
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2008, Article ID 751863, 13 pages
doi:10.1155/2008/751863

Research Article

On the Power Dissipation of Embedded Memory Blocks Used
to Implement Logic in Field-Programmable Gate Arrays

Scott Y. L. Chin, Clarence S. P. Lee, and Steven J. E. Wilton

Department of Electrical and Computer Engineering, Faculty of Applied Sciences, University of British Columbia,
Vancouver, B.C. V6T 1Z4, Canada

Correspondence should be addressed to Scott Y. L. Chin, scottc@ece.ubc.ca

Received 20 September 2007; Revised 23 November 2007; Accepted 29 January 2008

Recommended by Gustavo Sutter

We investigate the power and energy implications of using embedded FPGA memory blocks to implement logic. Previous studies
have shown that this technique provides extremely dense implementations of some types of logic circuits, however, these previous
studies did not evaluate the impact on power. In this paper, we measure the effects on power and energy as a function of three
architectural parameters: the number of available memory blocks, the size of the memory blocks, and the flexibility of the mem-
ory blocks. We show that although embedded memories provide area efficient implementations of many circuits, this technique
results in additional power consumption. We also show that blocks containing smaller-memory arrays are more power efficient
than those containing large arrays, but for most array sizes, the memory blocks should be as flexible as possible. Finally, we show
that by combining physical arrays into larger logical memories, and mapping logic in such a way that some physical arrays can
be disabled on each access, can reduce the power consumption penalty. The results were obtained from place and routed circuits
using standard experimental physical design tools and a detailed power model. Several results were also verified through current
measurements on a 0.13 µm CMOS FPGA.

Copyright © 2008 Scott Y. L. Chin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

On-chip user memory has become an essential and common
component of field programmable gate arrays (FPGAs). FP-
GAs are now used to implement entire systems on a chip
(SoC’s) rather than the small logic subcircuits that have tra-
ditionally been targeted to FPGAs. One of the key differences
between these large systems and smaller logic subcircuits is
that the large systems often require storage. Although this
storage could be implemented off-chip, implementing these
systems on a single chip has a number of advantages. Be-
sides the obvious advantages of integration, on-chip storage
will often lead to higher-clock frequencies since input/output
(I/O) pins need not be driven with each memory access. In
addition, on-chip storage will relax I/O pin requirements,
since pins need not be devoted to external memory connec-
tions.

FPGA vendors have responded by incorporating two
types of embedded memory resources into their archi-
tectures: fine-grained and coarse-grained. The Xilinx dis-

tributed SelectRAM, in which the lookup-table circuitry can
be configured as small RAMs, is an example of a fine-grained
memory architecture [1]. The Altera TriMatrix memory and
Xilinx block SelectRAM, which are dedicated memory ar-
rays embedded into the FPGA fabric, are examples of coarse-
grained memory architectures [1, 2].

The coarse-grained embedded memory arrays lead to
much denser memory implementations [3] and are therefore
very efficient when implementing large SoC’s that require
storage. However, for logic intensive circuits that do not re-
quire storage, the chip area devoted to the embedded FPGA
memory is wasted. This need not be the case if the FPGA
memories are configured as ROMs to implement logic. Previ-
ous work has presented heterogeneous technology mapping
algorithms that automatically map logic circuits to FPGAs
with both large ROMs and small lookup tables [4, 5]. Given
a logic circuit, these algorithms attempt to pack as much of
the logic into the available ROMs as possible, and imple-
ment the rest of the logic using lookup-tables. These stud-
ies have shown that significant density improvements can

mailto:scottc@ece.ubc.ca

2 International Journal of Reconfigurable Computing

be obtained by implementing logic in these unused memory
arrays, compared to implementing all the logic in lookup-
tables. This technique can be especially beneficial for designs
that are up against the logic capacity of the target FPGA. As
far as these studies have shown, there is no reason not to use
the memory arrays to implement logic.

These previous studies, however, did not consider the im-
pact on power. Power has become a first-class concern among
designers and is often the limiting factor in handheld battery-
powered applications. FPGAs are power-hungry for several
reasons. First, the logic is typically implemented in small
lookup-tables, which have not been optimized for a spe-
cific application. Second, the prevalence of programmable
switches in the interconnect leads to high-interconnect ca-
pacitances, and hence, high-switching energy.

Intuitively, implementing logic in memory arrays will
impact the overall power dissipated by the system in two
ways. If large amounts of logic can be implemented in a
memory array, not only are fewer lookup-tables required
(which would save a small amount of power), but also the
interconnect between these lookup-tables is not required
(which would save a significant amount of power). On the
other hand, memory arrays contain word-lines, bit-lines,
amplifiers, and decoders, all of which consume power [6].

In this paper, we make two contributions. First, we inves-
tigate whether implementing logic in FPGA memory arrays
leads to a net reduction or increase in power for a range of
memory architectures. In particular, we answer the follow-
ing questions.

(1) How does the number of available FPGA memories
used for logic affect power?

(2) How does the size of the available FPGA memories
used for logic affect power?

(3) How does the flexibility of the available FPGA memo-
ries used for logic affect power?

The answers to these questions are important. As FPGA ca-
pacity grows, more embedded memory arrays will be in-
cluded to facilitate the efficient implementation of larger sys-
tems that require more storage. Therefore, understanding the
power implications of using memories to implement logic
will be important for logic intensive circuits. In addition, the
understanding of the impact on memory block architecture
on power will lead to more power-efficient FPGAs.

The second contribution of this paper is a power-aware
algorithm for packing logic into memory arrays. Hetero-
geneous technology mapping algorithms, such as those in
[4, 5], optimize for area, possibly under delay constraints. In
this paper, we show how the algorithm in [5] can be modified
to optimize for power. The key idea is to combine physical
memory arrays into larger logical memories, such that some
physical memories can be disabled with each access. We will
show that this technique leads to a significant reduction in
the power of the overall system.

This paper is organized as follows. Section 2 describes the
necessary background to this work. Section 3 investigates the
power implications of implementing logic in FPGA mem-
ory blocks and presents experimental results. Section 4 then
presents our power-aware heterogeneous technology map-

ping algorithm. Section 5 discusses the limitations of our
study, and Section 6 concludes the paper. An early version
of the results in Section 3 was presented in [7].

2. BACKGROUND

This section describes the architecture of the embedded
memories found in commercial FPGAs, as well as existing
heterogeneous technology mapping algorithms, and some
background information on FPGA power estimation mod-
els.

2.1. Embedded memories in commercial FPGA

Embedded FPGA memory array architectures can be de-
scribed by three parameters: N , B, and weff. N denotes the
number of available arrays, and B denotes the number of bits
available in each array. Typically, each memory array can be
configured to implement one of several aspect ratios; for ex-
ample, the M4k block in the Altera Stratix II architecture can
be configured as one of 4096×1, 2048×2, 1024×4, 512×8,
256 × 16, 128 × 32 [2]. We will refer to the set of allowable
widths of each memory block as weff; in the above example,
weff = {1, 2, 4, 8, 16, 32}.

It is important to note that the shape of the physical array
does not change as the chip is configured (it is fixed when the
FPGA is manufactured). The appearance of a configurable
data width is obtained by using multiplexers and column en-
able signals to read and update only certain columns in each
word [3]. Note that the width of the physical array (the num-
ber of columns) must be at least as large as the largest value in
weff so that weff bits can be read from the array in one access.

2.2. Heterogeneous technology mapping

Two algorithms that map logic to memory arrays have been
described: EMB Pack [4] and SMAP [5]. Both algorithms
operate similarly and produce similar results; in this paper,
we use SMAP. In this subsection, we briefly review the SMAP
algorithm.

In the following, we will use the following terminology
(primarily from [8]). The combinational part of a circuit is
represented by a directed acyclic graph G(V,E) where the ver-
tices V represent combinational nodes, and the edges E repre-
sent dependencies between the nodes. V also contains nodes
representing each primary input and output of the circuit.
Flip-flop inputs and outputs are treated as primary outputs
and inputs. A network is k-feasible if the number of inputs to
each node is no more than k. Given a node v, a cone rooted at
v is a subnetwork containing v and some of its predecessors.
As in [5], we define a cone rooted at a set of nodes W to be
a subnetwork containing each node in W along with nodes
that are predecessors of at least one node in W . A fanout-
free cone is a cone in which no node in the cone (except the
root) drives a node not in the cone. The maximum-fanout
free cone (MFFC) for a node v (or set of nodes W) is the
fanout-free cone rooted at v (or W) containing the largest
number of nodes. Given a cone C rooted at v, a cut (X ,X ′) is
a partitioning of nodes such that X ′ = C. A cut-set of a cut is

Scott Y. L. Chin et al. 3

E
AC

Q
P

M

N

Q

E

K

G

F

A

JH

L

P

D

BC

M
N

Figure 1: Example of mapping logic to a memory array.

the set of all nodes v such that v ∈ X and v drives a node in
X ′. If the size of the cut set is no more than d, the cut is said
to be d-feasible. Given a cone rooted at v, the maximum-
volume d-feasible cut is the d-feasible cut (X ,X ′) with the
largest number of nodes in X ′.

Given a logic circuit and a set of memory arrays, SMAP
tries to pack as much logic into each memory array as possi-
ble and implements the rest of the logic in lookup-tables. It
does this one memory array at a time. For each memory ar-
ray, the algorithm chooses a seed node (as described below).
Given a seed node, it determines the maximum-volume k-
feasible cut of the node’s fan-in network. The k cut nodes
become the inputs to the memory array. Given the seed node
and the cut nodes, SMAP then determines which nodes be-
come the memory array outputs. Any node that can be ex-
pressed as a function of the cut nodes can be a memory
output. SMAP chooses the output nodes with the largest
maximum fan-out-free cone (MFFC). The nodes in the cho-
sen output node’s MFFC are packed into the memory array.
Figure 1 shows an example of an eight input cut, where nodes
C, A, and F are chosen as memory outputs, and the resulting
circuit implementation.

To find the best solution using this method, the algo-
rithm is repeated for all possible seed nodes and the solu-
tion that results in the highest number of packed nodes is se-
lected. For arrays with a configurable aspect ratio, SMAP tries
all possible configurations with the selected seed node and
chooses the configuration that results in the highest number
of packed nodes.

When there is more than one memory array, the algo-
rithm is repeated iteratively for each array. In this way, the
algorithm is greedy; the decisions made when packing nodes
into the first array do not take into account future arrays.
However, experiments have shown that this works well. For a
more complete description of SMAP, see [5].

2.3. Power estimation for FPGAs

Both commercial and academic power estimation tools ex-
ist for FPGAs [9–14]. Vendors typically provide power es-
timation spreadsheets for power estimation in the early de-
sign stage [12, 13]. However, power estimates at early design
stages are not very accurate. For power estimates in later de-
sign phases, vendors provide tools in their CAD suites such as
Altera’s PowerPlay power analyzer [11] and Xilinx’s Xpower
[10].

The poon power model (PPM) [14] is a probabilistic aca-
demic FPGA power model. This model is built on top of
the popular versatile place and route (VPR) [15] CAD suite
and is used for the experiments conducted in this paper.
The power estimates are calculated after placement and rout-
ing and are broken down into three components: dynamic,
static, and short-circuit power.

Dynamic power dissipation arises from the charging and
discharging of the node capacitances in the FPGA. PPM uses
(1) to model the dynamic power dissipation of a net. Where
α is the switching activity of the net, C is the effective capaci-
tance of the net,Vsupply is the supply voltage,Vswing is the volt-
age swing when switching, and fclock is the clock frequency.
Dynamic power is very significant in FPGAs due to the nu-
merous programmable connections. These connections add
substantial parasitic capacitances to the capacitance of the
prefabricated wire segments. To model the dynamic power
dissipated within the logic blocks and clock network, PPM
employs a number of transistor-level models:

PDynamic =
1

2
·α·C·VSupply·VSwing· fClock. (1)

Static power is caused by leakage current when a transistor
is turned off. There are many sources of leakage currents
but the most significant source, and only source modeled by
PPM, is the subthreshold current. To model this, PPM uses a
first-order approximation to estimate the subthreshold leak-
age current of each transistor and multiplies this value with
the supply voltage. The PPM model for static power has been
shown to be within 13.4% of SPICE simulations.

The last source of power dissipation is short-circuit
power. When a CMOS gate switches, there is a brief moment
when the pull-up and pull-down networks are both partially
on. This allows current to flow directly between the supply
and ground rails. The amount of current that actually flows
is dependent on the rise and fall times. Based on commercial
device data sheets, PPM estimates the short-circuit power as
10% of the dynamic power. For more details on PPM, please
refer to [14].

3. POWER IMPLICATIONS OF IMPLEMENTING
LOGIC IN MEMORY BLOCKS

In this section, we quantify the power implications of imple-
menting logic in memory blocks using the SMAP algorithm.
We also investigate the impact of the memory block architec-
ture on the power efficiency of the resulting implementation.

3.1. Experimental methodology

To investigate the power implications when using memories
to implement logic, we employ an experimental method-
ology. We gather results in two ways: we use an enhanced
version of VPR [15] and PPM [14] that supports embed-
ded memories, as well as performing current measurements
on a modern 0.13 µm CMOS FPGA (Altera Stratix EP1S40).
Although the second technique provides the most accurate
results, it is not possible to use it to investigate alternative

4 International Journal of Reconfigurable Computing

Benchmark circuit

Quartus
integrated
synthesis

Netlist of LUTs

SMAP

Random
input vectors

ACE 2.0Netlist of LUTs
and ROMs

Estimated net
activities

Memory
technology

information

Enhanced VPR
and power model

Power estimates

Virage logic
memory compiler

TSMC 0.18 µm

technology
information

Figure 2: Flow for VPR-based experiments.

memory architectures; for those experiments, we need to use
our VPR flow. In this section, we describe both methodolo-
gies.

3.1.1. Enhanced VPR and power model flow

Figure 2 shows the flow for our VPR-based experiments. We
first technology map twenty large MCNC circuits (combina-
tional and sequential) to 4-LUTs using Quartus integrated
synthesis (QIS), and export the netlist to BLIF [16] for-
mat using the Quartus University Interface Program (QUIP)
[17]. Although SIS [18] and Flowmap [19] could also be used
to perform technology mapping, we chose QIS since we need
to eventually feed the same circuit through the Quartus flow
to perform measurements on an actual device, and we want
to ensure that the measured circuit is identical to the one
used in the VPR flow. Statistics for our benchmark circuits
are shown in Table 1.

To map logic to memories, we use a modified version of
SMAP. The embedded memories found in commercial FP-
GAs are typically synchronous whereas the memories gener-
ated by SMAP are asynchronous. To make the SMAP mem-
ories synchronous, we add a new constraint that only allows
SMAP to make input cuts at register inputs. If the fan-outs
of these registers become completely packed into the mem-
ory, then we can also remove these registers from the circuit.
For circuits that are purely combinational, we add registers
to all primary inputs. Although this new constraint may re-
strict the solutions produced by SMAP, we found that it actu-
ally had no impact on SMAP’s packing efficiency. The reason
is that registers are intrinsic boundaries for the SMAP algo-
rithm.

Table 1: Benchmark circuits.

Circuit name Inputs Outputs 4-LUTs Flip flops

alu4 14 8 989 0

apex2 38 3 1023 0

apex4 9 19 844 0

bigkey 229 198 1032 224

clma 62 83 4682 33

des 256 245 1242 0

diffeq 64 40 924 314

dsip 229 198 924 224

elliptic 131 115 2021 886

ex5p 8 63 210 0

ex1010 10 10 876 0

frisc 20 117 2167 821

misex3 14 14 939 0

pdc 16 40 2218 0

s298 4 7 738 8

s38417 29 107 3998 1391

s38584 38 305 4501 1232

seq 41 35 1118 0

spla 16 46 1916 0

tseng 52 123 626 225

To perform power estimation using VPR and PPM,
switching activities for the circuits are required. We use a
modified version of ACE 2.0 to generate the switching activ-
ity information [20]. The original version of ACE 2.0 sup-
ports three elements: primary I/Os, combinational nodes,
and registers. Our extension allows ACE to estimate activi-
ties for ROM memories as well. Each column of a ROM can
be represented as a multi-input single-output combinational
node; we construct these nodes using the results from SMAP
and insert them into the circuit before performing activity
estimation.

To place and route the circuits we use a modified ver-
sion of VPR that supports memories [21]. An architecture
in which memories are arranged in columns was assumed;
the ratio of memory columns to logic columns was fixed at
1 : 6. It was further assumed that each logic cluster contains
ten four-input lookup tables, as in the Altera Stratix device.

A power estimate of the resulting implementation was
obtained using an enhanced version of PPM [14]. The orig-
inal power model estimates the power dissipated in logic
blocks and the configurable routing; we enhanced the model
to estimate the power dissipated in the embedded memory
blocks as well. The power dissipated in each memory block
was modeled as the sum of three components: the pin power,
the cycle power, and the leakage power. The pin power is cal-
culated from the activity and pin capacitance of each pin. The
cycle power is the power dissipated within the memory array
during each read access. Estimating the cycle power and the
leakage power requires technology information; we obtained
this information by creating memories of different shapes
and sizes using the Virage Logic memory compiler [22]. This
memory compiler also provided timing information which

Scott Y. L. Chin et al. 5

was used by the timing-driven place and route algorithms
within VPR. A 0.18 µm TSMC CMOS process was assumed
throughout.

3.1.2. Current measurements on a commercial FPGA

In order to validate the trends found through our VPR-
based flow, we implemented some of these circuits on an
Altera Nios Development Kit (Stratix professional edition)
which contains a 0.13 µm Stratix EP1S40F780C5 device. For
each implementation, we measured the current entering the
board, subtracted the quiescent current when the chip is idle,
and multiplied the result by the voltage to get an estimate of
the power dissipation.

For these experiments, we created a test harness for the
benchmark circuit similar to the one in [23], as shown in
Figure 3. Driving the external input and output pins of the
FPGA can consume significant power, and we did not want
to include this power in our comparisons. This harness con-
sists of a linear feedback shift register (LFSR) connected to
the primary inputs of the benchmark circuit; this allows the
circuit to be stimulated by vectors that are generated on-chip.
The harness also contains a wide exclusive-or gate connected
to all of the primary outputs. The harnessed circuit only has
a single input, the clock, and a single output, the exclusive-or
gate output. The harnessed circuit was then replicated several
times to fill the FPGA.

3.2. Experimental results

In this section, we investigate the impact of three architec-
ture parameters on power dissipation. Results are presented
in terms of energy per cycle to make the results independent
of operating frequency. For combinational circuits, it is as-
sumed that the cycle time is the maximum combinational
delay through the circuit.

3.2.1. Number of arrays used for logic

We first determine the impact of the number of memory
arrays used to implement logic on the energy consump-
tion of a circuit. Intuitively, as the number of memory ar-
rays increases, more logic can be packed into the memo-
ries. Whether this provides an overall reduction in energy
depends on how much logic can be packed into each array.
As described earlier, SMAP is a greedy algorithm, meaning
we would expect to pack more logic into the first few arrays
than in later arrays. This suggests that the energy reduction
(increase) will be smaller (larger) as more memory arrays are
available.

Figure 4 shows the overall energy (dynamic and leakage)
results obtained using the VPR flow averaged across the 20
MCNC benchmark circuits. The number of memory arrays
is varied from 0 (all logic implemented in lookup-tables) to
8, and the array size was fixed at 512 bits. The vertical axis is
normalized to the total energy of the all-logic implementa-
tion. Since the agreement with our technology provider pro-
hibits us from publishing the absolute power characteristics
of the Virage memory compiler output (the memory power),

we have normalized the vertical axis in several graphs in this
paper.

The bottom line corresponds to the energy dissipated in
the logic blocks (the logic energy). As expected, the logic en-
ergy goes down as the number of arrays used by SMAP in-
creases. This is because as the number of used memory ar-
rays increases, more logic can be packed into the memory,
meaning there are fewer LUTs in the final circuit. The sec-
ond line indicates the sum of the logic energy and the energy
consumed by the routing and the clock (so the area between
the lower two lines represents the routing and clock energy).
Again, as expected, more memory arrays means there are
fewer LUTs, leading to fewer connections, and hence, lower
routing energy. Finally, the top line is the overall energy; the
difference between the top line and the middle line represents
the energy consumed by the memories. As the graph shows,
overall, mapping logic to memory arrays does not reduce en-
ergy consumption. In fact, the energy increases significantly
as more memory arrays are used. This suggests that the ex-
tra power dissipated during a read access of the memory is
larger than the power dissipated if the corresponding cir-
cuitry is implemented using lookup-tables. We repeated this
experiment for other memory sizes; the results are shown in
Figure 5.

To verify this trend, we implemented a number of the
circuits on an Altera NIOS development kit containing a
0.13 µm Stratix EP1S40F780C5 device. The Stratix device
contains two types of memory arrays: 512-bit blocks and
4 Kbit blocks. Figure 6(a) shows the measured results for a
single representative circuit when only 512-bit blocks are
used. The bottom line represents the power dissipated in the
memories and clock network (this was obtained by keep-
ing the inputs constant, but toggling the clock, forcing each
memory to perform a read access each cycle). The upper
line presents the total power dissipated in the FPGA. In
both cases, the static power (both the static power of the
FPGA and the power dissipated by the board) was sub-
tracted. As discussed in Section 3.1.2, the static current is
subtracted when the quiescent current entering the board is
subtracted. As shown in the graph, the measured results show
the same trends as the VPR results presented in Figure 5. We
repeated the experiment using only 4 Kbit blocks; the results
are shown in Figure 6(b).

3.2.2. Array size

Although the results in the previous subsection show that the
energy, and hence power, is increased when implementing
logic in memories, there are still situations in which we may
wish to do this. In particular, significant density improve-
ments are reported in [5] and when the design is up against
the logic capacity of the target FPGA. Therefore, it is impor-
tant that we measure the impact of the other architectural
parameters, in an effort to reduce the power penalty imposed
by this technique.

In this subsection, we investigate the impact of the ar-
ray size on the energy dissipated by the circuits. Intuitively, a
larger array means more logic can be packed into each array,

6 International Journal of Reconfigurable Computing

D QSet

D QSet

D QSet

CLR
Q

D QSet

CLR
Q

LSFR Circuit under test
Te

Clock Output

Test harness

Figure 3: Test harness.

0 1 2 3 4 5 6 7 8

Number of memory blocks

0

0.25

0.5

0.75

1

1.25

1.5

1.75

E
n

er
gy

(n
o

rm
al

iz
ed

)

Logic

Routing and clock

Memory

Figure 4: Impact on energy when increasing the number of mem-
ory arrays (512-bit arrays in VPR flow).

0 1 2 3 4 5 6 7 8

Number of memory arrays

0

0.5

1

1.5

2

2.5

3

3.5

4

B = 512

B = 2048

B = 4096

B = 8192

Figure 5: Impact on energy when increasing the number of mem-
ory arrays (VPR Flow).

however, the word-lines and bit-lines are longer, meaning
more energy is dissipated with each memory access.

To investigate this, we fix N = 1 and vary B from 256 to
8192.N is fixed at one because this is the optimistic case as we
saw in the previous subsection. We repeat the experiment for
various values of weff. Clearly, as B increases, the power dis-
sipated in each memory during each access increases. This is

1 2 3 4 5 6 7 8

Number of memory arrays

0

1

2

10

11

12

P
o

w
er

(W
at

ts
)

Memory and clock

Total dynamic power

(a)

0 1 2 3 4 5

Number of memory arrays

0

1

2

10

11

12

P
o

w
er

(W
at

ts
)

Memory and clock

Total dynamic power

(b)

Figure 6: Impact on power when increasing the number of memory
arrays (measured flow): (a) 512-bit arrays, (b) 4096-bit arrays.

shown graphically in Figure 7. In all graphs in this section, we
normalize the energy values to the overall energy consumed
when mapping to a single 256 × 1 memory. For each mem-
ory, we assume that the number of columns in the array is
the same as the number of rows in the array. For values of B
which do not have an integral square root, it is assumed that
the number of rows is twice the number of columns. Since
the power dissipated in our memory depends more on the
number of columns than the number of rows, the power dis-
sipation of blocks in which B does not have an integral square
root is not significantly larger than the next smaller value of

Scott Y. L. Chin et al. 7

0 2000 4000 6000 8000

Memory array size

0

0.05

0.1

0.15

0.2

0.25

Figure 7: Impact on memory energy when increasing memory ar-
ray size.

0 2000 4000 6000 8000 10000

Memory size (bits)

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

wmax = 1

wmax = 2

wmax = 4

wmax = 8

wmax = 16

wmax = 32

wmax = 64

Figure 8: Impact on logic energy when increasing memory size.

B (which would have an integral square root). This explains
the “bumpy” appearance of the lines in Figure 7.

Next consider the impact on the logic energy. The results
are shown in Figure 8 (note that the y-axis does not cross
at the origin). As expected, a larger array means that more
logic can be packed into the array, which reduces the logic
energy. However, for weff = {1} and weff = {1, 2}, the trend
is relatively flat. This is because, as shown in Figure 9, when
the flexibility is low, increasing the array size does not lead to
any significant increase in the amount of packed logic.

Figure 10 shows the impact on routing energy when in-
creasing the memory array size (again note that the y-axis
does not cross at the origin). The significant reduction in the
number of lookup tables directly translates to a reduction in
the number of nets, and hence a reduction in the routing en-
ergy.

Figure 11 shows the results for the overall energy (includ-
ing dynamic and leakage). Despite the reduction in logic and

0 2000 4000 6000 8000

Memory array size

0

20

40

60

80

100

120

140

160

wmax = 1
wmax = 2

wmax = 4

wmax = 8

wmax = 16

wmax = 32

Figure 9: Impact on amount of packable LUTs when increasing
memory size.

0 2000 4000 6000 8000 10000

Memory size (bits)

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

wmax = 1

wmax = 2

wmax = 4

wmax = 8

wmax = 16

wmax = 32

wmax = 64

Figure 10: Impact on routing energy when increasing memory size.

routing energy, the memory power still dominates. Hence,
the overall energy increases as the memory size increases.

Since we are not able to vary B on our Altera part, we
are not able to perform this experiment on the actual com-
mercial device. However, by comparing the results summa-
rized in Figures 6(a) and 6(b), we found that using a 4 kbit
block consumes approximately 8% more power on average
than the 512-bit block when N = 1; this matches the conclu-
sion drawn from the VPR experiments.

3.2.3. Memory block flexibility

In this section, we investigate the power implications of
changing the flexibility of each memory block. As described
earlier, FPGA memory blocks typically have a configurable
output width; the set of output widths in which an array can

8 International Journal of Reconfigurable Computing

0 2000 4000 6000 8000 10000

Memory size (bits)

0.98

1

1.02

1.04

1.06
1.08

1.1

1.12

1.14

1.16
1.18

1.2

1.22
1.24

wmax = 1

wmax = 2

wmax = 4

wmax = 8

wmax = 16

wmax = 32
wmax = 64

Figure 11: Impact on overall energy when increasing memory size.

0 10 20 30 40 50 60 70

Maximum configurable memory width (bits)

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

B = 256

B = 512

B = 1024

B = 2048
B = 4096
B = 8192

Figure 12: Impact on logic energy when increasing memory flexi-
bility.

be configured is denoted weff. In this section, we vary the
maximum value in weff, which we will denote wmax and mea-
sure the impact on energy dissipation.

Intuitively, changing weff will have little affect on the
power dissipated in the memory array itself. Changing weff

does not affect the shape of the physical array; it only affects
the multiplexers that are used to select values from the array.
Since these multiplexers are small, they would affect only a
very small increase in array power as we increase the value of
wmax. In our experiments reported in this section, we ignore
this increase.

However, as the flexibility increases, the amount of logic
that can be packed into each array might increase. In that
case, we would expect the overall power dissipation to drop
as the flexibility is increased.

0 10 20 30 40 50 60 70

Maximum configurable memory width (bits)

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

B = 256

B = 512

B = 1024

B = 2048
B = 4096
B = 8192

Figure 13: Impact on routing energy when increasing memory flex-
ibility.

0 10 20 30 40 50 60 70

Maximum configurable memory width (bits)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

B = 256

B = 512

B = 1024

B = 2048
B = 4096
B = 8192

Figure 14: Impact on overall energy when increasing memory flex-
ibility.

To investigate this, we fix the number of memory arrays
at one and vary the maximum output width, wmax. SMAP is
then free to choose a configuration for each memory rang-
ing from B × 1 to (B/wmax)×wmax, where the widths are in
powers of two.

First consider the energy dissipated in the logic blocks.
Figure 12 shows the impact of increasing wmax, on logic en-
ergy. As wmax increases, the logic energy decreases. This is be-
cause the amount of logic implemented using lookup-tables
is reduced. For large values of wmax , this impact is much less
pronounced than for smaller values; this is because SMAP
rarely produces solutions which use a very large number of
outputs. In Figure 12, there are several cases where increas-
ing flexibility increases logic power. This is counterintuitive.
Since we are using a simulated-annealing-based placement

Scott Y. L. Chin et al. 9

algorithm, small differences in the netlist may result in differ-
ent placements; these differences may overshadow any small
differences caused by SMAP.

Figure 13 shows the routing energy, when wmax is in-
creased. In general, as wmax increases, the routing energy de-
creases. However, for large values of wmax, the power dissipa-
tion increases; this is because the signals driven by the mem-
ory outputs also need to be routed, and a larger value of wmax

leads to solutions which use more memory outputs.
Figure 14 shows the impact on the total energy per cycle.

Since logic and routing energy decrease and memory energy
is constant, the overall impact is a decrease in energy.

Again, since we are not able to vary weff on our Altera
part, we are not able to perform this experiment on the com-
mercial device.

4. POWER-AWARE HETEROGENEOUS
TECHNOLOGY MAPPING

The previous section showed that implementing logic in
memory using the SMAP algorithm results in a severe power
penalty. Yet, the significant density improvements reported
in [4, 5] may motivate designers (or CAD tools) to imple-
ment logic in memory blocks anyway, especially if the design
is up against the capacity limits of target FPGA. In this case, it
is important to map logic to memories in as power-efficient a
manner as possible. In this section, we describe and evaluate
an enhancement to SMAP to make it power-aware.

4.1. Algorithm enhancement

Although it would be possible to perform the cut selection,
output selection, or seed selection in a power-aware manner
similar to [24], our experiments (not reported here) indicate
that this does not work well. These methods helped to re-
duce routing energy slightly but did not address the large
amounts of energy consumed by the memory blocks. In-
stead, we change the way multiple memory arrays are used
to implement logic.

The key idea in this technique is to combine two or
more physical memory arrays into larger logical memories
and use SMAP to map logic to these larger logical memo-
ries. The idea of combining physical memories into larger
logical memories was first presented in [5] as an attempt
to reduce the run-time of SMAP. The original SMAP algo-
rithm maps to the memory arrays sequentially, which can
lead to long run-times if there are a large number of mem-
ory arrays. By combining physical memories to create fewer
larger arrays, fewer iterations of SMAP are required, lead-
ing to significantly improved run-time. An example of this
is shown in Figure 15(a). In this example, two physical ar-
rays with B = 512 and weff = {1, 2, 4, 8, 16} are combined
to implement a single logical memory with B = 1024 and
weff = {2, 4, 8, 16, 32}. In this example, each physical array
supplies half of the bits in each word. This larger logical ar-
ray is then treated as a single entity in SMAP, meaning only
one iteration of the SMAP algorithm is required.

Figure 15(b) shows another way in which the two mem-
ory arrays can be combined to create a single larger logi-

B = 512
weff = {1,

2, 4, 8, 16}

B = 512
weff = {1,

2, 4, 8, 16}

ww

2w

9

(a)

B = 512
weff = {1,

2, 4, 8, 16}

ME
control

B = 512
weff = {1,

2, 4, 8, 16}

ww

w

10 9
1

(b)

Figure 15: Forming logical memories: (a) area efficient and (b)
power efficient.

cal memory. In this case, the resulting logical memory has
B = 1024 and weff = {1, 2, 4, 8, 16}. In this organization, all
bits for each word are stored in the same physical array. Nine
of the address lines are provided to each physical array, and
the tenth address line is used to select the output bits from
one of the two arrays. This latter organization has the po-
tential for lower power, since the array that is not currently
being accessed can be turned off (using the memory enable
signal). This is the key to the enhancement described in this
section; we combine memory arrays into larger logical arrays
such that all but one of the arrays can be turned off with each
access. Note that this is similar to the technique described in
[25], however, they did not evaluate this idea in the context
of heterogeneous technology mapping.

In general, more than two arrays can be combined into a
larger logical memory. In [5], the number of physical mem-
ories used to form a logical memory is termed the blocking
factor, (BF). In the examples in Figure 15, BF = 2. Although
this technique will reduce the memory power, it has two po-
tential drawbacks.

(1) Extra LUTs are needed to implement the ME control
and output multiplexers. These extra logic elements
will consume power, and will also reduce the overall
packing efficiency of the technique.

(2) As shown in [5], increasing BF tends to reduce the
amount of logic that can be packed into a set of physi-
cal memory arrays. Again, this will tend to increase the
power dissipation and reduce the packing efficiency of
our technique.

10 International Journal of Reconfigurable Computing

Benchmark circuits
(QIS mapped)

SMAP
BF = 1

SMAP
BF > 1

Add support

logic

Place and route
(enhanced VPR)

Place and route
(enhanced VPR)

Power model

Compare

Power model

Power estimate
comparisons

Figure 16: Methodology for evaluating enhanced algorithm.

4.2. Experimental methodology

In the remainder of this section, we determine whether the
proposed technique reduces the energy consumption of im-
plementations generated using SMAP, or whether the energy
increase due to the extra logic and reduced packing efficiency
results in an overall energy increase.

Figure 16 shows our experimental methodology. The
original SMAP flow from Section 3 is our baseline; in this
flow, the memory arrays are filled sequentially, and memories
are not combined in any way. In the enhanced flow, we first
map each circuit using SMAP with BF > 1. For each value
of BF, we chose the “deepest” organization possible, that is,
we choose an organization in which all bits that make up
each word are stored in a single memory array, since this al-
lows us to turn off all but one memory array on each access.
This version of SMAP is also aware of the LUTs that need to
be introduced for output multiplexing. Due to this aware-
ness, SMAP will only choose wider configurations when the
number of packed LUTs can overcome the overhead required
for the output multiplexers. We then add the support logic
needed (multiplexers and a memory enable controller); this
extra logic is implemented in LUTs. Finally, both the base-
line and enhanced flow mappings are placed and routed us-
ing our enhanced version of VPR, and the enhanced power
model is used to estimate the power and energy of the result-
ing implementation.

Table 2 summarizes the values of N and BF that we ex-
plored. The left half of the table shows the experiments when
using 512-bit physical memories, and the right half of the
table shows the experiments when using 4096-bit physical
memories.

0 2 4 6 8 10

Number of memory blocks

0

0.5

1

1.5

2

2.5

3

3.5

BF = 1
Baseline

BF = 2
Power-aware

Figure 17: Impact on energy when increasing the number of 512-
bit memories.

0 2 4 6 8 10

Number of memory blocks

0

0.5

1

1.5

2

2.5

3

3.5

BF = 1
Baseline

BF = 2
Power-aware

Figure 18: Impact on energy when increasing the number of 4096-
bit memories.

4.3. Experimental results

We first consider the packing efficiency of our new mapping
technique. As previously explained, we would expect a de-
crease in the amount of logic that can be mapped to each
memory array. The number of LUTs that can be packed into
the memory arrays for each benchmark circuit is shown in
Table 3 (for B = 512) and Table 4 (for B = 4096). The
columns labeled BF = 1 correspond to the original SMAP al-
gorithm. The columns labeled BF = 2, BF = 4, and BF = 8 cor-
respond to the power-aware technique described in this sec-
tion. For BF > 1, the number of LUTs required to implement
the memory enable control and output multiplexers has been
subtracted from the number of LUTs packed into memory; if
the result is negative, a “—” is shown in the table (this means
that our version of SMAP actually increased the number of
LUTs in the design).

Scott Y. L. Chin et al. 11

Table 2: Summary of experiments for evaluating enhanced algorithm.

(a) B = 512

Experiment Logical size N

Baseline 512 2 4 6 8

BF = 2 1024 1 2 3 4

BF = 4 2048 — 1 — 2

BF = 8 4096 — — — 1

(b) B = 4096

Experiment Logical size N

Baseline 4096 2 4 6 8

BF = 2 8192 1 2 3 4

BF = 4 16384 — 1 — 2

BF = 8 32768 — — — 1

Table 3: Number of LUTs packed into memory blocks (B = 512).

Circuit
N = 2 N = 4 N = 6 N = 8

Base BF = 1 BF = 2 Base BF= 1 BF = 2 BF = 4 Base BF = 1 BF = 2 Base BF = 1 BF = 2 BF = 4 BF = 8

alu4 34 42 68 50 39 100 56 132 62 57 96

apex2 32 2 63 3 — 85 4 103 5 — —

apex4 106 103 212 206 198 318 309 421 404 386 354

bigkey 15 3 21 5 — 26 7 28 9 — —

clma 34 6 68 13 4 101 18 133 23 15 9

des 18 3 34 5 — 50 7 66 9 — —

diffeq 15 3 23 6 — 31 9 39 12 — —

dsip 19 8 23 9 — 26 10 28 12 — —

elliptic 13 1 23 2 — 32 3 40 4 — —

ex5p 46 37 79 61 62 104 80 125 94 94 51

ex1010 95 93 187 182 159 277 271 365 358 312 304

frisc 15 2 27 3 — 37 4 45 6 — —

misex3 34 9 68 17 10 101 24 133 30 13 8

pdc 63 54 108 90 61 147 118 181 144 89 16

s298 106 104 212 207 181 316 310 358 331 294 234

s38417 34 5 68 10 8 89 14 107 18 15 —

s38584 39 12 77 24 9 114 36 150 46 21 —

seq 33 13 65 17 11 97 21 129 24 10 —

spla 60 51 100 82 55 135 107 168 127 67 7

tseng 16 2 27 3 — 37 3 47 3 3 —

As the tables show, the number of LUTs packed into the
memory arrays decreases as BF is increased. For BF = 4 or
BF = 8, there are many circuits in which our new version of
SMAP could not find a mapping solution that could over-
come the overhead of the memory support logic. Thus, in
the remainder of this section, we do not consider BF > 2.

Figures 17 and 18 show the impact on energy averaged
across all twenty benchmarks for B = 512 and B = 4096,
respectively. The horizontal axis is the number of physical
memory arrays, and the vertical axis is the overall energy (in-
cluding dynamic and leakage), normalized to the case when
no memories are used. The upper line in each graph cor-
responds to the original SMAP, while the lower line cor-
responds to the power-aware version described in this sec-

tion, with BF = 2. As the graphs show, the enhancements
described in this section reduce the energy required to im-
plement the benchmark circuits by an average of 19.8% and
32.9% for eight 512-bit and 4096-bit memories, respectively,
when compared to the original SMAP algorithm.

5. LIMITATIONS OF THIS STUDY

There are several limitations to this study related to the tools
used in the experimental investigation, the FPGA architec-
ture, and the circuit-level design of the FPGA.

The conclusions rely heavily on the tool used to perform
logic synthesis, technology mapping, and heterogeneous
technology mapping. For the logic synthesis and technology

12 International Journal of Reconfigurable Computing

Table 4: Number of LUTs packed into memory blocks (B = 4096).

Circuit
N = 2 N = 4 N = 6 N = 8

Base BF = 1 BF = 2 Base BF = 1 BF = 2 BF = 4 Base BF = 1 BF = 2 Base BF = 1 BF = 2 BF = 4 BF = 8

alu4 163 152 239 209 263 311 261 379 288 552 545

apex2 64 5 110 10 — 143 13 165 16 — —

apex4 780 763 843 820 786 845 824 847 828 — 692

bigkey 25 7 31 9 — 33 11 35 13 — —

clma 72 18 140 35 22 207 50 272 64 33 36

des 36 22 69 56 44 101 85 133 107 90 62

diffeq 19 3 35 6 — 47 9 56 12 — —

dsip 26 8 30 10 — 32 12 34 14 — —

elliptic 15 1 29 2 — 41 3 53 4 — —

ex5p 159 122 175 134 82 177 136 179 138 — —

ex1010 714 705 877 864 826 879 869 880 871 — 878

frisc 22 3 40 5 — 53 7 62 8 — —

misex3 76 29 143 54 187 209 80 273 96 242 234

pdc 297 141 504 231 82 652 308 764 373 120 84

s298 477 437 697 657 640 735 677 737 686 651 610

s38417 75 15 104 29 12 132 38 156 47 18 —

s38584 52 20 102 38 17 152 53 198 68 25 21

seq 80 21 145 29 15 193 34 229 38 31 —

spla 243 124 369 177 62 442 211 508 239 116 78

tseng 23 2 37 4 — 48 5 58 6 — —

mapping, we used the commercial Altera Quartus II tool. Al-
ternatives such as SIS/Flowmap were also attempted [8, 18].
In those experiments, the number of lookup-tables required
to implement each benchmark circuit was slightly higher. As
a result, on average, SMAP was able to pack more LUTs into
each memory array, leading to more optimistic results. Even
though the results were different, the conclusions remained
the same. Technology mapping and logic synthesis for FPGAs
are well-studied, so we do not feel that future algorithms will
provide significantly different LUT mappings, and hence re-
sult in significantly different conclusions. Power-aware map-
pers also exist [24, 26, 27], however, again we would not ex-
pect these to lead to significantly different conclusions.

The heterogeneous technology mapping algorithm,
SMAP, has a more significant impact on the results. Other
mapping approaches, in which logic subcircuits are mapped
directly to memories, may lead to different conclusions. We
suggest that designers of future heterogeneous technology
mapping algorithms should perform an evaluation of the
power characteristics of their results, similar to the studies
presented in this paper.

Throughout this study, we assumed a relatively realistic
FPGA architecture. Yet, it does deviate from commercial ar-
chitectures in some ways; in particular, commercial FPGAs
contain much more support logic within each logic block,
such as carry chains. Including these features in our model
would affect our results in two ways. First, the power penalty
might be increased, since LUTs can more efficiently imple-
ment logic circuits. On the other hand, these extra features
all consume power and would not be required in a memory

array. A different routing architecture might also slightly af-
fect the results; low-power routing architectures might make
the memory implementation of logic less appealing. How-
ever, we expect that this impact would be small.

Finally, our study made several assumptions regarding
the circuit-level design of the FPGA, in particular, the em-
bedded memory arrays. To make our results as realistic as
possible, we used the memory implementation obtained
from a commercial memory generator. However, if low-
power memory techniques were employed, it may be possi-
ble to improve the power-efficiency of these blocks, perhaps
even to the point where implementing logic in memories
is more power-efficient than implementing logic in lookup-
tables. The use of low-power memories in FPGAs is an area
of future work.

6. CONCLUSIONS

In this paper, we have shown that implementing logic in
FPGA embedded memory arrays leads to an increase in
power dissipation of the resulting circuit. This is an impor-
tant result. Previous papers have reported significant den-
sity increases when embedded memory is used in this way,
and suggested that there is no reason not to do this. As a re-
sult, more and more embedded arrays are being included in
FPGAs, with the understanding that if they cannot be used
for storage, they can be used for logic. The results of this
paper show that if power is a concern, this may be a bad
idea. If designers (or CAD tools) wish to implement logic
in memory arrays, it is important to carefully tradeoff the

Scott Y. L. Chin et al. 13

power penalties with the potential increase in density. Even if
a memory array is not required for storage, these results sug-
gest that, from a power perspective, it is better to leave the
array unused, rather than use it to implement logic.

That being said, there are times when the density im-
provement may motivate the mapping of logic to embedded
memory arrays. In that case, optimizing the size and flexi-
bility of the memory blocks to reduce this power penalty is
important. We have shown that smaller-memory arrays are
more power efficient than large arrays, but that for most ar-
ray sizes, the arrays should be as flexible as possible.

Finally, we showed that we could achieve power savings
by combining multiple physical memories into larger logi-
cal memories and mapping logic to the logical memories. To
form the logical memories from the physical memories, we
used a power-efficient arrangement that allows one or more
of the physical memories to be disabled in each cycle. How-
ever, using this technique requires additional support logic
implemented in LUTs. Overall, when using eight memories
and BF = 2, we found an average reduction in overall energy
of 19.79% and 32.93% for 512-bit and 4096-bit memories,
respectively.

ACKNOWLEDGMENT

This research was supported by Altera and the National Sci-
ences and Engineering Research Council of Canada.

REFERENCES

[1] Xilinx Corporation, “Virtex-4 User Guide,” September 2005.
[2] Altera Corporation, “Stratix II Device Handbook 2,” Decem-

ber 2005.
[3] T. Ngai, J. Rose, and S. J. E. Wilton, “An SRAM-Programmable

Field Configurable Memory,” in Proceedings of IEEE Custom
Integrated Circuits Conference, pp. 499–502, Santa Clara, Calif,
USA, May 1995.

[4] J. Cong and S. Xu, “Technology mapping for FPGAs with em-
bedded memory blocks,” in Proceedings of the 6th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA ’98), pp. 179–188, Monterey, Calif, USA, February
1998.

[5] S. J. E. Wilton, “Heterogeneous technology mapping for area
reduction in FPGAs with embedded memory arrays,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, no. 1, pp. 56–68, 2000.

[6] D. Hodges, H. Jackson, and R. Saleh, “Analysis and Design
of Digital Integrated Circuits,” in Deep Submicron Technology,
McGraw-Hill, New York, NY, USA, 3rd edition, 2004.

[7] S. Y. L. Chin, C. S. P. Lee, and S. J. E. Wilton, “Power impli-
cations of implementing logic using FPGA embedded mem-
ory arrays,” in Proceedings of the International Conference on
Field-Programmable Logic and Applications (FPL ’06), pp. 1–8,
Madrid, Spain, August 2006.

[8] J. Gong and Y. Ding, “Combinational logic synthesis for LUT
based field programmable gate arrays,” ACM Transactions on
Design Automation of Electronic Systems, vol. 1, no. 2, pp. 145–
204, 1996.

[9] Actel Corporation, “SmartPower User’s Guide,” http://www.
actel.com/documents/smartpower ug.pdf, 2006.

[10] Xilinx Corporation, “XPower analyzer. In Xilinx ISE 8.2i Soft-
ware Manual,” 2006.

[11] Altera Corporation, “PowerPlay Power Analysis. In Quartus II
6.0 Handbook,” volume 3, 2006.

[12] Xilinx Corporation, “XPower Estimator (Spreadsheet),” http:
//www.xilinx.com/products/design resources/power central/
index.htm, 2006.

[13] Altera Corporation, “PowerPlay Early Power User Guide,”
2006.

[14] K. K. W. Poon, S. J. E. Wilton, and A. Yan, “A detailed power
model for field-programmable gate arrays,” ACM Transactions
on Design Automation of Electronic Systems, vol. 10, no. 2, pp.
279–302, 2005.

[15] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
For Deep-Submicron FPGAs, Kluwer Academic Publisher, New
York, NY, USA, 1999.

[16] Berkeley Logic Synthesis Verification Group, “Berkeley Logic
Interchange Format (BLIF),” http://vlsi.colorado.edu/ vis/
blif.ps.

[17] Altera Corporation, “Quartus II University Interface Pro-
gram,” 2007.

[18] E. M. Sentovich, “SIS: a system for sequential circuit analysis,”
UCB/ERL M92/41, Electronics Research Laboratory, Univer-
sity of California, Berkeley, Calif, USA, 1992.

[19] J. Cong and Y. Ding, “Flowmap: an optimal technology map-
ping algorithm for delay optimization in lookup-table based
FPGA designs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 13, no. 1, pp. 1–12, 1994.

[20] J. Lamoureux and S. J. E. Wilton, “Activity estimation for field-
programmable gate arrays,” in Proceedings of the International
Conference on Field-Programmable Logic and Applications (FPL
’06), pp. 87–94, Madrid, Spain, August 2006.

[21] S. Y. L. Chin, “Power Implications of Implementing Logic us-
ing FPGA Embedded Memory Blocks,” M.S. thesis, M.S. the-
sis, University of British Columbia, Vancouver, Canada, 2006.

[22] “Virage Logic Memory Compiler,” http://www.viragelogic.
com.

[23] S. J. E. Wilton, S.-S. Ang, and W. Luk, “The impact of pipelin-
ing on energy per operation in field-programmable gate ar-
rays,” in Proceedings of the 14th International Conference on
Field Programmable Logic and Application (FPL ’04), vol. 3203
of Lecture Notes in Computer Science, pp. 719–728, Leuven,
Belgium, August 2004.

[24] J. Lamoureux and S. J. E. Wilton, “On the interaction be-
tween power-aware computer-aided design algorithms for
field-programmable gate array,” Journal of Low Power Electron-
ics, vol. 1, no. 2, pp. 119–132, 2005.

[25] R. Tessier, V. Betz, D. Neto, and T. Gopalsamy, “Power-aware
RAM mapping for FPGA embedded memory blocks,” in Pro-
ceedings of the 14th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA ’06), pp. 189–198,
Monterey, Calif, USA, February 2006.

[26] D. Chen, J. Cong, F. Li, and L. He, “Low-power technology
mapping for FPGA architectures with dual supply voltages,” in
Proceedings of the 12th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA ’04), vol. 12, pp.
109–117, Monterey, Calif, USA, February 2004.

[27] J. H. Anderson, F. N. Najm, and T. Tuan, “Active leakage
power optimization for FPGAs,” in Proceedings of the 12th
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’04), vol. 12, pp. 33–41, Monterey, Calif,
USA, February 2004.

http://www.actel.com/documents/smartpower_ug.pdf
http://www.actel.com/documents/smartpower_ug.pdf
http://www.xilinx.com/products/design_resources/power_central/index.htm
http://www.xilinx.com/products/design_resources/power_central/index.htm
http://www.xilinx.com/products/design_resources/power_central/index.htm
http://vlsi.colorado.edu/~vis/blif.ps
http://vlsi.colorado.edu/~vis/blif.ps
http://www.viragelogic.com
http://www.viragelogic.com

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

