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ABSTRACT

It is shown that the functional S{n] = ?i?f(§|vn|2+2n>dpo,
defined on ¢”  functions on the two-dimensional sphere,
satisfies the inequality S[n] >0 if =n 1is subject tothe
constraint f(en-l)duO = 0. The minimum S[nj =0 is at-
tained at the solutions of the Euler-Lagrange equations,
The proof i1s based on a sharper version cof Meoser-Trudinger's
inegquality (due to Aubin) which holds under the additional
constraint Ien;<h% = 0 ; this condition can always be
satisfied by exploiting the invariance of S|:n] under the
conformal transformaticons of 32, The result is relevant
for & recently proposed formulation of a theory of random

surfaces.
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1. - INTRODUCTION

Le’-t:‘.ds2 = e dsﬁ denote a Riemannian metric on the two-dimensional
sphere S%, conformal to the standard metric dsz = d8? + sin®® d¢p?. The points
of $? will be parametrized, as usual, by a unit vector X, by polar co-ordinates
{(8,0) or b§ a complex variable 'Eg related to x by stereographic projection,

0 . n

I.e., g =z cot g e’ = (x1+ixé/léxa). The conformal factor e' 1is assumed to be

c”. Let 4 = e_nAO be the'Laplacé—Beltrami operator associated to ds? and let

0

0=z i < Ay < Az < 4as < kn < ,.. »® be the spectrum of -A {A and {lg}
- - - - Q
will dencote the corresponding objects belonging to dsg).

It was shown 1in Ref, Elj that the limit

” ' n -8inl
———d.’t o = &m JU 2':
det o ne00 k=4 AL

. . n . - .
exists provided that e’ is normalized, i.e.,

| f(e-n“i)dpo =0 (2)

where duo = sind de A de. A closed expression for S[n] was cbtained, namely

Shnl = 2 [ {51901 +2n}dy, 3

5
whiere Y 1 the covariant gradient with respect to dsi, i.e.

2 2 . -2 2
%l = (3) + sin6) (2] (4

The Euler-Lagrange equations for S[n] under the constraint Eq. (2)
have the simple geometfical meaning that the metric endsﬁ'phas constant curva-
ture. It follows that the general solufion, giving all the stationary points of

S[n] is the following :

1+ 1512
lx§+B %Iy € +512

= 7;’)('5) =24 = -2 In(cwhr+she 7.2) (o
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where g = (% g) € SL(2,C), ©» is a unit vector and T € (O,+wj. $[n]  vanishes
at néo) and its expansion around any of these stationary points has a positive
semi-definite quadratic part, hence Eq. (5) gives indeed the local minima of S{n].
Since S{n] is interpreted as the classical action of the fleld n(é), it is
important to know whether ( ) are merely local minima (metastable states) or
whether they are indeed the absolute minima of S| n]. The problem is less trivial
than it might appear at first sight, actually its solution requires some tools

from non-linear analysis which are far from trivial,

The answer turns out to be very simple, however, &s given by the following

theoren :

Theorem S[nj is positive semi-definite under the constraint f(en—l)dpo = 0

and S[n] = O implies n = ﬂéo) for some g € SL(2,C).

2. — PROCF OF THE MAIN THEOREM

The proof of the theorem makes essential use of ‘an "exponential™ Sobolev
inequality due to Aubin, combined with the invariance of S[n] under conformal

transformations.

Let us dispose of the constraint [Eq. (2)] by introducing

n = - »&lfe d}lo (6)

(U 1is defined up to an additive constant, which we may fix by requiring fwduo = 0,

but this will not be necessary). The unconstrained functional is now

S S e E

It was shown

by Moser [[3] that S[n] is bounded from below by some absolute constant. A
sharper version of the inequality may hold, however, under additional constraints

on U such as a parity condition [_ 47 Wix) = p(=x): More generdily, Aubin 57

J/ﬁE;Vfag quo =0 (8)

proved that if | satisfies

R T T T T T Y T I TY S TR T R R R T L P e TR T R o BT T R T (RN T T TRTR O]



-3 =

then
ew.ﬂﬂa < Cle) expd (L +e) |v¢|?'§_gg+ ap o (9)
4T * 0 4 4
for any € » O and some constant C(g). Since the coefficient in the exponential
is now % + £ < % it follows that

3301 > (5-€)1on1* e _ tncto (0

Under these circumstances it is known that the infimum of § is actually attained

at the solutions of Euler-Lagrange cquation (see Aubin ['5] for details on this

point and Berger | 6] for the general theory).

At this point, provided n satisfies the additional contraint (8), one

has the sharp inequality

g sinl 20
4nl =0 = n=20 (11)

In fact the EBuler-Lagrange equation under the constraints (2) and {8) is

~AN +2 = 'Aeq-f-ﬁ-:}: e (12)

By integrating over S2? one finds X = 2., It is also known (Kazdan and

Warner [7]) that the equation
- - n
An = 2-(R+px)e

(13)

does not admit any solution except for ﬁ = 0, 1in which case we are led back to

the general solution Eq. (5). Only n = 0 satisfies the constraint (2).

Now we come to the crucial observation that allows us to apply Aubin's

result in general

Lemma : The functicnal S

“n] is invariant under the transformations

n— (Tgn)(8)=n(g's)+ 1 (&8 (14
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where
Cge= 2EE T g% 8) e BLGzC) (15)

¥ +8 7

. . .
( - ‘En 1+ |81 o
% gug) 2 [“f*ﬁﬁ”+'¥§+5|2 {16)

4 direct proof. is nott difficult).but it is éather éumbérsbme and not
particularly enlightening. It is preferable to rely on the link between S[n]
and .the Laplacian [Eq. (1)] and realize that SL(2,L) is the largest connected
group of conformal transfofmations of 8% onto itself, Eq. (1l&) giving the trans-
foermation rule for n. The spectrum of the Laplacian is ¢iéérly thé'samé for n

and T n.
n gn

Now, without changing the value of S| n], we can lock for a g € SL(2,C)
such that Eg. (8) is satisfied by Tgn. If such a g exists then, by Eq. {11),

SEP\]‘-: S[Tgﬂ] 20 E (17)

and Eﬂ:nj =0 =>Tgn = 0 for some g which is the assertion of the theorem. 5o

everything is reduced to the problem of finding a root of the equation

E D '
| / e@q)( )&,'(g) du, =0 | (18)
a2 | -

A simple topelogical argument will show that such a root actually exists, and the
proof of the theorem will be complete, By inserting‘ﬁhe definition of Tgn and
' co 5

changing the integration variable to g_lt, we get the equation

© . | o _
/ erz (%) du, =0 (19)
g? ,

where g 1s the unknown. The function

~ > e . '
X(g) -_—/ e 2 (gs) dp, (20)
SZ
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defines a continuous map % SL(2,¢) > R® the image being contained in the unit

pall ||X|l < 1. For any A > 1 let B, denote a sphere in SL(2,C) defined by

b8

B, = {gesr.(z ) | &= 'u,(o P, we SUR)} (21)

If A is taken sufficiently large the image of BX under the map ¥ is close to
the sphere ||Xjl= 1 1 in fact,

\

2l 5) = g (0, Hats) o

D : 8U(2)+0{(3) being the three-dimensional representation of 3U(Z2) ; but
dime XX (d5)) = 0 (23)
Ap oo 4

except for a set of measure zero (u+§:0) which does not contribute to the

integral, Hence

.&M X('a r' u) = Hlw) (g;) (24)

p -

This shows that for sufficiently large A the map ¥:8 -+ R - {0} is homo-

A

topically non-trivial. 3ince BA is contractible (it shrinks to the identity

as Xk =+ 1) this implies the existence of & root. [@ similar argument hclds in

a much more general setting (Gluck [8]}].

3. - CONCLUDING REMARKS

We have shown that the action functicnal introduced in |:lj in the
context of Polyakov's theory of random surfaces [9] is indeed bounded from below
and attains its absolute minimum at the "classical solutions"™ Eq. (5), Let us
recall that the symmstry of SEn] under conformal transformations is a reflection
of the fact that Polyakov's '"gauge choice" Bap ° pﬁab does not completely fix
the gauge in the case of simply connected surfaces, Cur result shows that the

residual gauge freedom can be consistently eliminated by imposing the additional
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constraint fenich% = 0, which near n = 0 reduces to the condition that 7
be orthogenal to the zero modes, All these problemé are peculiar of the simply
connected surfaces. For surfaces with Euler characteristic y < 0 there is no
residual gauge freedem, no zero modes and the effective action is manifestly

positive definite,

From a mathematical point of view, we have obtalned the best constant in

the Moser-Trudinger inequality, which now reads

[T colsfiresontle]

If ¢ 1is independent of ¢, this reduces to the elementary ineguality

t ()
J

| 1 1 .2
e dt < ep) [t v £ [L-9 Ve dt] (26)
0 °

4
4
the equality sign implying

Cq
W= bt Conen

The inequality (26) is "complementary" to the arithmetic-geometric-mean
inequality {107,

Finally, the result of the theorem implies the following bound on the

spectrum of A, which dees not seem to have been noticed previously

: A - S(n]

the bound being saturated only by the standard metric (up to isometries}.
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