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On the Power Efficiency of Sensory and Ad Hoc

Wireless Networks
Amir F. Dana, Student Member, IEEE, and Babak Hassibi

Abstract—We consider the power efficiency of a communications
channel, i.e., the maximum bit rate that can be achieved per unit
power (energy rate). For additive white Gaussian noise (AWGN)
channels, it is well known that power efficiency is attained in the low
signal-to-noise ratio (SNR) regime where capacity is proportional
to the transmit power. In this paper, we first show that for a random
sensory wireless network with users (nodes) placed in a domain of
fixed area, with probability converging to one as grows, the power
efficiency scales at least by a factor of . In other words, each user
in a wireless channel with nodes can support the same communi-
cation rate as a single-user system, but by expending only 1 times

the energy. Then we look at a random ad hoc network with relay
nodes and simultaneous transmitter/receiver pairs located in a
domain of fixed area. We show that as long as , we can
achieve a power efficiency that scales by a factor of . We also
give a description of how to achieve these gains.

Index Terms—Capacity, sensor networks, wireless communica-
tion systems and networks.

I. INTRODUCTION

I
N recent years, there has been great interest in the analysis

of wireless networks. Most of the analyses have dealt with

the capacity of different types of wireless networks especially

the following two types of networks [1], [2]:

1 Sensory networks: A sensory network consists of

fixed nodes with a single receiver that collects data/infor-

mation from the sensor nodes. At any given time, there can

be at most one sensory transmitter. All other nodes in the

network can be thought of as relay nodes. (See Fig. 1(a).)

2 Ad hoc networks: At any time, an ad hoc network consists

of fixed relay nodes and fixed simultaneous transmitter/

receiver pairs, where . In this network, relay nodes

cooperate for transmissionof information from one transmit

node to the corresponding receiver node. (See Fig. 1(b).)

It is shown in [1] that for a sensory network, the capacity

scales as .1 For ad hoc networks, the problem is much
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1The following notation will be used in this paper. For two func-
tions f; g defined on natural numbers we have f(n) = O(g(n))
if lim inf f(n)=g(n) < 1, we have f(n) = 
(g(n)) if
lim inf f(n)=g(n) > 0 and we have f(n) = o(g(n)) if
lim inf f(n)=g(n) = 0. Finally, we have f(n) = �(g(n)) if
f(n) = 
(g(n)) and f(n) = O(g(n)).

more challenging. The groundbreaking work of [2] shows that

the capacity grows at least as . Using information-

theoretic tools, it is shown in [3]–[5] that under some mild

assumptions on the channel model, is an upper bound

on the sum–capacity in the extended wireless networks, i.e.,

networks where the density of the nodes per area does not

increase with the number of nodes. In both sensory and ad

hoc wireless networks, these results are discouraging from a

practical point of view because they suggest that for sensory

and ad hoc wireless networks, the per-user capacity scales as

and , respectively. This represents rewards that

rapidly diminish to zero as the number of nodes (users) in the

network increases.

Therefore, one interesting problem is to see whether there ex-

ists any favorable scalings in ad hoc and sensory wireless net-

works. In other words, are there any scenarios in which it is ac-

tually beneficial to form a sensory or ad hoc network and obtain

increasing gains as the network size grows? Several researchers

have looked at this problem from different points of view. In [6],

the authors look at a wireless network in which users are mobile

(not fixed) and they show that the total capacity of such a net-

work scales like . The work in [7]–[9] also considers the

feasibility of wireless networks from a distributed source coding

point of view. In this paper, we look at wireless networks from

the power consumption point of view.

One of the main concerns in wireless networks especially in

sensory networks, is power consumption [10]. Since the source

of energy for each user is limited (usually a battery), users in

these networks need to use power efficiently. Two major sources

of power consumption at each node are the computational power

and the transmit power. In this paper, we only consider the

power consumption due to transmission and not due to compu-

tation. However, we should mention that it is not clear whether

at low SNR (where many wireless networks usually operate at)

the computation power is negligible compared to the transmit

power. Incorporating computation power as well is very inter-

esting and can be a subject of research in itself.

We will show that it is beneficial to form large networks

of users in terms of power consumption. We consider sensory

and ad hoc wireless networks where the users are placed

randomly in a domain of fixed area . We show that users

in these networks can support the same rate as a single-user

system, but by expending less power. Furthermore, the power

that each user needs to expend decreases as we increase the

size of the network where the rate of communication is kept

fixed. To look at the power efficiency of these networks we

will follow the same approach and concept as in [11]. The

power efficiency of a communications channel is defined as

0018-9448/$20.00 © 2006 IEEE
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Fig. 1. Sensory and ad hoc wireless networks.

the ratio between the capacity (data rate) of the channel and

the transmit power (energy rate). For AWGN channels this is

given by

(1)

where represents the transmit power and represents the

noise power. Clearly, for fixed as , the value of

approaches zero, meaning that we are highly power inefficient

at high SNR. On the other hand, we are power efficient at low

SNR and, in fact

(2)

This implies that, at low SNR, capacity is proportional to the

transmit power. In [11], the power efficiency (or capacity per

unit cost as the author defines it) of several other communication

systems is computed.

In this paper, we will find a lower bound for the power ef-

ficiency of sensory and ad hoc wireless networks formed in a

domain of fixed area. For this, we will propose a protocol for

communication among the nodes. The key idea used in the pro-

tocol is to exploit features of wireless networks and operate the

network at low SNR (thereby avoiding the logarithmic scaling

of the capacity). The main features that distinguish wireless net-

works from wireline networks are path loss, fading, and interfer-

ence. Path loss has been exploited in cellular networks. Fading

also is exploited in multiuser systems by scheduling transmis-

sions when a user has favorable channel conditions [12][13].

However, most current approaches avoid interference in the net-

work. For instance, in [2] most of the emphasis is on interference

avoidance and the construction of a multihop network. In our

protocol, we will exploit the interference and fading inherent in

any wireless network for achieving good power efficiency. Also,

the protocol proposed in this paper is a double-hop protocol. Al-

though it is thought that the power efficiency of multihop net-

works is better than that of double-hop networks it can be shown

that if the nodes are placed in a domain of fixed area this is not

true. A similar observation is made in [14]. The authors have

observed that the most energy-efficient protocol to use depends

on the network topology and the radio parameters of the system.

We have shown in [15] that for sensory and ad hoc wireless

networks for which the channel coefficients between users

can be modeled by independent zero-mean, unit variance and

bounded fourth-order moment random variables, the power

efficiency scales at least as . However, the model used

for channel coefficients in this paper is more general. We will

see that even with this general model we are still able to

achieve a power efficiency that scales favorably as the size

of the network grows. The net result is that under some mild

assumptions on the channel coefficients that will be mentioned

in Section II-B, with high probability the power efficiency of

a random network, i.e., the data rate per energy rate, scales as

for each user.

This paper is organized as follows. Section II describes the

system model and assumptions and presents the statement of the

problem considered in this paper. In Section III, we will com-

pute the power efficiency of a multiple-antenna communication

system for comparison. In Section IV, we consider the power ef-

ficiency of sensory wireless networks. We describe the proposed

“Listen and Transmit” protocol for achieving scalable power ef-

ficiency for sensory networks. In Section V, power efficiency of

ad hoc wireless networks is considered and analyzed. We first

present a generalization of the Listen and Transmit protocol for

ad hoc networks and then optimally allocate powers to achieve a

scalable power efficiency for the network. At the end of that sec-

tion, we will compare the performance of our protocol with an

interference suppression scheme that requires complete knowl-

edge of the channel. Conclusions and proposals of further work

are provided in Section VI.

II. NOTATION AND SYSTEM MODEL

A. Notation and Definitions

Throughout this paper matrices and vectors are denoted by

boldface characters. and denote the

trace, the maximum eigenvalue, and the minimum eigenvalue

of a square Hermitian matrix . The superscript denotes

conjugate transposition for matrices and complex conjugate for

scalars. Complex conjugation for matrices is shown by using

bar. Transposition is also denoted by superscript .

and are the conjugate transpose, transpose, and conjugate of

the matrix , and is the complex conjugate of the scalar .

is the identity matrix. For a matrix denotes
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the vector obtained from stacking all the columns of , one on

top of another. For a vector denotes

the diagonal matrix with th diagonal element equal to

. We may also write as . Finally,

denotes the Euclidean norm of vector .

In this paper, we will be studying random wireless networks.

Thus, we will consider a fixed area and will randomly

select points in to form the nodes of the network (either

as transmitters, receivers, or relay nodes). Since the network

is wireless, the connections between any two nodes will be

subject to fading. Thus, the randomness in the network will

be due to two sources: the random choice of points in and

the random fading between the connections. When we fix the

position of the nodes, we denote the expectation over channel

fading by . The expectation over the location of some

set of the nodes, say , in a random network is denoted by

which from now on we shall call the spatial average.

For instance, the spatial average of the mean value of the

channel coefficient between node and node , over the

position of node while node is fixed, can be written as

. The expectation over the location of all the

nodes is denoted by and whenever is used without

any subscript, expectation over both fading and the location of

the nodes is implied. Channel coefficients are denoted by

or depending on the context. Usually is used as a generic

channel between two arbitrary points in the domain.

B. System Model and Problem Statement

Sensory Networks: As mentioned earlier, by a sensory wire-

less network we mean one with relay nodes and a single trans-

mitter/receiver pair (see Fig. 1). We assume that the nodes are

placed randomly and independently according to some distribu-

tion function (not necessarily uniform) in a domain of fixed area,

say . We denote the channel coefficient from the transmitter to

the relay node by and the channel coefficient from the relay

node to the receiver by . We assume that, averaged over the

fading, different channels are independent. Furthermore, we as-

sume that each node , knows only its local connections ,

but not the other connections in the network.

Ad Hoc Networks: As mentioned earlier, for ad hoc net-

works we assume that at any time there are relay nodes and

at most simultaneous transmit/receive pairs in the network.

The nodes are placed randomly and independently according

to some distribution function (not necessarily uniform) in a do-

main of fixed area, say . The channel coefficient from trans-

mitter to relay node is denoted

by and from relay node to receive node is

denoted by . Similar to the sensory case, we assume that, av-

eraged over the fading, distinct channels are independent. Fur-

thermore, if we fix the location of the transmitters and the re-

ceivers, and randomly choose relay nodes and , the channel

coefficients and are independent for all

and . As with the sensory case, we assume that all the relay

nodes know their local connections, but not the remaining con-

nections in the network. In other words, node knows all the

connections and .

Additional Assumptions for Ad Hoc Networks: For ad hoc

networks, we have a few more assumptions. Thus, denote the

Fig. 2. Condition on the channel coefficients.

channel coefficient between two points and by . With

this notation, we have the following additional assumptions.

at least of the are distinct

Note that the above conditions are clearly met if the fading is

zero mean. In general, however, there may be line-of-sight be-

tween different nodes in the network and the fading may be

nonzero mean. The above conditions are more general and do

not require zero mean fading. The first assumption says that the

spatial average of the mean of a channel coefficient between a

random point and a fixed point is zero. The second assumption

is that the channel coefficients between one random point, ,

and two different points, are uncorrelated when averaged

over both the fading and the point placement of . In other

words, although the channels and , given that and

are fixed, are not independent and may be correlated but the

spatial average of the correlation between these two channels

is zero. The last condition also says that the expectation of the

product of the channel coefficients between one random point

and four fixed points averaged over the location of the random

point is zero (see Fig. 2). These assumptions appear to be rea-

sonable, especially if we assume that the environment is rich in

scattering. In this paper, we obtain two achievable bounds for

the power efficiency of ad hoc networks. The first bound (The-

orem 2) relies only on the first and second assumptions and the

second bound (Theorem 3) requires the last assumption as well.

Power Assumptions: In the sensory network, we assume that

the transmit power is . For ad hoc networks we assume that

all the transmitters transmit with the same power . In both

cases, we will assume that the relay nodes transmit with iden-

tical power . The noise introduced in every reception is an

additive white circularly symmetric Gaussian noise with zero

mean and variance which is denoted by .

Path Loss: In this paper, we will not be concerned with ex-

plicit path loss models. The main reason is that, since we con-

sider a fixed domain , the only characteristics of the path loss

that enter our analysis are the second- and fourth-order moments

of the channel. In fact, a strength of our results is that the asymp-

totics are not sensitive to the path-loss model. (The model and
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Fig. 3. Single-hop versus multihop.

the geometry of the domain affect the constants but not the

scaling behavior.) We further discuss path-loss models when

comparing single-hop and multihop systems below.

Single-Hop Versus Multihop Communication: In this paper,

we propose a protocol for achieving a power efficiency that

scales with the number of nodes . The communication model

that we are using is a double-hop (transmit and relay) commu-

nication protocol. In this protocol, which will be explained in

detail later, the communication is done in two intervals. In the

first interval, the transmit nodes send their data signal. In the

second interval, relay nodes send a signal based on what they

have received in the first interval.

Typically, in order to increase power efficiency in wireless

networks, one must move toward a multihop system so as to

avoid long hops (which are subject to severe path loss) [16],

[17]. While this is certainly true for networks that grow in phys-

ical size as the number of nodes increases (thereby increasing

the size of the hops), it is not true for networks in which the

physical domain is fixed while the number of nodes increases.2

In this case, there is nothing to be gained by using multihop

schemes in which the number of hops scales with the number

of nodes in the network and the length of the hops becomes

shorter and shorter as the number of nodes increases. To make

this more explicit, we use the following qualitative argument.

Suppose that nodes are located in a domain of fixed area .

Consider two nodes (users) of distance , which want to com-

municate with each other (Fig. 3(a)). Assume that the channel

is AWGN and that the power loss between any two points is a

decreasing function of their distance and is denoted by .

In this case, the relation between the transmitted signal from

A and the received signal at B is

The capacity is clearly and the power efficiency

achieved at low SNR is

Assume now that we employ a multihop scheme to commu-

nicate between A and B where each node relays to its nearest

neighbor (Fig. 3(b)). Since we have nodes, the distance to

a nearest neighbor will be and the number of

2If the area of the network increases with the number of nodes, a combina-
tion of multihop routing and the Listen and Transmit protocol described here is
necessary to achieve a power efficiency that scales with the number of nodes.

hops will be of . Here, each relay will communicate at

rate and since the total transmit power is

, the power efficiency achieved at low SNR will be

For any reasonable path-loss model .3

Therefore, the power efficiency of the multihop system scales

like as increases. This says that for a fixed-size net-

work increasing the number of hops in fact reduces the power

efficiency.

Remark: Note that if the size of the domain also increases

with , then will also increase. In this case, since

depending on the path-loss model and how scales with ,

it may be more power efficient to use multihop.

Channel Knowledge and Synchronicity: As mentioned ear-

lier, we have assumed that the nodes have knowledge of their

local connections. This is a much more reasonable assumption

than the nodes knowing the entire network. However, it does re-

quire that the network remain relatively stationary in time, so

that the local connections can be learned via the transmission

of pilot symbols, etc. Furthermore, we assume a synchronous

system. In other words, all the transmissions and receptions

are synchronized. Later, we will argue that the system perfor-

mance is not very sensitive to timing errors and lack of perfect

synchronicity.

III. AN EXAMPLE: MULTIPLE-ANTENNA SYSTEMS

In order to obtain some insight into how the power efficiency

of a sensory or ad hoc wireless network might scale, it is useful

to look at the example of a multiple-antenna system. For more

details see [18].

Consider an transmit single receive multiple-antenna

channel, described by the channel vector

where denotes the channel coefficient from the th transmitter

to the receiver. (Assume that the channel coefficients are zero-

mean and unit variance and have fourth-order moment .) Two

cases can be envisioned.

• The channel matrix is known to the transmitter: In this case,

the optimal scheme is for beam forming. Thus, if each an-

tenna transmits with power the power efficiency becomes

3Note that the common power law function used in literature, f(d) =
n � 2, does not satisfy this property since this model is only valid for far

field approximation.
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This is maximized when , which yields

(3)

• The channel matrix is unknown to the transmitter. In this

case, beam forming cannot be done. However, the capacity

is known from [19] and so the power efficiency becomes

And so, at low SNR

(4)

What distinguishes an multiple-antenna system from an

-node sensory network is that the antenna elements are al-

lowed to cooperate, but the nodes in a sensory network are not.

What the above result says is that when the nodes are allowed

to cooperate and the nodes know the channel coefficients the

power efficiency scales as . However, even if the nodes are

allowed to cooperate, as long as they do not know the channel

coefficients, the power efficiency does not improve over .

But what about a sensory network, where the nodes are not

allowed to cooperate but know the local channel coefficients?

Moreover, what about ad hoc networks? These are the questions

we shall address.

IV. SENSORY NETWORKS

We begin by describing a simple protocol that achieves a

power efficiency of for random sensory and, as we shall

see in the next section, with some modification for ad hoc wire-

less networks. As mentioned earlier, the protocol assumes syn-

chronous transmission and receptions, as well as local channel

knowledge at the nodes.

A. Listen and Transmit Protocol

Consider a random sensory network with relay nodes and

one transmitter/receiver pair. We are interested in a probabilistic

bound for the achievable power efficiency in this network, i.e., a

bound that with high probability is achievable for a random net-

work in the domain. We begin by explaining the protocol that

achieves power efficiency of for sensory wireless net-

works. In this, so-called Listen and Transmit protocol, commu-

nication is done in two intervals:

1. Listen interval: In this interval, the transmitter sends the

data and the relay nodes only listen. Relay node receives

(5)

where is .

2. Transmit interval: Each node, using its knowledge of the

local connections, transmits a scaled version of the signal

it has received in the first interval

(6)

The scalar is chosen so that the relay node power is and

so that the signal parts coherently add at the receiver.

This protocol is similar to the protocol proposed in [20]. In [20],

the relay nodes transmit the exact signals they have received,

scaled to meet the power constraint. In the Listen and Transmit

protocol, the channel coefficients can be complex. Therefore,

the relay nodes change the phase of their received signal ap-

propriately so that the signal parts of the received signal (at the

receiver) add up coherently. The received signal at the receiver

is

(7)

where is . From (7) it is clear that the signal part

from different relay nodes adds up coherently but the noise part

does not. In this sense, the Listen and Transmit protocol can be

regarded as performing distributed beamforming.

B. Finding a Lower Bound

We break , defined in (7), into and , where

and . Now if we rewrite (7) as

, then as shown in [21], the capacity of this system

can be lower-bounded by the capacity of the AWGN channel

, where is a Gaussian noise with variance

equal to the variance of . (In this analysis, we assume

that the receiver is provided with the mean of .) Therefore, the

capacity of the system in (7) may be lower-bounded by

(8)

Note that the in front of the logarithmic term comes from the

fact that the transmitter transmits half of the time. By substi-

tuting and in (8) with
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and rearranging the terms, we get (9) at the bottom of the page.

Define and . By ignoring the

negative term in the denominator we can rewrite (9) as

(10)

The above lower bound holds for every fixed network. For a

random network, the capacity, the power efficiency, and the

above lower bound are random variables depending on the

placement of the nodes in the network. Since the nodes are

placed independently and according to the same distribution on

the available area, the ’s and ’s are independent and iden-

tically distributed (i.i.d.) random variables for different relay

nodes (i.e., different ’s). Therefore, denoting the transmitter

and receiver location by , we have

where and are the random

variables depending on the channel coefficients between one

random point and two other random points. Now for any ,

using Chebyshev’s inequality and the union bound on the

probability of the events, we have

(11)

The inequality of (11) shows that as the quantities

and

behave like their spatial averages. This implies that with high

probability in (10) is bounded by

Remark: Note that and depend only on the do-

main , on the fading characteristics, and on the distribution of

the points and they do not depend on . Thus, for fixed and ,

as the lower bound on capacity with high probability

behaves like

This is the same asymptotic growth obtained for Gaussian relay

channels in [1]. Thus, we conclude that the Listen and Transmit

protocol (i.e., distributed beamforming) achieves the optimal

asymptotic capacity growth. We, of course, are not primarily

interested in capacity but rather in power efficiency.

Now we will focus on how to optimally allocate the powers (

and as a function of ) to maximize the power efficiency. As

mentioned earlier, and do not depend . Using

the Taylor series expansion of and in , we have

(12)

Note that and do not depend on , so the only dependence

of and on can be through . Since the total

power consumed in the network is ( comes from

the fact that each node is sending only half of the time), the

power efficiency is

From (11) and (10), we can find a probabilistic lower bound

for the power efficiency of the network. In other words, for a

random placement of the nodes in the domain we have

(9)
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By choosing the transmit power, and the relay node

power, we have from (12) and the above equation

that

where

and

are some constants independent of . Close inspection of the

above inequality reveals that the term in the logarithm is of order

one. This says that the capacity achieved with the Listen and

Transmit protocol is of . Moreover, there exist a constant

such that

(13)

From the preceding inequality, we can see that for a random

placement of the nodes in , with a high probability that ap-

proaches one as the number of nodes increases, we can achieve

a power efficiency that grows like . Also, the rate achieved

is of . The choice of transmit and relay node power in this

case is .

C. Finding an Upper Bound

We can also find an upper bound on the achievable rates using

the Listen and Transmit protocol. For this, we consider the case

where the receiver in (7) knows for .

In this case we have

(14)

where is the mutual information between and . Now

if the receiver knows the channel coefficients and the ’s then

the system in (7) becomes an AWGN channel and therefore,

(15)

The ’s do not contribute to the noise power in the denominator

of (15) since the receiver has complete knowledge of them and

can cancel out their effect. Combining (14) and (15), and using

the convexity of the function, we may write

(16)

Substituting the value of from (7) in the above equation gives

where again the expectation is taken over the fading of the chan-

nels for a fixed placement of the nodes. Without loss of gener-

ality we can ignore the term in denominator and rewrite

the above equation as

(17)

Since, averaged over the fading, the ’s are independent

for different ’s, we have

and therefore,

(18)

Given that the location of the transmitter and the receiver is

fixed, and for all depend only on the

placement of the relay nodes and are i.i.d. random variables.

Thus, according to the law of large numbers, their average con-

verges to their statistical mean. More specifically, for any ,

using Chebyshev’s inequality and the union bound on the prob-

ability of the events we have

(19)

where and . Combining (19) and

(18) gives

(20)

It can be easily verified that for the extreme point of the above

upper bound (with respect to and ), we have .

Therefore,

(21)

By defining , (21) may be written as

(22)

Since and do not depend on , it is clear from the pre-

ceding equation that . Also, the maximization over
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is uniquely achieved by some constant in the interval .

Therefore, from the definition of , the optimal value of and

hence is . Thus, we have shown that for a random

placement of nodes in the domain , the Listen and Transmit

protocol with high probability achieves a power efficiency of at

most of order .

D. Main Result: Sensory Case

In previous sections, we found a lower bound on the power ef-

ficiency of sensory networks. Combining these bounds together,

we have the following theorem.

Theorem 1: Consider a random sensory network with a trans-

mitter/receiver pair and relay nodes, where all the nodes are

placed randomly and independently on a domain of fixed area

. Assume that averaged over the fading, the various channels

are independent, i.e., for every two different channels we

have and the measurement noises are

all i.i.d. . Furthermore, assume that the relay nodes

have knowledge of their channels to and from the receiver and

the transmitter and that the receiver knows the mean of in (7).

Then with high probability, the power efficiency of the network

is at least , i.e., there exist a scheme such that

(23)

where and are constants depending on the domain

and the fading characteristics, but not on . Moreover, the Listen

and Transmit protocol achieves with the power

allocation .

Remark:

• It was shown that in the Listen and Transmit protocol the

rate of communication is of order constant. Therefore, we

are getting the same rate of communication as the case

when the transmitter and the receiver communicate in iso-

lation. The difference is that in the former protocol, the

total power consumption is of order which is

time less than the power consumption in the later case.

Thus, we are getting a fixed rate with less power consump-

tion.

• Implicit in the Listen and Transmit protocol there is a no-

tion of fairness: nodes in relay mode consume times less

power that the node in transmit mode.

• Comparing the power efficiency achieved in the sensory

networks with the power efficiency of multiple-antenna

systems, we observe that it is better than the power effi-

ciency of a multiple-antenna system with no channel

knowledge at the transmit antennas where unlike the sen-

sory case, cooperation between different antennas is al-

lowed. However, as we expected it is worse than the power

efficiency of an multiple-antenna system with perfect

knowledge at the transmit antennas.

E. Discussion on Synchronicity

The key idea in the Listen and Transmit protocol is to scale

the received signals at the relay stage in such a way that the in-

formation-bearing signal parts add up coherently at the receiver.

Therefore, the protocol is sensitive to any error in the phase and

hence to synchronicity. In this section, we try to make a quali-

tative analysis of the effect of asynchronicity on the Listen and

Transmit protocol.

Instead of considering an asynchronous system we consider

the lack of synchronicity by introducing a phase error in the

channel knowledge used by the relay nodes. More precisely, we

assume that instead of knowing the channel perfectly, the th

relay node uses for processing its received signal, where

is the phase error that models the time lag corresponding to

the transmission from th relay node to the receiver. We assume

that the phase errors are i.i.d. random variables and indepen-

dent from the channel coefficients. Furthermore, we assume that

is not zero and is equal to some constant . In

other words, we assume that by the aid of the receiver and by

using a training sequence, the relay nodes have some estimate

of their time lag and therefore the phase error is not distributed

uniformly over the unit circle.

In this case, the received signal at the receiver is

where , defined in (6), is the transmitted signal in the case of

perfect synchronicity. By plugging in from (6) and using the

same approach as before, we have

(24)

Note that the lack of synchronicity appears as the phase errors

in the lower bound. Looking at the numerator of the lower

bound, since the phase errors are independent of the channels,

we can see that as we increase

a.s.

In other words, as the number of nodes increases, for any

random network, the term in the numerator of (24) with high

probability is close to its average over the phase error and the

location of the points. Therefore, using the same approach as in

the previous section, with high probability, the power efficiency

is lower-bounded by

where depends only on the geometry of the domain and the

fading characteristics. From the above discussion, we have the

following observations.

• As decreases, i.e., as we become more and more uncer-

tain about the phase of the channel, the power efficiency

also decreases. For the case where , i.e., the case

where we have no estimate of the phase, the lower bound

on the achieved power efficiency become zero.
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• In terms of , we see that, as long as , the asymp-

totics of the lower bound does not change and we can still

achieve a power efficiency of with the Listen and

Transmit protocol.

V. AD HOC NETWORKS

We now turn our attention to ad hoc networks. The key differ-

ence, compared to the sensory networks, is that we now have

simultaneous transmitter/receiver pairs. Therefore, we are inter-

ested in the following question. Assume that in isolation, to main-

tain some fixed communication rate, each transmitter/receiver

pair needs to operate at some power. Now if the transmitter/re-

ceiver pairs are required to communicate simultaneously, and

are members of a random wireless network with nodes, how

much can the total power consumption in the network be reduced

(from the power consumption required in isolation) to maintain

the same communication rate between the transmitters and re-

ceivers? We remark that since the capacity of an ad hoc wireless

network scales as [2]–[5], to maintain a fixed rate for each

transmitter/receiver pair we need to assume that . This

will be our standing assumption throughout. To answer the ques-

tion above, we will construct an extension of Listen and Transmit

protocol developed for sensory networks. As in the sensory case,

the main idea is to exploit interference in the network. For ad hoc

networks the power efficiency is defined as the ratio between the

sum of the mutual information of different transmitter/receiver

pairs and the total power consumption of the network

Note that both and are random variables that depend

on the placement of the points. We first consider an alternative

form of power efficiency, namely, , where the de-

nominator is averaged over all point placements in the network.

The reason is that it is easier to establish scaling laws for . We

then show that similar scaling laws apply to .

A. Listen and Transmit Protocol

As in the sensory case, the communication in the Listen and

Transmit protocol is divided into two intervals.

1. Listen interval: Each of the transmit users transmit the

signal , where are independent random variables.

All other nodes listen. Relay node , receives

(25)

2. Transmit interval: Each relay node , transmits , a

scaled version of what it has previously received

where the scalar can depend only on the local knowl-

edge of the channel coefficients at relay node . Before

describing the particular choice of , it is instructive

to consider what can be accomplished by having the relay

nodes just scale their received signals. To this end, if, for a

particular choice of the , we focus on the channel

matrix relating the transmit signals to the receive sig-

nals, it is clear that the entries of this matrix are linear

combinations of the (see Section V-G and (64) later).

Since the channel matrix has entries, if then we

have enough free parameters in the to “generically”

make the channel matrix diagonal. This totally suppresses

the interference and yields independent channels. There-

fore, in principle, a sum–rate of order is achievable.4

The problem with this approach is that it requires complete

knowledge of all the channel coefficients at every node of

the network (so that each node can solve the system of

linear equations required to diagonalize the channel). Since

this is not acceptable, we need to introduce a method that

only uses local channel knowledge and so we propose the

following choice for :

(26)

where and are defined as

(27)

where is a location of a random point in the domain.

Note that these parameters do not depend on and and

depend only on the geometry of the domain and the fading

characteristics.

With the above choice of ’s the operation of the relay

nodes can be regarded as performing distributed per-

forming. It is further shown in Appendix A that with this

choice of , the average transmit power for the relay

nodes of the random network is , where the averaging

is over both placement of the network as well as channel

fading. Since depends only on the local knowledge

of the channel coefficients at relay node , the ’s are

identical and independent random variables when the

location of the relay nodes is random and the transmitters

and the receivers are fixed. We will use this fact later on in

our results. Finally, we remark that the above mentioned

scheme may be interpreted as follows:

• Each relay node estimates each of the transmitted sig-

nals as

Of course, these are very inaccurate estimates.

• Each node attempts to coherently add its estimate of

signal , for the th receiver via multiplication by

and normalize the sum to power

Note that in both steps of the protocol, we are exploiting inter-

ference. Since the wireless medium is a shared medium, each

relay node can estimate each of the transmitted signals. Also,

4Of course, one should worry about satisfying the power constraints. As we
will see later, this scheme is not power efficient.
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because of the interference, each receiver will receive a sum-

mation of the scaled versions of the signals that the relay nodes

have sent. So there are indirect paths for the signal transmitted

from transmitter to receiver , each passing through one relay

node. Each of the relay nodes has transmitted a signal that has

a part that adds coherently for receiver . Therefore, there are

signal parts that add up coherently at receiver .

The received signal at receiver is

(28)

We should remark that for all is a sum of independent

random variables. Also notice that since the relay nodes are

placed independently and the ’s depend only on the channel

coefficients between relay node and the transmitters and the

receivers, they are independent for different ’s.

B. Finding Upper and Lower Bounds

By using the same technique as Section IV-A, we can find

a lower and upper bound for the mutual information between

and . Using the results of [21] again, the maximum value

of the mutual information , can be

lower-bounded by the capacity of the AWGN channel with

input/output equation

(29)

where is a zero-mean complex Gaussian noise with variance

(30)

Therefore, we have

(31)

Note that the in front of the logarithmic term comes from the

fact that the transmitters transmit half of the times. We can ob-

tain an upper bound on , considering the case that the receiver

knows and all the

channel coefficients. For this case we have

(32)

Using the convexity of the log function, we may rewrite the

above equation as

(33)

In order to compute the lower and the upper bound in (31) and

the above equation, first- and second-order moments of

and are required. In the following lemma, we give proba-

bilistic bounds on and . The proof of this lemma

is given in Appendix B.

Lemma 1: For every domain of fixed area and every place-

ment of the nodes of the network, there exist constants

and that depend only on the domain

and the fading characteristics such that for every positive

that and every positive and

, we have the following relations:

(34)

where

Using Assumptions

Using Assumptions

Using Lemma 1, we can combine (31) and (33) to get upper

and lower bounds for . For this, define (see (35) at
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the bottom of the page), then we have the following relations as

probabilistic lower and upper bounds for :

(36)

In the Listen and Transmit protocol, since there are transmit-

ters and relay nodes and all the nodes are transmitting half of

the times, the average total power consumption is .

The total capacity of the network is . There-

fore, the power efficiency of the network is

(37)

Remark: As mentioned earlier in Lemma 1, the constants

and and do not depend on and . Now if we fix

and and set and

in (35) and (36), then the total capacity achieved by the

Listen and Transmit protocol is bounded probabilistically as

where and are some constants and we have considered

assumptions , , and in Section II-B. Therefore, by setting

, we have

Now note that the maximum of the bound is achieved for

and in that case we have

(38)

From (38) we see that, with high probability, by using the Listen

and Transmit protocol, we can get arbitrary close to the

result of [2]. This result is interesting since we are only using the

local knowledge of the channel coefficients at the relay nodes

and the protocol is very simple. (It is double-hop and requires

no routing.)

C. Power Allocation

We will now focus on how to optimally allocate the transmit

and relay node powers (i.e., and as functions of and )

to maximize the power efficiency. Define

and

By using union bound on the probability of events, we get the

following probabilistic lower and upper bounds for the power ef-

ficiency of the network using the Listen and Transmit protocol:

(39)

We will consider the lower bound first. We try to choose the

values for and so that with high probability we can

achieve a power efficiency that scales with the number of nodes

in the network. For this goal we take and all to

be equal to a positive constant denoted by . We also choose

. We further consider the network oper-

ating in the low-SNR regime so that is at most constant (in

terms of how it scales with ). Later on, when we are looking at

the upper bound, we will show that the optimal operating point

for this protocol is indeed when is of . Using these as-

sumptions in (35) and adding to the denominator, we have

the following lower bound for the power efficiency (see (40)

at the bottom of the page). are constants and

(35)

(40)
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do not depend on or . is also derived from

after applying the simplifications

Using Assumptions

Using Assumptions

(41)

Looking at (40), the following conditions are necessary in order

to have for large and :

(42)

Therefore, from the above equation it is clear that this analysis is

valid for the case where . and should be chosen so

that the second condition in (42) is satisfied. These two parame-

ters determine the rate of convergence in probability. By looking

at (41), we observe that the second condition in (42) implies that

an grows. In this stage, we maximize the power

efficiency with respect to the total transmit power and total

relay power and subject to the constraints in (42). It can be

easily verified by taking partial derivatives with respect to

and that the expression is maximized for .

Hence, we can write the maximization problem as

(43)

Let and .

Using the fact that and in (43), we can

write

(44)

With the following constraints

If using assumptions

If using assumptions

(45)

where the last two constraints are consequences of (42).

Consider that we use assumptions and . Later, we an-

alyze the performance of the protocol when only assumptions

and are used. Set fixed and equal to . In

this case, the rate of convergence in the probability expression

of (40) is . Now we are interested in the max-

imum achievable power efficiency for a fixed . We consider the

following cases.

1) : In this case, we can see that

. Therefore, the noise power is dominant to the

interference in (44) and we can simplify the expression as

(46)

where is defined as . Note that we have

. Now we consider the following cases.

• : In this case the power of in the function in

(46) is negative so it is of . Therefore we have

The total rate of transmission is of

in this case. The maximum order of power efficiency

is achieved when takes its smallest possible value,

i.e., . For this case, the maximum

achievable power efficiency and the total rate of trans-

mission are respectively

The transmit power and the relay node power for

achieving the maximum power efficiency are

(47)

Therefore, with the choice of the transmit and relay node

power as above, we have

(48)

• : In this case, (46) can be rewritten as

Now, since grows slower than any polynomial

function in and is strictly less than , the maximum

achievable power efficiency in this case cannot be better

than the previous case and thus operating the network

in this region is not favorable.

2) : For this regime, the interference will be the

dominant term in (44) and therefore we have

As we can see from the preceding equation, the power ef-

ficiency is maximized when takes is greatest possible

value . In this case, the power efficiency of the

network is

(49)
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It can be easily checked that the maximum power efficiency

achieved in this region is always less than or equal to the

case where .

The preceding discussion gives the probabilistic lower bound

of (48) for power efficiency when assumptions and from

Section II-B can be used. If only assumptions and can be

used, then applying the same technique as above, we can easily

check that the power efficiency is maximized when the network

operates in the noise dominant regime (i.e., )

rather than interference dominant regime (i.e., ).

Also, similar to the previous discussion should be

greater than equal to .

In this region, and we are in the

noise dominant regime. Hence, we can simplify (44) to

(50)

Therefore, we have . Also, since , the

power of in the function in (50) is negative, so it is of

. Therefore, we have

The best achievable power efficiency is for the case when

takes its smallest possible value. In this case

and the maximum achievable power efficiency and the total rate

of transmission are respectively

The transmit power and the relay node power for achieving the

maximum power efficiency are

(51)

With this choice of transmit and relay node power we have

the following probabilistic lower bound on the power efficiency

(using assumptions and only):

(52)

D. Main Result: Ad Hoc Case

The analysis in the previous section shows the following

result.

Theorem 2: Consider an -node random ad hoc network

where the nodes are placed randomly and independently on

a domain of fixed area where averaged over the fading, the

various channels are independent, i.e., for every two different

channels we have . Furthermore,

assume conditions and given in Section II-B and that at

any given time there are transmit/receive

pairs. Also the measurement noises are all i.i.d. .

If we denote the power efficiency of the network by (i.e,

) then for every
(53)

where and are independent of and but depend on

the domain and the fading characteristics. Moreover, the Listen

and Transmit protocol achieves this lower bound. The transmit

and the relay node powers that achieve this power efficiency are

given in (47).

The following corollary is an immediate consequence of The-

orem 2 by setting .

Corollary 1: Consider the network model described in The-

orem 2. If the number of transmitter/receiver pairs in the net-

work is of , where , then we have

(54)

where and are independent of and but depend on the

domain and the fading characteristics. Moreover, by choosing

the transmit and relay node powers as , the

Listen and Transmit protocol achieves this lower bound.

Remark: Note that from (54), we can see that there is a

tradeoff between the number of transmitter/receiver pairs ,

and the rate of convergence. As we increase from to

, the convergence slows down.

For the case, when only assumptions and are used, we

have the following result from (51) and (52).

Theorem 3: Consider an -node random ad hoc network in a

domain of fixed area where averaged over the fading, the various

channels are independent. Furthermore assume conditions

given in Section II-B and that at any given time there are

transmit/receive pairs. Also the measurement

noises are all i.i.d. . If we denote the power efficiency

of the network by (i.e., ) then for every

where and are independent of and and depend on

the domain and fading characteristics. Moreover, the Listen and

Transmit protocol achieves this lower bound. The transmit and

relay node powers achieving this power efficiency are given

in (51).

By considering the case where , we have the

following corollary.

Corollary 2: Consider the network described in Theorem 3.

If the number of transmit/receive pairs in the network is of

, where , then we have

where and only depend on the domain and fading char-

acteristics. Moreover, by choosing the transmit and relay node

powers as , the Listen and Transmit pro-

tocol achieves this lower bound.
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Corollary 2 implies that the maximum number of transmit/re-

ceive pairs that the network can support with power efficiency of

is . On the other hand, considering the maximum

power efficiency of the network with the number of transmit/re-

ceive pairs up to one can write the following corollary by

setting equal to in Theorem 3. We should also remark

that comparing Corollaries 1 and 2, we see that the effect of

assumption is on the number of simultaneous transmitter/re-

ceiver pairs that can be in the network.

Corollary 3: Consider again the network described in The-

orem 3. If the number of transmit/receive pairs in the network

is of , where , then we have

where are some constants. Therefore, in this case, if the

number of transmit/receive pairs is near to we can achieve

a power efficiency that scales like .

The following remarks are in order. The previous discussion

shows the following.

• If the number of the transmitter/receiver pairs is less than

, it was shown that a power efficiency that scales with

the number of nodes, , is achievable. The rate per trans-

mitter/receiver pair in this case is of order constant. If we

increase the number of simultaneous transmissions to more

than , we can still achieve power efficiency of using

time-sharing and Listen and Transmit protocol together.

In this case, at each time instant of the transmitters

transmit and all the others act as relay nodes. However,

in this case, the rate per transmitter/receiver will not be of

order constant and it will be of order . This is in agree-

ment with the result of [2]–[4] in that achieving a constant

rate per node in this case would require a total sum–ca-

pacity larger than which is not possible.

• There is a notion of fairness implicit in the protocol, in the

sense that nodes in the relay mode consume th power of

the nodes in the transmit mode.

• For the case where (or , if

we do not have assumption in Section II-B), the op-

timal choice of the transmit power and relay power is

. The total power consumption is

and the total rate is .

• In the case of ad hoc networks, by using the Listen and

Transmit protocol, we can see that we are keeping the rate

of transmission for each transmitter/receiver fixed and of

order but the total power consumption decreases as

the number of nodes grows larger, as long as

for some positive . If we do not have assumption on

the channel coefficients, we still have this property for

for some positive .

We should mention that with high probability we cannot get

a better power efficiency for ad hoc networks with this protocol.

We can show this by using (35), (36), and (39) to find a proba-

bilistic upper bound. With an argument like the one for the lower

bound or the one in [15], we can show that with high probability

the maximum achievable power efficiency with this protocol is

. The proof is included in Appendix D.

E. A Further Result

As mentioned earlier, the power efficiency that was consid-

ered up to now was defined as the ratio between the sum rate

capacity for a specific placement of the nodes of the network

and the average of the power consumption over all possible

point placements of the network. In other words, for a spe-

cific placement of the nodes with sum rate capacity of

and power consumption of , we defined power efficiency as

. An alternative to this definition is to consider

the ratio between the rate and power consumption for a specific

network, i.e. as the power efficiency. In this case,

the power efficiency is a random variable depending on the

placement of the nodes. However, because of the law of large

numbers, as the size of the network increases, will be close

to its average, and we observe the same behavior as for the

power efficiency. In order to state this formally we will need

the following lemma the proof of which we have omitted due to

similarity to the computations done in Appendix B. We should

remark that in proving this lemma one only needs assumptions

and of Section II-B. This lemma gives a bound on the power

consumption at the relay stage.

Lemma 2: Consider an -node ad hoc network with assump-

tions provided in Theorem 2; then for any specific placement of

the nodes in the network, the total power consumption at relay

nodes can be bounded as

(55)

where is any positive number and are constant inde-

pendent of and .

Using this lemma and the fact that the network operate at

low-SNR regime, i.e., , we can bound the total power

consumption of the network as follows:

Therefore, for we have

(56)

One can combine this relation with the results on the power

efficiency to get new bounds on . The following theorems are

immediate consequences of (56), Theorem 2, and Theorem 3.

Theorem 4: Consider an -node random ad hoc network

where the nodes are placed randomly and independently on

a domain of fixed area where averaged over the fading, the

various channels are independent, i.e., for every two different

channels we have . Furthermore

assume conditions and given in Section II-B and that at

any given time there are transmit/receive
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pairs. Also the measurement noises are all i.i.d. . For

a specific placement of the nodes of the random network, let

be the total rate of communication and be the total

power consumption in the network. Then for every ,

the power efficiency of the network defined as

satisfies

(57)

where and are independent of and but depend on the

domain and the fading characteristics. Moreover, the Listen and

Transmit protocol achieves this lower bound.

By setting and we have the following

corollary.

Corollary 4: For the network described in Theorem 4, we

have

(58)

Therefore, it becomes clear that by considering the power ef-

ficiency as the ratio between the sum–rate of transmission and

the total power consumption for specific placement of the nodes

in the network, we still have similar scaling behavior.

Remark: We should remark that the rate of convergence ob-

tained for the probability of the event in (58) is not tight (for

small ). One expects that as , the number of pairs requesting

service from the network, decreases, the rate of convergence im-

proves. (For instance, we can see from Theorem 1 that for sen-

sory networks in which , the rate of convergence is pro-

portional to .) Looking at (58), we observe that as decreases

to constant the convergence slows down. This is an artifact of

our approach in bounding .

If we use only assumptions and in Section II-B then we

can write the following theorem using (56) and Theorem 3.

Theorem 5: Consider an -node random ad hoc network

where the nodes are placed randomly and independently on

a domain of fixed area where averaged over the fading, the

various channels are independent, i.e., for every two different

channels we have . Furthermore,

assume conditions given in Section II-B and that at any

given time there are transmit/receive pairs.

Also, the measurement noises are all i.i.d. . For a

specific placement of the nodes of the random network, let

be the total rate of communication and be the total

power consumption in the network. Then for every ,

the power efficiency of the network defined as

satisfies

(59)

where and are independent of and but depend on the

domain and the fading characteristics. Moreover, the Listen and

Transmit protocol achieves this lower bound.

By setting and , we have the following

corollary.

Corollary 5: Consider the network model described in The-

orem 4. Then for we have

(60)

F. Discussion on Synchronicity

Similar to the sensory case, the key idea of the Listen and

Transmit protocol used for ad hoc networks, is the coherent and

synchronous reception of the signals. Therefore, the protocol

is sensitive to synchronicity. In this subsection, we discuss the

effect of asynchronocity on our protocol.

Like sensory networks, instead of considering an asyn-

chronous system, we consider the lack of synchronicity by

introducing a phase error in the channel knowledge used by the

relay nodes. More precisely, we assume that instead of knowing

the channel perfectly, the th relay node uses for

processing its received signal. is the phase error that models

the time lag corresponding to the transmission from the th

relay node to the th receiver. We assume that the phase errors

are i.i.d. random variables and are independent from channel

coefficients. Furthermore, we assume that is not zero

and is equal to some constant . In other words, we assume that

by the aid of the receivers and by using a training sequence, the

relay nodes have some estimate of their time lag and therefore

the phase error is not distributed uniformly over the unit circle.

In this case, the scalar used by the th relay node is pro-

portional to

Using these ’s, we can find the new ’s and ’s (28) in

terms of . Following the lines of Section V-A, Section V-B

and Appendix B, it can be verified that we will still have the

same asymptotic behavior for power efficiency in terms of

(i.e., the asymptotic behavior of the achieved power efficiency

is still like ), but the constants appearing in the relations

will now depend on as well. Also, we should remark that in

Appendix B, we bounded the required moments of ’s and

’s over the fading by their average value over the geometry

of the domain. In the presence of asynchronicity, we should also

take into account the averaging over the ’s in our bounding.

Therefore, the reader can verify that the bounds will still hold

but the constants will change and similarly to the sensory case as

decreases, the power efficiency will also decrease and finally

for the limiting case of , the lower bound on the achieved

power efficiency also becomes zero.

G. Complete Knowledge of the Channel

In the Listen and Transmit protocol we assumed that relay

nodes have only local knowledge of the channels, i.e., they only

know their connections to the transmitter and receiver nodes.
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We addressed another scenario in the previous sections, where

the nodes have complete knowledge of all the channel coeffi-

cients and try to diagonalize the channel matrix between the

transmitters and their corresponding receivers. In this subsec-

tion, we analyze the effect of perfect knowledge of the channel

on the power efficiency achieved by diagonalizing the channel

matrix.

In this subsection, we make an additional assumption that the

channel coefficients are independent complex random variables

with zero mean and unit variance. Using (25) and (28), we can

describe our protocol by the following matrix relations:

(61)

where is the transmitted vector, is the re-

ceived vector and are the respective received and

transmitted vectors at the relay stage. and

are the corresponding vectors of noise intro-

duced at the receivers and at the relay stage respectively.

is the channel matrix between the transmitters and the

relay nodes and is the channel matrix between the

relay nodes and the receivers. Finally,

is a diagonal matrix with diagonal entries corresponding

to the scalars chosen by the relay nodes. Notice that the ’s

depend on the channel gains. The last equation in (61) is a con-

sequence of the power constraint for the relay nodes. We remark

that the power constraint considered here is more general than

what was assumed in previous sections.

From (61), the equivalent channel matrix between the trans-

mitters and the receivers is . Therefore, diagonalizing the

channel matrix amounts to finding diagonal matrix such that

for some complex scalar . The number of com-

plex equations is and the number of variables is . Therefore,

generically, this equation has a solution for . In this case,

by looking at (61) we can write the received signal at receive

node as

We can find an upper bound on the achievable rates using the

scheme described above by considering that the receiver node

has knowledge of the different noises introduced in the relay

stage. Hence, we can bound the capacity of the channel between

the transmit/receive pair as

The power efficiency can be bounded as follows:

(62)

Thus, we only need to find the mean of the maximum possible

value of subject to the following constraints:

(63)

First, we try to solve the first equation in (63). Define

. Equation (63) can be written in

terms of and as

(64)

where it can be easily verified that and

are

...
...

...

(65)

and denote the

th row and th column of , respectively. If we define

, by using QR-type decomposition [22] for

we can write , where is unitary matrix

(i.e., ) and is a lower triangular

matrix with diagonal elements equal to unity. By writing

we can rewrite (64) as

(66)

Now notice that is invertible and therefore we can find

from (66) and by substituting its value in the second relation of

(66) we get

It can be easily verified that . Also,

the maximum of is when . Therefore,

(67)

Now using the following inequality for positive definite matrix

and any vector ([22, p. 452])
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Fig. 4. Power efficiency for interference suppression case.

we have

and is positive semidefinite. Therefore,

we have

(68)

Using the structure of matrix in (65), it can be verified that

where is the th column of . Now since the entries of

and are independent from each other, the expectation inside

the above summation is zero for . Therefore, we have

(69)

where we have used the fact that . Using the

above result in (68), we have

(70)

Combining (70) and (62) we have

(71)

Using an argument to previous sections (e.g., Section IV-C), we

know that the maximum of the right-hand side expression is less

than for some constant dependent on . Therefore,

which is the same as the case when we have only local knowl-

edge of the channel and the Listen and Transmit protocol is

used. We have found the upper bound for the maximum power

efficiency, , using the actual value for from (67) and

Matlab simulation. We have plotted the ratio for different

values of for and . As we can

see from the plots, the upper bound suggests that we cannot do

better than (or equivalently in Fig. 4). Also, as the number

of the simultaneous transmitter/receiver pairs increases, the

upper bound on the power efficiency of the interference cancel-

lation method becomes smaller. This suggest that this method

is not power efficient.

Based on the preceding argument, we have the following

theorem.

Theorem 6: Consider a wireless ad hoc network with relay

nodes and transmit/receive pair in which . Moreover,

assume the channel coefficients can be modeled by indepen-

dent zero mean unit variance complex random variables. Also

assume that the relay nodes have complete knowledge of the

channel coefficients; then if the relay nodes cancel out the in-

terference at the receiver nodes the power efficiency scales as

.
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VI. CONCLUSION

In this paper, we address the power efficiency of random sen-

sory and ad hoc wireless networks formed in a domain of fixed

area. Under some assumptions on the moments of the channel

coefficients, we show that asymptotically, as the number of

nodes in the network, , grows larger, with high probability we

can achieve a power efficiency of for sensory networks.

For ad hoc networks if the number of transmitter/receiver pairs

is of , we can achieve the same result. We also described

the protocol used to achieve this power efficiency. Although

the best results for capacity per node in sensory and ad hoc

wireless networks decrease as the size of networks grows larger

[1], [2], we can see that it pays off to consider these networks

in terms of power efficiency.

We can think of the protocol used in this paper as a simple

yet powerful memoryless linear coding scheme for the relay

nodes, i.e., the relay nodes simply relay a scaled version of what

they have heard. One can generalize this protocol by using other

coding schemes for relay nodes. Another interesting problem is

to look at the spectral efficiency of sensory and ad hoc networks

and its tradeoff with the power efficiency. Also whether a power

efficiency of greater than is possible or not is still an

open problem.

APPENDIX

A. Average Power of the Nodes at the Relay Stage

In this appendix, we will show that using , as defined in

(26), the average of the power of the signal transmitted by relay

nodes over all the point placements is . First, notice that the

transmitted signal by the th relay node is

(A1)

Since ’s and ’s are independent and zero mean, we can write

the average power of over the fading and location of the nodes

as (A2) (shown at the bottom of the page). Thus, we only need

to compute the expectations in the numerator. We have

(A3)

where follows from the fact that for the channels be-

tween and are independent from each other. Therefore, we

will have a term like the spatial averaging of a channel coeffi-

cient, i.e., , which by assumption is zero

where again follows from the fact that for and

are independent and so the term in the preceding equation

can be written in terms of their spatial averaging which by as-

sumption is zero. By substituting the values from (A3) and the

above equation in (A2), we see that the average of the relay node

power over all the random networks is .

B. Proof of Lemma 1

We intend to find probabilistic bounds for the and

for all . For this, we will use Markov’s and Chebyshev’s

inequalities and also assumptions (and/or ).

By using Chebyshev’s inequality we have the following in-

equalities:

(A2)
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(B1)

Also using Markov’s and Chebyshev’s inequalities, we have

(B2)

(B3)

where and are the mean and the variance of

respectively. Throughout this appendix we define

We should remind that defined in (26) of Section V is equal

to

(B4)

Note: In this appendix, we are using the same index for desig-

nating the th receiver and the th transmitter. Both of them are

addressed by index . In our expectations, whenever appears

as an index of a channel coefficient denoted by (for instance,

), we are addressing the th receiver and when appears as an

index of a channel coefficient denoted by (for instance, ),

we are addressing the th transmitter. For instance, in the ex-

pectation , we are averaging over the

locations of the th, th, and th receivers, where in

we are averaging over the location of the th transmitter. There-

fore, the expectations will be clear by looking at the channel

coefficients that appears in the formula.

For brevity, we only include the derivation of

and here. The derivation of all the

other moments appearing in (B1) is very similar to the ones

calculated here.

1) Computing and : For

the mean term we have

(B5)

where we have substituted by its value from (B4). Now no-

tice that by assumption , so the second

summation is zero. Thus, we can write

(B6)

where . Also, follows from the fact that

is increasing in . For the variance we have



DANA AND HASSIBI: ON THE POWER EFFICIENCY OF SENSORY AND Ad Hoc WIRELESS NETWORKS 2909

where we have plugged in the value of from (B4). Equality

follows from the fact that once the relay node is fixed, the co-

efficients to the transmitters and coefficient to the receivers are

independent. Now if at least one is different from the others

then because of assumption in Section II-B the term will

be zero,. The only case when the term in the above summa-

tion is nonzero is for where is a

permutation of . Thus, there are at most

nonzero terms in the summation. Note that each of the terms in

the summation above depends only on the channel coefficients

between at most six random points and thus depends only on the

geometry of the domain and not on or . If we consider

to be an upper bound for these terms then the variance can be

bounded by

(B7)

where .

2) Computing and : In this appendix, we will bound

and . The derivation in this part is rather long but the idea

is essentially like that of the previous parts. We start with (as

defined in the equation at the top of the following page), where

the value of is substituted from (B4). Since and ,

using assumptions and , it can be easily verified that each

of the terms is zero. Therefore, the first summation does not

contribute to and we can simplify the above equation to

(B8)

By substituting in the above equation with its value from (B4)

we have the second equation at the top of the following page,

where in we have used assumption of Section II-B and

the fact that since the only possibility for that results

in a nonzero term in the summation is when they are equal. In-

equality is also a consequence of the fact that the expecta-

tions in the last equality do not depend on and . Hence, they

can be upper-bounded by a constant .

For we have

Fig. 5. A generic setting of the points for computing V .

(B9)

where is the set of indices

representing transmitters, relay nodes, and receivers, respec-

tively. The summation is over all possible choices of condi-

tioned that . In the following paragraphs, we will look

at the cases when the expectation terms in the above summation

is nonzero. A generic configuration of the points is depicted in

Fig. 5.

First, if at least one is distinct from the others then the ex-

pectation in the sum will be zero. This can be verified by fixing

the location of the four nodes connected to and taking the

expectation over the placement of . Since the expec-

tation will be of the form given in assumption of Section II-B

which is zero. Therefore, we should have ,

where is a permutation of . Using a sim-

ilar argument, it can be shown that the expectation in the above

summation is nonzero, iff for some permu-

tation of indices in set .
Due to the symmetry in the connections between the relay

nodes and the transmitters and receivers (Fig. 5), we only
consider two cases among the three possible combinations of

. In fact, the cases where
is or result in the same expression.
Therefore, we only need to compute the expression for
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and .
We consider the following cases.

• and . In this case,
considering the connections at receiver side, since ,
terms like the cross-correlation of two channels between
one random point and two fixed point will appear which
we know by assumption is zero. Thus, all the terms in
this case result in zero (see Fig. 6(a)).

• and . In this case,
if , the expectation will be zero by assumption .
Therefore, the total number of terms in this case is

(see Fig. 6(b)).
• and . Comparing

Fig. 6(c) to Fig. 6(a), we see that all the terms in this case
are zero as well.

• and . We can
easily see that the only possible way to get a nonzero term
is when . The total number of terms in this case is

(see Fig. 6(d)).
• and . In this case, we

will always get a nonzero result for the expectation. Hence,
there are nonzero terms. Of all the terms

related to this case, there are terms

for which we have the additional property that
and are all distinct. Notices that all these terms appear in

. To observe this, note that because of the distinctness of
all the nodes the expectation term in (B9) can be written as

the product of two terms: the first one is the product of the
channel coefficients between transmitters , relay nodes

, and receivers . The second one is the product of the
channel coefficients between transmitters , relay node

, and receivers . But each of these terms is of the form
that appears in (B9). Therefore, the summation of the expec-
tations terms, corresponding to this case, will be canceled
out by subtracting from in (B9). Thus, only

terms appear in the variance (see Fig. 6(e)).
• and . Since

, we will have a term like the cross-correlation of
two channels between a random point and two fixed points,
which we know by assumption is zero. Hence, all the
terms in this case are zero (see Fig. 6(f)).

• and . For this case we
always get a zero term (see Fig. 6(g)).

• and . We always get
a nonzero term in this case. There are
nonzero terms in this case (see Fig. 6(h)).

• and for
is a permutation of . For this case,

we will always get a nonzero expression. The number of
nonzero terms in this case is (see
Fig. 6(i)).
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Fig. 6. Possible configurations appearing in computing V . In all the cases,
each directed link indicates that the corresponding channel coefficient appears
in the expression for computing V .

From the preceding argument, we have an upper bound for the
number of nonzero terms in . By looking at (B9), we see
that each of the terms can be written as the ratio between an
expectation of the product of at most 16 channel coefficients in
the network and , Therefore, the only dependency on and

is through . If we denote the maximum of the expectation
terms appearing in the numerator of these ratios by , we
can bound the variance by

where we have taken into account all the nonzero terms pro-
duced by all the arrangements of ’s and ’s in the above equa-
tion and is a positive constant independent of and .

3) Bounds on Other Moments: Using a very similar approach

to that the previous sections, we get the following bounds for the

required moments appearing in (B1)

(B10)

where ’s and are constants that do not depend on

and and are only a functions of the domain and the fading char-

acteristics. We should mention that to derive the above bounds

we only need assumptions and of Section II-B. We use as-

sumption only in computation of .

4) Proof of Lemma: Having found all the required expec-

tations we now compute required bounds for and

. From (30) we have

(B11)

where and . Using the inde-

pendence of fading for different channels, we have

(B.12)

Therefore, from (B12) and (B11) we have
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By using union bound on the probability of events and

from (B1) and (B2), we get

By substituting the required moments in the above equation with

their corresponding bounds calculated in preceding paragraphs,

after some simplifications, it can be shown that

(B13)

Note that in this bound we have only used assumptions

from Section II-B on channel coefficients. By using assumption

together with assumptions and we can get a stronger

probability bound for variance of the equivalent noise. Using

(B10), (B3), the second bound can be written as

(B14)

Combining (B13) and (B14), we have the following bound for

the variance of the equivalent noise:

where

Using Assumptions

Using Assumptions

This is the same bound that is given in Lemma 2 for the variance

of the equivalent noise . For

using (B1) and the bounds on the mean and the variance of

computed in previous sections, we get

(B15)

which is the same as the bound given in Lemma 2. Using

and (B12) we can write

(B16)

By substituting the required moments computed in previous sec-

tions, we get

(B17)

This is the same bound given in Lemma 2 for .
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C. Maximum Achievable Power Efficiency Using the Listen

and Transmit Protocol

In this appendix, we prove that with high probability we

cannot achieve a power efficiency of greater than with

the Listen and Transmit protocol.

Using (35), (36), and (39) we can write the upper bound for

power efficiency as

(C1)

where these inequalities hold for every and

. By substituting , we

have

(C2)

The above equation can be simplified to

(C3)

where and are constants independent of and .

By defining and and finding the partial deriva-

tives of in (C3) with respect to and , we can show

that values that maximize the upper bound satisfy the following

relation:

Substituting this value of in the expression yields

(C4)

If we define then by using the fact that

we will have

(C5)

where is some constant and the second equality comes from

the fact that . Therefore, with high probability

the maximum achievable power efficiency with the Listen and

Transmit protocol is .
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