the notation in (3), sot = t1 + t2 + k = O(k2).
We get the sequence of clusters from which the connecting path will use vertices

in the following way. We start by going aroundK0 = K1, so byV 1
1 , V 1

2 , . . . , V 1
k+1,

then we start a second cycle and we stop at the last cluster before the cluster in
K0 \ K1. The next cluster is the cluster inK1 \ K0, then we go aroundK1 once
and, in the second cycle, we stop at the last cluster before the cluster inK1 \ K2.
The next cluster is the cluster inK2 \ K1, etc. We continue in this fashion, and we
get a sequence of clusters (note that this sequence contains repetitions):

C1, C2, . . . , Ct′ ,

whereCi = V 1
i for 1 ≤ i ≤ k + 1, the lastk + 1 clusters are the clusters

V 2
1 , V 2

2 , . . . , V 2
k+1 in some permutation andt′ = O(k2).

However, for technical reasons we would like to end the sequence withV 2
1 , V 2

2 ,
. . . , V 2

k+1 in this order. For this purpose, it is obviously sufficient to show that if
V1, V2, . . . , Vk+1 is an arbitrary permutation ofK2, then we can change the order
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to

V1, . . . , Vi−1, Vj , Vi+1, . . . , Vj−1, Vi, Vj+1, . . . , Vk+1

for any1 ≤ i < j ≤ k + 1.
We do the following. Using Fact 1, we find a clusterC ∈ NR(V1, V2, . . . , Vk+1).

The sequence of clusters is then the following:

V1, . . . , Vk+1, V1, . . . , Vi−1, C, Vi+1, . . . , Vk+1, V1, . . . , Vi−1, C, Vi+1, . . . , Vj−1,

Vi, Vj+1, . . . , Vk+1, V1, . . . , Vi−1, C, Vi+1, . . . , Vj−1, Vi, Vj+1, . . . , Vk+1,

V1, . . . , Vi−1, Vj , Vi+1, . . . , Vj−1, Vi, Vj+1, . . . , Vk+1,

as desired.
Thus, we may assume that we have a sequence of clusters

C1, C2, . . . , Ct′′ ,

which form the square of a path inR, and whereCi = V 1
i for 1 ≤ i ≤ k + 1 and

Ct′′−i = V 2
(k+1)−i for 1 ≤ i ≤ k + 1 with t′′ = O(k2). We also define

C0 = V 1
k+1, C−1 = V 1

k , C−2 = V 1
k−1, . . . , C−k+1 = V 1

2 ,

and similarly,

Ct′′+1 = V 2
1 , Ct′′+2 = V 2

2 , . . . , Ct′′+k = V 2
k .

Now we choose a vertexpi from each clusterCi, 1 ≤ i ≤ t′′, such thatpi is
connected to allpj with 1 ≤ |j − i| ≤ k. They will also have the following
additional properties for alli, 1 ≤ i ≤ k:

|N(p1, p2, . . . , pi) ∩ Ci−k| > (d − ε)iL

|N(pt′′ , pt′′−1, . . . , pt′′+1−i) ∩ Ct′′+1+k−i| > (d − ε)iL, (6)

which ensure that they can later be extended to thekth power of a Hamilton cycle
of G′. We will select them one-by-one. We maintaint′′ + 2k setsHi,j from which
the points will be selected. We start withH0,j = Cj , 1 − k ≤ j ≤ t′′ + k.

Then, when selecting the pointpi from Hi−1,i, 1 ≤ i ≤ t′′, we choose one with
the following property:

deg(pi, Hi−1,j) > (d − ε)|Hi−1,j | for all j 6= i, |j − i| ≤ k.

This holds for all but at most2kε|Ci| vertices inHi−1,i, so we can choose such a
pi ∈ Hi−1,i. (Here we used that(d − ε)k > ε.)

Then we update the setsH as follows:

Hi,j =
{

Hi−1,j ∩ N(pi) if 1 ≤ |j − i| ≤ k
Hi−1,j \ {pi} otherwise.

Note that we did not choose any points from the setsHt′′,j for j < 1 andj > t′′;
this selection will be done later.
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3.2. Adjustments and the Handling of the Exceptional Vertices

We already have an exceptional setV0 of vertices inG′. We add some more vertices
to V0. From a clusterV i

j in a cliqueKi we remove all verticesv for which there
exists aj′ with 1 ≤ j′ ≤ k + 1, j′ 6= j such that

deg(v, V i
j ) ≤ d|V i

j′ |.

ε-regularity guarantees that at mostkε|V i
j | ≤ kεL such vertices exist in each clus-

terV i
j .

We may have a small discrepancy among the number of remaining vertices in
each cliqueKi (we removed some for the connecting paths, and some in the last
step). By removing extra vertices from certain clusters (and putting them into the
exceptional setV0) we achieve that each cluster has exactlyL′ vertices. (We will
still use the notationV0 for the enlarged exceptional set.) We still have|V0| ≤ 2kεn.

Next we take care of the vertices inV0. For each vertexv ∈ V0, we find allKi-s
such that

deg(v, V i
j ) ≥ d|V i

j | for all j ∈ {1, . . . , k + 1}.

Equation (1) easily shows that we have at leastkps such cliques for eachv ∈ V0.
We assign eachv ∈ V0 to one of these cliques in such a way that we do not assign
too many vertices to a particular clique. A simple greedy algorithm leads to an
assignment in which no clique is assigned more thanε1L

′ vertices provided that
|V0| ≤ ε1L

′kps, which holds forε1 = 3ε(k + 1)/p. Now let us take an arbitrary
vertexv assigned toKi. We will addv to the connecting path betweenKi−1 and
Ki by also using some vertices fromKi in such a way that the extended path is still
extendable to thekth power of a Hamilton cycle, and we use the same number of
vertices from each cluster inKi (in fact, exactly three from each cluster):

Let us denote the connecting path betweenKi−1 andKi by P1, P2, . . . , Pk′ . We
extend this path in essentially the same way as in the previous section with vertices
Pk′+1, Pk′+2, . . . , Pk′′ , wherek′′ = k′ +3(k+1)+1. We go around the clusters of
the clique three times. The only change in the procedure described in the previous
section is that the new pointsPj , k

′ + 1 ≤ k′′ should have the additional property

|V`∩N(v)∩{N(Pj) : k′+1 ≤ j ≤ k′′, Pj 6∈ V`}| > d3(k+1)+1L′ for eachV` ∈ Ki.

This guarantees that the new vertexv can be added asPk′+2(k+1)+1, and the previous
and nextk vertices can be chosen fromN(v).

Thus, we are left with the following situation: In each cliqueKi we have the same
number of remaining vertices in each clusterV i

1 , V i
2 , . . . , V i

k+1. On the connecting
path betweenKi−1 andKi, the lastk vertices have many common neighbors in
V i

1 , the lastk − 1 vertices have many common neighbors inV i
2 , etc., and finally

the last vertex has many neighbors inV i
k . On the connecting path betweenKi and

Ki+1, the firstk vertices have many common neighbors inV i
k+1, the firstk − 1

vertices many common neighbors inV i
k , etc., and finally the first vertex has many



ON THE POSA-SEYMOUR CONJECTURE 175

neighbors inV i
2 . These properties guarantee that in the next section we can close

thekth power of a Hamilton cycle inside each clique.

3.3. Building the kth Power of Hamilton Paths within the Cliques

The fact that we can close thekth power of a Hamilton cycle within each clique is
an easy consequence of the following lemma (and the remark after that), which in
turn is a special case of the so-called Blow-up Lemma [12].

Lemma 3. For everyδ > 0 and positive integerk there is anε > 0 such that the
following holds for any positive integerL. Let us construct a graphG by replacing
each vertexvi of the complete graphK on k + 1 vertices by anL-setVi, and
replacing the edges ofK with (ε, δ)-super-regular pairs(possibly different pairs
for different edges). ThenG containsP k, thekth power of a Hamilton path.

The problem addressed in Lemma 3 is really part of a bigger embedding problem,
and, thus, the following remark is needed to guarantee that the first and last constant
number of vertices inP k connect appropriately to the rest of the graph (see the end
of the previous subsection).

Remark. (See the remark at the end of [12].)The statement of Lemma3 remains
true if we a priori restrict the location of the first and lastm pointsp of P k to
some setsSp as follows: EachSp has size at leastγL, any oneSp is a subset of
one clusterVi, the setsSp belong to the right clustersVi(that is, such a restricted
P k should exist at least within the completek-partite graph with color-classesVi),
and the parameterε is small enough also in terms of the constantsγ > 0, andm.

References

[1] B. Bollobás,Extremal Graph Theory, Academic Press, London (1978).
[2] G. A. Dirac, Some theorems on abstract graphs,Proc. London Math. Soc.2

(1952), 68–81.
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