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Abstract We revisit the empirical moving window filtering

method of Swenson and Wahr (Geophys Res Lett 33:L08402,

2006) and its variants, Chambers (Geophys Res Lett

33:L17603, 2006) and Chen et al. (Geophys Res Lett 34:

L13302, 2007), for reducing the correlated errors in the

Stokes coefficients (SCs) of the spherical harmonic expan-

sion of the GRACE determined monthly geopotential solu-

tions. Based on a comparison of the three published

approaches mentioned, we propose a refined approach for

choosing parameters of the decorrelation filter. Our approach

is based on the error pattern of the SCs in the monthly GRACE

geopotential solutions. We keep a portion of the lower degree-

order SCs with the smallest errors unchanged, and high-pass

filter the rest using a moving window technique, with win-
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dow width decreasing as the error of the SCs increases. Both

the unchanged portion of SCs and the window width conform

with the error pattern, and are adjustable with a parameter.

Compared to the three published approaches mentioned, our

unchanged portion of SCs and window width depend on both

degree and order in a more complex way. We have used the

trend of mass change to test various parameters toward a pre-

ferred choice for a global compromise between the removal

of the correlated errors and the minimization of signal dis-

tortion.

Keywords GRACE · Geopotential coefficients ·

Correlation

1 Introduction

The gravity recovery and climate experiment (GRACE) twin-

satellites are designed to determine the changes of the Earth’s

gravity field. The observations are processed at the Center

for Space Research (CSR), University of Texas at Austin,

the Geo-Forschungs-Zentrum (GFZ) Potsdam, the Jet Pro-

pulsion Laboratory (JPL), California Institute of Technol-

ogy, and a few other institutions. The final results, known as

Level 2 (L2) products, are the monthly geopotential solutions

expressed in terms of spherical harmonic expansion, which

are widely used to study mass changes at the Earth’s surface

(e.g., Wahr et al. 1998). However, the GRACE geopotential

solutions have systematic errors, resulting in spurious north-

south stripes in the geoid and mass changes computed from

them. Hence, in practical application, the GRACE results

have to be smoothed (e.g., Jekeli 1981; Wahr et al. 1998;

Han et al. 2005; Guo et al. 2009).

Swenson and Wahr (2006) found that the Stokes coeffi-

cients (SCs) of the spherical harmonics of the GRACE deter-

mined geopotential changes (e.g., the difference between
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1096 X. J. Duan et al.

two monthly models) are inter-correlated. More specifically,

the SCs of the gravity field changes of the same order

and the same parity in degrees are correlated with each

other.

Let us write each SC in the sum of a signal term, a corre-

lated error term and a random error term. The correlated error

can be reduced by high-pass filtering the correlated coeffi-

cients as a function of degree. This process is often referred

to as decorrelation. It can reduce the stripes significantly

(Swenson and Wahr 2006). However, it is also known that the

decorrelation may cause signal distortion, as the signal terms

are not wholly independent of each other. Hence, different

authors have chosen different decorrelation schemes for dif-

ferent purposes based on different compromises between the

removal of the correlated errors and the minimization of sig-

nal distortion.

We may classify the decorrelation methods developed so

far in two categories. One category is empirical that does not

use any other information (Swenson and Wahr 2006; Cham-

bers 2006; Chen et al. 2007; Schrama et al. 2007; Wouters and

Schrama 2007; Davis et al. 2008). The other category makes

use of the error variance-covariance matrix of the SCs, but

also requires a priori signal covariance information (Kusche

2007; Klees et al. 2008). This class of filter is based on the

minimization of an objective function, thus having a more

solid theoretical ground.

Swenson and Wahr (2006) proposed an empirical moving

window filtering method to remove the correlation. The idea

is to estimate the correlated part of an even/odd degree SC

by fitting the even/odd SCs in a predefined window centered

by the SC using a quadratic polynomial. Chambers (2006)

and Chen et al. (2007) followed the principle of Swenson

and Wahr (2006), but chose to fit all the even/odd SCs of the

same order to be decorrelated using a polynomial.

Schrama et al. (2007) and Wouters and Schrama (2007)

made use of empirical orthogonal functions (EOFs). Their

difference is that Schrama et al. (2007) performed the com-

putation in the spatial domain, and Wouters and Schrama

(2007) performed the computation in the spherical harmonic

domain.

Davis et al. (2008) presented a statistical approach. The

idea is to fit each SC using a constant, a trend and an annual

term, and then decide whether to include the trend or annual

term in the result based on a statistical test. The inputs to

the statistical test are positive unit weight residual sums of

squares and degree of freedoms of the full mode (all param-

eters are included in the fit) and of the restricted mode (the

parameter tested is set to zero).

Kusche (2007) devised a combined decorrelation-smooth-

ing algorithm, that is similar to a Tikhonov-type regulari-

zation of the original normal equation system based on a

systematic error covariance matrix computed from the

GRACE orbits, and an a priori signal covariance matrix in

the spherical harmonic domain. At present, monthly models

filtered by this method can be downloaded from the ICGEM

website1 at GFZ.

Klees et al. (2008) addressed the optimal decorrelation

filter in a broader scope by minimizing a clearly defined

objective function, i.e., the global mean of the mean square

difference between the actual (unfiltered) mass change func-

tion and the filtered mass change function as inferred from

GRACE data. This filter makes use of the full variance-

covariance matrix of error in the GRACE solution and signal

covariance in the spatial domain. Kusche (2007) turned out

to be a simplified case of Klees et al. (2008).

Klees et al. (2008) have compared their optimal filter with

a Swenson and Wahr (2006) type empirical filter they defined

using the Delft Institute of Earth Observation and Space Sys-

tems (DEOS) GRACE solutions, and found the optimal fil-

ter outperforms in removing stripes. This is not surprising

as the optimal filter uses the actual covariance matrices of

the GRACE solutions. However, we believe that the simple

Swenson and Wahr (2006) type filter will still be used for

its simplicity and providing mass change solutions without

biasing the results toward a pre-existing mass change model.

This work follows the empirical approaches of Swenson

and Wahr (2006), Chambers (2006) and Chen et al. (2007).

Its main difference from the former approaches is the use

of the standard deviations (SDs) of the SCs provided by the

processing centers as a measure of the quality of the SCs.

Generally speaking, if a coefficient’s SD is small, its error

covariances with other coefficients are also small (though the

reverse may not be true). So we choose to filter stronger the

coefficients with larger SD. As the SDs of the SCs increase as

the degree and order increase, we keep unchanged a portion

of lower degree-order SCs with smallest SD, and decorrelate

the rest of the SCs using a quadratic polynomial moving win-

dow approach as Swenson and Wahr (2006), with window

width decreasing as the SD increases. We have tested vari-

ous choices of the parameters using the trend of mass change

computed from the JPL release 4 (RL04) L2 product. Based

on a compromise between stripe removal and signal preser-

vation, we suggest a preferred choice of the parameters.

Actually, our choice to follow the SD pattern is in the

same spirit as Swenson and Wahr (2006), Chambers (2006)

and Chen et al. (2007). They all applied stronger filter to

the higher order coefficients which have larger SDs than the

lower order coefficients.

We have also compared our approach with those of

Swenson and Wahr (2006), Chambers (2006) and Chen et al.

(2007) by applying all of them to a synthetic model con-

structed using the global land data assimilation systems

(GLDAS) hydrological model (Rodell et al. 2004), a post-

glacial rebound (PGR) model (Peltier 2004), the GRACE

1 http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html.
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Correlated errors in GRACE temporal gravity field solutions 1097

result over Greenland and the global ocean model for circula-

tion and tides (OMCT) (Thomas 2002; Dobslaw and Thomas

2007).

Following Swenson and Wahr (2006), Chambers (2006)

and Chen et al. (2007), the results after decorrelation using

our algorithm still need to be smoothed using a Gaussian fil-

ter. Chen et al. (2006) discussed the optimal choice of the

filter’s smoothing radius, i.e., the distance between the two

points where the values of the Gaussian function attains max-

imum and half maximum.

2 Method

We begin by summarizing the approaches of Swenson and

Wahr (2006), Chambers (2006) and Chen et al. (2007).

In the approach of Swenson and Wahr (2006), the corre-

lated part to be removed from the coefficient Cm
l (Sm

l is sim-

ilar) is computed by fitting Cm
l−2α, . . . , Cm

l−2, Cm
l , Cm

l+2, . . . ,

Cm
l+2α using a quadratic polynomial. The relation between

the window width w (the total number of coefficients fitted)

and α is w = 2α + 1. The window width used by Swenson

and Wahr (2006) is not provided in the paper. Here we cite

Swenson and Wahr’s unpublished result of window width:

Decorrelation is done for the SCs of order m = 5 and above,

and the window width depends on m in the form of (Swenson

and Wahr, personal communication, 2008)

w = max(Ae− m
K + 1, 5), (1)

where the function max() takes the larger one of the two argu-

ments. Swenson and Wahr have empirically chosen A = 30

and K = 10 for the CSR RL01 or RL02 data they used

at the time, evidently based on a trial-and-error procedure.

Here we round w to an odd integer, that is 19 for m = 5,

and 5 for m = 19 and higher. As the data are fitted using

a quadratic polynomial, the window width should be larger

than 3 in order that some information is retained after filter-

ing. Hence the minimum window width is set to 5. When

l < m + (w − 1)/2 (near-tesseral) or l > lmax − (w − 1)/2

(near maximum degree), Cm
l (and Sm

l ) can no longer be cen-

tered in the window. In these situations, the w coefficients

of the same parity as l with lowest or highest degrees are

used in the polynomial fit. In this work, we will fix A = 30,

and allow K to vary for adjusting the window width. The

effects of adjusting either A or K are similar. We have cho-

sen to adjust K as the widow width for larger l and m is more

sensitive to it.

Chambers (2006) left a lower degree-order portion (7 × 7

in the paper for the CSR RL02 data, and 11 × 11 for the

CSR RL04 data provided at the web page2) unchanged, and

2 ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/chambers-

destripe/dpc200711/doc/GRACE-dpc200711_RL04.pdf.

computed the correlated part to be removed by fitting the rest

of SCs of the same order using a polynomial (seventh order

in the paper for the CSR RL02 data, and fifth order for the

CSR RL04 data provided at the web page mentioned), for

even and odd degrees separately based on how the SCs are

correlated.

Chen et al. (2007) left the SCs of orders 5 and lower

unchanged, and computed the correlated part to be removed

for orders 6 and above by fitting the SCs of the same order

using a third order polynomial, again for even and odd degrees

separately.

Although the approaches of Chambers (2006) and Chen

et al. (2007) could also be tuned by changing the portion of

unfiltered SCs and the order of polynomial, here we follow

the approach of Swenson and Wahr (2006) as it allows to filter

the SCs of different degree or order with different strength,

and is thus more flexible.

The intention of decorrelation is to better balance the pres-

ervation of signal detail and the removal of stripes. Certainly,

the most straightforward way is to filter more strongly those

SCs of worse quality, which is the essence of this work. Here

we use the SDs of the SCs provided in the GRACE L2 prod-

ucts as a measure of the quality of the SCs. It is natural that we

expect the SCs of geopotential changes to have similar error

characteristics to those of the monthly geopotential models

of the L2 products. In Fig. 1, we show the SDs of Cm
l as a

function of l and m provided by the JPL RL04 L2 product

Fig. 1 The error (scaled by ×1012) pattern of Cm
l of a month’s JPL

GRACE gravity model. The three dark curves are used to define the

portion kept unchanged in the decorrelation
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of a randomly selected month’s (2005.7) geopotential model

(the patterns for different months are very similar). It can be

seen that the SD strongly depends on both l and m. In gen-

eral, it increases as l or m increases. This is also observed for

the SDs of the CSR coefficients.

However, the SDs of the near-tesseral potential coeffi-

cients are apparently larger. In our experiment, we do not

particularly apply a stronger filter to these few near-tesser-

al coefficients than to the adjacent coefficients with much

smaller SDs. Instead, we have chosen the filter to be always

stronger when l or/and m are larger.

According to the error pattern, we reserve a lower degree-

order portion of the SCs with smallest errors unchanged. As

shown in Fig. 1 by dark curves, the unchanged portion is

defined using the curve

l = l0 + βmr . (2)

This curve approximately follows a contour of the error pat-

tern, and allows us to choose the unchanged SCs to be below

a common error threshold quasi-independent of both l and

m. Based on our computation for a large number of choices,

we choose r = 3.5 empirically for the trend computed from

the JPL RL04 data.

The values of l0 and β are defined by the coordinates (l, m)

of the two ends of the curve, where m = 0 at one end, and

l = m at the other end. As the curve approximately coin-

cides with a contour of the SDs, the (l, m) end-point pair is

practically defined by one parameter (e.g., l0, which is the

value of l at the end point with m = 0). In Fig. 1, we show

the end-point pairs (20, 0) ↔ (10, 10), (35, 0) ↔ (15, 15)

and (45, 0) ↔ (20, 20) for the trend of JPL RL04 data.

In this work we adopt the moving window approach of

Swenson and Wahr (2006). We also use a quadratic polyno-

mial, but choose our window width based on the error pattern

(another possible choice is to fix the window width and alter

the order of the polynomial). The larger the error is, the more

strongly the coefficient should be filtered, thus the smaller the

window width should be. In our algorithm the window width

depends on both l and m, while that of Swenson and Wahr

(2006) depends only on m. The formula of the window width

is modified from Swenson and Wahr’s formula, i.e., Eq. ( 1):

w = max
{

Ae−
[(1−γ )m p+γ l

p
]1/p

K + 1, 5
}

, (3)

that is then rounded to an odd integer. The parameter A is

fixed to 30. The parameters γ and p are empirically chosen

so that the pattern of w is similar to the error pattern in Fig. 1.

We have also computed the window width using a large num-

ber of choices of parameters, and empirically set γ = 0.1 and

p = 3 for the trend of JPL RL04 data. After empirically fix-

ing γ and p, the window width is defined by the parameter

K alone. A larger K corresponds to larger window widths.

We show in Fig. 2 the window width with K = 10 and 15

for the trend of JPL RL04 data.

In summary, after empirically fixing the parameters r and

p related to the SD pattern, our approach needs to assign two

parameters l0 and K to further fine tune the filter. l0 specifies

the portion of SCs kept unchanged. K specifies the window

width.

3 Results

As Swenson and Wahr (2006) pointed out, the decorrela-

tion affects geophysical signals, especially at high latitudes

where some short-wavelength features are removed. In this

work, we mainly use the trend of mass changes as numerical

example, since the trend has ample signal at high latitudes.

The trend in geoidal height is obtained by fitting the GRACE

monthly SC time series with an offset, a linear term that

represents the trend, a yearly term, a half-yearly term and a

Fig. 2 Window width w as

function of l and m used in our

decorrelation algorithm

computed with K = 10 (Left)

and K = 15 (Right). The dark

curves are the same as those in

Fig. 1
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two-yearly term. The mass changes are computed from the

geoidal height changes using the load Love numbers com-

puted by Guo et al. (2004) for each degree by solving the gov-

erning ordinary differential equations. As our purpose here

is to validate the decorrelation algorithms, a PGR correc-

tion is not applied, implying that the PGR gravity variation

is hypothetically interpreted as caused by mass changes at

the Earth’s surface. In this way, the signal at higher latitudes

of our illustrative mass change model is amplified. The JPL

RL04 data from April 2002 to July 2007 (with some missing

months in between: May, June and July, 2002; May, June,

2003) truncated at degree and order 70 are used to compute

the trend.

As reference, we first perform the computation using the

algorithms of Swenson and Wahr (2006) (for A = 30, K =

10 and 15), Chambers (2006) (lower 11 × 11 portion

unchanged, fifth order polynomial) and Chen et al. (2007)

(orders 5 and lower unchanged, third order polynomial). The

results after smoothing using an isotropic Gaussian filter of

smoothing radii 300 and 400 km are shown in Fig. 3.

The results of the three previous approaches show differ-

ences, particularly at higher latitudes. For example, the two

domes in the Hudson Bay area (e.g., Tamisiea et al. 2007)

are barely distinguishable in the results using the approaches

of Swenson and Wahr (2006) (with K = 10) and Chambers

(2006). We also observe that the positive dome in the north

of Greenland is displaced toward the south and enhanced in

the result of Chambers (2006). We also see a dome in the

ocean south of Greenland in the original data, that appears in

all results, but the amplitude is evidently smaller in the result

of Chambers (2006). These features can in fact be expected

based on the characteristics of the decorrelation algorithms.

The approach of Chambers (2006) is designed to be applied

over the ocean. His criterion is to minimize the global var-

iance of the residual between the sea levels determined by

GRACE and by steric corrected altimetry. As the signal over

ocean is much smaller than that over land, a stronger filter

is required to reduce more short wavelength noises. If we

use it over land, it may undesirably reduce too much short

wavelength signal, as can be seen from the results over Green-

land and Antarctica. The approach of Chen et al. (2007) is

designed to retrieve the mass changes associated with the

coseismic and postseismic deformation from the 2004 Suma-

tra-Andaman earthquake, and the criterion is that the result

obtained after smoothing is closest to that obtained from GPS

and seismological data. Hence, this approach preserves more

short wavelength details in the equatorial region, and the fil-

ter used is weaker. As a result, much of the short wavelength

details in other regions are also preserved, but the stripes are

less reduced. Swenson and Wahr (2006) did not focus on a

particular region. For the case of K = 10, apart from the

removal of short wavelength signal at higher latitudes that

they mentioned, the signal at low-to-mid latitudes is likely

well retained, and the stripes are very much reduced. The

case of K = 15 visually looks quite reasonable. We will

compare this case with our decorrelation results later.

We present in Figs. 4 and 5 our decorrelation results for

the two choices of window widths computed using K = 10

and 15, respectively, as shown in the left and right panel of

Fig. 2. Each figure contains the results for the undecorrelated

case, and for the three decorrelated cases corresponding to

the three choices of the portion of the lower degree-order SCs

kept unchanged as shown in Fig. 1. The results are smoothed

with radii 300 and 400 km similar to those in Fig. 3.

The characteristics of the results are as we expected. As

the results in Fig. 5 are computed with a larger window width

than those in Fig. 4, they show a little more short wavelength

details, though hard to see in the figures. However, the detail

of short wavelength signal preserved is mostly dependent on

the amount of lower degree-order SCs kept unchanged in

the decorrelation. Here we examine again the signals over

the Hudson Bay region and Antarctica. The two domes that

appear in the undecorrelated case in the Hudson Bay region

are clearly discernable in the bottom row of both Figs. 4 and

5 with roughly the same shape. Their overall shapes also

conform with those in the first row. However, they are com-

pletely merged together in the second row of Fig. 4. In Fig. 5,

it looks like that the two domes are discernable in the second

row, but their overall shape is quite different from that in the

first row. Thus we believe the seemingly observed distinction

of them is only the result of some kind of signal distortion.

Over Antarctica, we see that the magnitudes of the signals

of the apparent highs and lows are very much reduced in the

second row of both Figs. 4 and 5.

The square roots of the variances, i.e., the root mean

squares (RMS) values, of the JPL GRACE mass trend after

applying the various decorrelation approaches and a Gauss-

ian filtering with a smoothing radius of 300 km are listed

in Table 1. We see that different approaches do not lead to

significantly different RMS. These are in fact an overall mea-

sure of the magnitude of the signal obtained. Very likely, the

smaller this RMS value is, the more the unrealistic high mag-

nitude stripes are removed. However, a smaller RMS does not

imply a better decorrelation approach, as a too small RMS

value may be the result of over decorrelation associated with

strong signal distortion.

4 Assessment of signal distortion

Actually, there is no really relevant quantitative criterion

to judge the results of different decorrelation processes for

GRACE data. Although the variance of the signal indicates

to some extent how much the unrealistically high magnitude

stripes have been removed, there exists no measure of how

well the signal is preserved. Thus we can only expect to get an
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Fig. 3 A comparison between the previous approaches using the trend of mass changes. Isotropic Gaussian filters of radii 300 and 400 km are

applied after decorrelation
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Correlated errors in GRACE temporal gravity field solutions 1101

Fig. 4 Results of decorrelation for window width computed using K = 10 (Fig. 2, Left) smoothed with radii 300 and 400 km, respectively. As

reference, the results without decorrelation are also shown. UP means the end-point pair defining the unchanged portion of SCs

indirect measure of signal preservation by applying the dec-

orrelation algorithm to geophysical data sets like the GLDAS

hydrologic model. Here we construct a synthetic model of

mass change trend composed of the NOAH GLDAS model

(2002.1–2006.4) (Rodell et al. 2004), a surface mass change

rate corresponding to the gravity variation of a PGR model

based on the ICE-5G ice model (Peltier 2004) with an upper

mantle viscosity of 2 × 1020 Pa s and a lower mantle viscos-

ity of 6 × 1021 Pa s, the GRACE result over Greenland and

the ocean bottom pressure (OBP) of the OMCT (Dobslaw

and Thomas 2007) (see Fig. 6). The addition of the PGR and

GRACE data amplifies the signal at higher latitudes, so that

the synthetic model becomes comparable to the real GRACE

data.

Hence, our judgement on the decorrelation algorithm will

be based on (1) the preservation of signal when the filter is

123



1102 X. J. Duan et al.

Fig. 5 The same as Fig. 4 for the case of K = 15

applied to the synthetic model, (2) the variance of the result

when the filter is applied to the GRACE data, and (3) an

empirical comparison of the stripes left and the distortion of

mass change pattern as compared to the case without decor-

relation.

We have applied the destriping approaches of Swenson

and Wahr (2006), Chambers (2006) and Chen et al. (2007),

as well as ours, together with a Gaussian filter of smoothing

radius 300 km, to the synthetic model. To be conform with

the postprocessing of GRACE data, we have transformed

the mass of the synthetic model to geopotential coefficients,

applied the decorrelation algorithms, and then transformed

back to mass. We use the RMS values of the differences

(DRMS) between the results with and without decorrela-

tion as a measure of the signal distortion caused by the dec-

orrelation. The smaller the DRMS value is, the better the

signal is preserved. Certainly, the larger the unchanged por-

tion is, or the wider the window is, the smaller the DRMS.
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Correlated errors in GRACE temporal gravity field solutions 1103

Table 1 The RMS values (mm) of the trend of JPL GRACE mass

changes after applying the various decorrelation algorithms and the

Gaussian filtering with a smoothing radius of 300 km (UP: the degree-

order pair defining the unchanged portion)

Previous approaches

Swenson and Wahr (2006) (K = 10) 10.09

Swenson and Wahr (2006) (K = 15) 10.22

Chambers (2006) 9.63

Chen et al. (2007) 10.81

Our approach with K = 10

K = 10, UP = (20, 0), (10, 10) 9.37

K = 10, UP = (35, 0), (15, 15) 10.24

K = 10, UP = (45, 0), (20, 20) 10.41

Our approach with K = 15

K = 15, UP = (20, 0), (10, 10) 9.55

K = 15, UP = (35, 0), (15, 15) 10.28

K = 15, UP = (45, 0), (20, 20) 10.43

The RMS value after applying only the Gaussian filter with a smoothing

radius of 300 km without decorrelation is 12.75 mm

However, this DRMS value does not reveal how well the

stripes are removed when the decorrelation process is applied

to GRACE data. For our decorrelation approach, we list in

Table 2 the cases of K = 10 and 15 as shown in Figs. 4 and

5. We see that different approaches lead to quite different

DRMS.

As guideline for the choice of parameters, we look for a

smaller RMS and DRMS listed in Tables 1 and 2, respec-

tively. Inspection of signal distortion and stripe removal in

Figs. 4 and 5 is also necessary. As a compromise, we pro-

pose to use our decorrelation results shown in the third row

of Fig. 5 for general purpose usage for the case of trend of

JPL RL04 data.

The case we have chosen corresponds to the unchanged

portion defined by the l, m pairs (35, 0) ↔ (15, 15), and the

window width defined by K = 15. This case is likely indis-

tinguishable from the case of Swenson and Wahr (2006) with

K = 15. However, a comparison between the data provided

in Tables 1 and 2 indicates that our choice is more preferable.

As compared to the algorithm of Swenson and Wahr

(2006) with K = 15, our choice has a smaller DRMS value

when applied to the synthetic model (0.64 vs. 1.31), which

means our approach better preserves the signal. Our choice

has a slightly larger RMS value of the signal obtained (10.28

vs. 10.22), which implies our algorithm may have removed

slightly less stripes, or preserved a little more signal. Here

we mention once again that a smaller RMS value does not

imply better results.

However, all decorrelation methods distort the signal.

When we visually compare the third row of Fig. 5 with the

first row, we can still find signs of signal distortion. At lower

latitudes, we see that the signal of the 2004 Sumatra earth-

quake is altered significantly. At higher latitudes, the negative

signal on the west coast of Greenland is very much reduced.

We remark that the approaches of Swenson and Wahr

(2006) and Chambers (2006) are designed for processing

monthly data. The trend should have less stripes than the

monthly data, as a part of the error may be eliminated in the

least squares fit. Hence, when the approaches of Swenson

and Wahr (2006) and Chambers (2006) are applied to the

trend, they may be too strong, thus removing more stripes

and causing more signal distortion.

According to the signal RMS obtained, we can assess that

the ability of our and Swenson and Wahr (2006) approaches

for removing stripes are about the same (RMS of 10.28 vs.

10.22). We also speculate that the comparison made by Klees

et al. (2008) between the optimal filter and a Swenson and

Wahr (2006) type filter should also remain principally true

for our Swenson and Wahr (2006) type filter. The optimal fil-

ter of Klees et al. (2008) is more capable at removing stripes.

However, as the optimal filter and the Swenson and Wahr

(2006) type empirical method have very different character-

istics, such as the way signal is distorted, we believe that the

Swenson and Wahr (2006) type methods will still be used in

parallel with other methods.

We have also applied our approach to a few cases of

mass changes computed using the differences between the

monthly gravity models of the CSR GRACE RL04 L2 prod-

ucts (2005.4–2004.4, 2006.4–2005.4 and 2007.4–2006.4). In

these cases, the mass change signal is generally much larger

than that of the trend. Apart from some differences on the

choice of parameters that define the unchanged portion and

the window width, the results have similar characteristics.

The empirical parameters are r = 3.5, γ = 0.1, p = 2. Our

results show that the case with the unchanged portion defined

by the l, m pairs (35, 0) ↔ (10, 10), and the window width

defined by K = 15 is likely the preferred choice.

5 Discussion

We have compared three approaches of the same type of

methods (Swenson and Wahr 2006; Chambers 2006; Chen

et al. 2007) for removing correlated errors in the SCs of the

spherical harmonic expansion of the GRACE gravity changes

using the trend. Two of them (Chambers 2006; Chen et al.

2007) are tuned for specific applications. They give signifi-

cantly different results.

In this work, we have proposed an approach based on

the pattern of the SDs of the SCs of the GRACE monthly

geopotential models, which should be similar to the error

pattern of the gravity changes. We have proposed to keep a

portion of the lower degree-order SCs with smallest errors

unchanged, and apply a moving window high-pass filter as

in Swenson and Wahr (2006) to the rest of SCs. Both the
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Fig. 6 Results of decorrelation for the synthetic model

unchanged portion and the window width conform with the

error pattern of the SCs, and are defined using a single

parameter. A smaller window width is chosen for SCs of

larger errors, so that SCs of larger errors are filtered more

strongly. An apparent difference between our algorithm and

that of Swenson and Wahr (2006) is that our unchanged por-

tion and window width depend on both degree and order,

while those of Swenson and Wahr (2006) depend only on

order.

We have tested our approach using the trend of mass

changes obtained from the JPL RL04 data truncated to degree

and order 70. As compared to former approaches of the

same type of method (Swenson and Wahr 2006; Chambers

2006; Chen et al. 2007), we obtain a better overall global

compromise between the removal of stripes and the pres-

ervation of signal. It should be mentioned that the former

approaches (Swenson and Wahr 2006; Chambers 2006; Chen

et al. 2007) may also be tuned to give better balance between

123



Correlated errors in GRACE temporal gravity field solutions 1105

Table 2 The RMS values (mm) of the differences (DRMS) between

the results with and without decorrelation of the trend of mass changes

computed from the synthetic model (UP: the degree-order pair defining

the unchanged portion) smoothed using an isotropic Gaussian filter of

radius 300 km

Previous approaches

Swenson and Wahr (2006) (K = 10) 1.41

Swenson and Wahr (2006) (K = 15) 1.31

Chambers (2006) 3.68

Chen et al. (2007) 1.16

Our approach with K = 10

K = 10, UP = (20, 0), (10, 10) 1.63

K = 10, UP = (35, 0), (15, 15) 0.83

K = 10, UP = (45, 0), (20, 20) 0.64

Our approach with K = 15

K = 15, UP = (20, 0), (10, 10) 1.72

K = 15, UP = (35, 0), (15, 15) 0.64

K = 15, UP = (45, 0), (20, 20) 0.49

noise removal and signal preservations by changing their

unfiltered portion, polynomial order (and window width for

the case of Swenson and Wahr (2006)). However, the param-

eters that we suggest might be a more natural choice, since

they are related to the shape of the pattern of the provided

standard deviations.

To illustrate our algorithm, we have presented only results

of global compromises of the trend for general purpose, for

which we suggested a preferred choice of the parameters.

Nevertheless, the algorithm is expected to be also applicable

for obtaining optimized results at a particular location and

for specific geophysical studies. In these cases, the param-

eters defining the unchanged portion and the window width

should be adjusted accordingly. Furthermore, if GRACE L2

data from another Data Center are used, the filter parameters

should be chosen accordingly using the SDs of the estimated

geopotential coefficients provided by that Data Center.

In summary, our main objective is to show that our method

is an alternative to the existing methods for filtering GRACE

data. The other point we were trying to make is that the

choice of decorrelation filter depends surely on the objec-

tives of various geophysical studies. One simple example is

that the same decorrelation parameters for OBP filtering may

or may not be appropriate to apply to earthquake co-seismic

studies. We also discussed the fact that all filtering methods

cause signal distortion, and that there is not an optimal set

of filtering parameters to be applied to study all geophysical

signals from GRACE.

However, as mentioned by Swenson and Wahr (2006),

the decorrelation is a temporary solution for extracting more

information from the present GRACE L2 products. The ulti-

mate solution is to identify the source of the correlated errors,

and remove or mitigate them during the gravity field inver-

sion process.
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