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Abstract. The power graph P(G) of a group G is the graph whose vertex set is the group elements and
two elements are adjacent if one is a power of the other. In this paper, we consider some graph theoretical
properties of a power graph P(G) that can be related to its group theoretical properties. As consequences
of our results, simple proofs for some earlier results are presented.

1. Introduction

All groups and graphs in this paper are finite. Throughout the paper, we follow the terminology and
notation of [11, 12] for groups and [18] for graphs.

Groups are the main mathematical tools for studying symmetries of an object and symmetries are usually
related to graph automorphisms, when a graph is related to our object. Groups linked with graphs have
been arguably the most famous and productive area of algebraic graph theory, see [1, 11] for details. The
power graphs is a new representation of groups by graphs. These graphs were first used by Chakrabarty et
al. [4] by using semigroups. It must be mentioned that the authors of [4] were motivated by some papers of
Kelarev and Quinn [8–10] regarding digraphs constructed from semigroups. We also encourage interested
readers to consult papers by Cameron and his co-workers on power graphs constructed from finite groups
[2, 3].

Suppose G is a finite group. The power graph P(G) is a graph in which V(P(G)) = G and two distinct
elements x and y are adjacent if and only if one of them is a power of the other. If G is a finite group then it
can be easily seen that the power graph P(G) is a connected graph of diameter 2. In [4], it is proved that for
a finite group G, P(G) is complete if and only if G is a cyclic group of order 1 or pm, for some prime number
p and positive integer m.

Following [12, 13], two finite groups G and H are said to be conformal if and only if they have the same
number of elements of each order. In [13], the following question was investigated:

Question: For which natural numbers n are any two conformal groups of order n isomorphic?

Let G be a group and x ∈ G. We denote by o(x) the order of x and G is said to be EPO−group, if all
non-trivial element orders of G are prime. An EPPO−group is that its element orders are prime power.
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The set of all elements order of G is called its spectrum, denoted by πe(G), A maximal subgroup H of G is
denoted by H < · G and the set of all elements of G of order k is denoted by Ωk(G).

Suppose Γ is a graph. A subset X of the vertices of Γ is called a clique if the induced subgraph on X is a
complete graph. The maximum size of a clique in Γ is called the clique number of Γ and denoted by ω(Γ).
A subset Y of V(Γ) is an independent set if the induced subgraph on X has no edges. The maximum size of
an independent set is called the independence number of G and denoted by α(G). The chromatic number of Γ
is the smallest number of colors needed to color the vertices of Γ so that no two adjacent vertices share the
same color. This number is denoted by χ(Γ).

Throughout this paper our notation is standard and they are taken from the standard books on graph
theory and group theory such as [12, 18].

2. Main Results

Suppose G is a finite group of order n. Chakrabarty, Ghosh and Sen [4] proved that the number of edges
of P(G) can be computed by the following formula:

e =
1

2

∑

a∈G

{2o(a) − φ(o(a)) − 1},

where φ is the Euler’s totient function. In the case that G is cyclic, we have:

e =
1

2

∑

d|n

{2d − φ(d) − 1}φ(d).

Moreover, P(Zn) is nonplanar when φ(n) > 7 or n = 2m, m ≥ 3. Finally, if n ≥ 3 then P(Zn) is Hamiltonian.

Suppose D(n) denotes the set of all positive divisors of n. It is well-known that (D(n), |) is a distributive
lattice. D(n) is a Boolean algebra if and only if n is square-free. In the following theorem we apply the
structure of this lattice to compute the clique and chromatic number of P(Zn).

Lemma 1 Suppose G is a group and A ⊆ G. The vertices of A constitute a complete subgraph in P(G) if and
only if {⟨x⟩ | x ∈ A} is a chain.

Proof Suppose C is a clique in P(G). To prove that {⟨x⟩ | x ∈ C} is a chain, we proceed by induction on |V(C)|.
If |C| = 2 the result is obvious. If V(C) = {x1, x2, · · · , xn} then by induction hypothesis, {⟨xi⟩ | 1 ≤ i ≤ n − 1}
is a chain in P(G). Without loss of generality we can assume that 1 ⊆ ⟨x1⟩ ⊆ ⟨x2⟩ ⊆ · · · ⊆ ⟨xn−1⟩. Consider
t = max{i | ⟨xi⟩ ⊆ ⟨xn⟩}. If t = n − 1 then the result is proved. Otherwise, ⟨xt⟩ ⊆ ⟨xn⟩ ⊆ ⟨xt+1⟩, as desired.
Conversely, by definition of power graph, every chain of cyclic subgroups is a clique.

Theorem 2 Suppose n = pα1

1
pα2

2
· · · pαr

r , where p1 < p2 < ... < pr are prime numbers. Then

ω(P(Zn)) = χ(P(Zn)) = pαr
r +

r−2
∑

j=0

(p
αr− j−1

r− j−1
− 1)















j
∏

i=0

φ(pαr−i

r−i
)















.

Proof Define the relation ∼ on Zn by a ∼ b if and only if they have the same order. Then it can easily seen

that ∼ is an equivalence relation on Zn and Zn

∼
can be equipped with an order such that Zn

∼
� D(n). Here a

∼

≤ b
∼

if and only if o(a)|o(b). Choose an element a ∈ Zn. By our definition, the elements of a
∼

are adjacent in

P(Zn). Moreover, for each chain v1

∼
, v2

∼
, · · · , vt

∼
of elements in Zn

∼
,
∪t

i=1
vi

∼
is a complete subgraph of P(Zn). For

an arbitrary element u
∼
∈

Zn

∼
, define d( o

∼
, u
∼

) to be the same as distance between corresponding elements of
D(n).
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To find a maximal complete subgraph of P(Zn), by Lemma 1 it is enough to obtain a maximal chain

Q :
a0

∼
=

o

∼
,

a1

∼
,

a2

∼
, · · · ,

al

∼
,

n

∼
=

al+1

∼
(1)

such that Q has the maximum length, a1

∼
∪

a2

∼
∪· · ·∪

al

∼
has the maximum possible size and l+1 = α1+ · · ·+αr.

To do this, it is enough to choose a1 to be an element of order pr, a2 to be an element of order p2
r , ...., aαr

to be
an element of order pαr

r , aαr+1
to be an element of order pαr

r pr−1 and so on. Therefore,

ω(P(Zn)) = |
a0

∼
| + |

a1

∼
| + · · · + |

al+1

∼
|

= (φ(pr) + φ(p2
r ) + · · · + φ(pαr

r ))

+ φ(pαr
r )(φ(pr−1) + · · · + φ(pαr−1

r−1
))

+ · · ·

+ φ(pαr
r ) · · ·φ(pα2

2
)(φ(p1) + · · · + φ(pα1

1
)) + 1

= pαr
r +

r−2
∑

j=0

(p
αr− j−1

r− j−1
− 1)















j
∏

i=0

φ(pαr−i

r−i
)















.

To complete the proof we have to prove that ω(P(Zn)) = χ(P(Zn)) and this is a direct consequence of the
strong perfect graph theorem [5].

The exponent of a finite group G is defined as the least common multiple of all elements of G, denoted
by Exp(G). It is easy to see that if G is nilpotent then there exists an element a ∈ G such that o(a) = Exp(G).
Such groups are said to be full exponent.

Theorem 3 Suppose that G is a full exponent group and n = Exp(G) = p
β1

1
p
β2

2
· · · p

βr

r , where p1 < p2 < ... < pr

are prime numbers. If x is an element of order n then

ω(P(G)) = χ(P(G)) = p
βr

r +

r−2
∑

j=0

(p
βr− j−1

r− j−1
− 1)















j
∏

i=0

φ(p
βr−i

r−i
)















.

Proof By Lemma 1, a subset A of G constitutes a clique in P(G) if and only if {⟨x⟩ | x ∈ A} is a chain. To
obtain a maximal clique in P(G), we have to choose a chain 1 ⊆ ⟨x1⟩ ⊆ ⟨x2⟩ ⊆ · · · ⊆ ⟨xt⟩ such that o(xt) = o(x)

and 1 +
∑t

i=1 ϕ(o(xi)) has maximum value among all possible chains of subgroups of ⟨x⟩. Now a similar
argument as given in the proof of Theorem 2, completes the proof.

Our calculations on the small group library of GAP [15] suggest the following conjecture:

Conjecture 1: The Theorem 3 is correct in general.

Corollary 4 Let G be a finite group. Then the power graph P(G) is planar if and only if πe(G) ⊆ {1, 2, 3, 4}.

Proof Suppose P(G) is planar. Then P(G) does not have the complete graph K5 as its induced subgraph and
the Theorem 3 concludes the result. Conversely, if πe(G) ⊆ {1, 2, 3, 4} then it can easily seen that P(G) can be
embedded into sphere, as desired.

In [4, Lemma 4.7], the authors proved that if G is a cyclic group of order n, n ≥ 3 and φ(n) > n then P(G)
is not planar. Also, in [4, Lemma 4.8] it is proved that a cyclic group of order 2n, n ≥ 3, is not planar. In the
following corollary we apply Corollary 4 to find a simple classification for planarity of the power graph of
cyclic groups.

Corollary 5 The power graph of a cyclic group of order n is planar if and only if n = 2, 3, 4.
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In what follows, Un denotes the groups of units in the ring Zn. In the following corollary a new simple
proof for [4, Lemma 4.10] is presented.

Corollary 6 The power graph of Un is planar if and only if n|240.

Proof Suppose n = pe1

1
pe2

2
· · · pek

k
, where p1, p2, · · · , pk are distinct primes. Then by [7, Theorems 6.11, 6.13 and

Corollary 6.14],Upe is cyclic for odd p, U2 � 1, U4 � Z2, U2n � Z2×Z2n−2 and Un � Up
e1
1
× · · · ×Up

ek
k

. Therefore,

by Corollary 4, n|240.

Consider the dihedral group D2n presented by

D2n = ⟨x, y | x
n = y2 = e & y−1xy = x−1⟩.

From [4, Corollary 4.3], we can deduce that the number of edges of P(D2n) is given by e = 1
2

∑

d|n{2dφ(d) −
φ(d)2} + n. This graph is neither Eulerian nor hamitonian, since the group has elements of order 2.

By corollary 5, it is easy to prove the power graph of a dihedral group of order 2n is planar if and only
if n = 2, 3, 4.

Corollary 7 χ(P(D2n)) = ω(P(D2n)) = χ(P(Zn)).

Proof Notice that the power graph P(D2n) is a union of P(Zn) and n copy of K2 that share in the identity
element of D2n.

The semi−dihedral group SD2n is presented by

SD2n = ⟨x, y | x2n−1

= y2 = 1, yxy = r2n−2−1⟩.

Corollary 8 The power graph P(SD2n ) is a union of a complete graph of order 2n and 2n copies of K2

that share in the identity vertex. This graph is non-Eulerian, non-hamiltonian and nonplanar, for n ≥ 3.
Moreover, χ(P(SD2n )) = ω(P(SD2n )) = α(P(SD2n )) = 2n.

Following [6] we assume that P is a finite partially ordered set (poset for short) which possesses a rank
function r : P −→ N with the property that r(p) = 0, for some minimal element p of P and r(q) = r(p) + 1
whenever q covers p. Let Nk := {p ∈ P : r(p) = k} be its kth level and let r(P) := max{r(p) : p ∈ P} be
the rank of P. An antichain or Sperner family in P is a subset of pairwise incomparable elements of P. It is
clear that each level is an antichain. The width (Dilworth or Sperner number) of P is the maximum size d(P)
of an antichain of P. The poset P is said to have the Sperner property if d(P) = maxk|Nk|. A k−family in P,
1 ≤ k ≤ r(P), is a subset of P containing no (k+ 1)−chain in P, and P has the strong Sperner property if for each
k the largest size of a k−family in P equals the largest size of a union of k levels.

Theorem 9 Suppose that n = p
β1

1
· · · p

βr

r is the prime decomposition of n and m = β1 + · · ·+ βr. Then α(P(Zn))

is the coefficient of the middle or the two middle term of Πm
j=1

(1 + x + · · · + xβ j ).

Proof It is well-known that the lattice of divisors of a natural number, ordered by divisibility, has strong
Sperner property and so its largest antichain is its largest rank level.

Let Γ be a graph. The minimum number of vertices of Γ which need to be removed to disconnect the
remaining vertices of Γ from each other is called the connectivity of Γ, denoted by κ(Γ). If G is finite group
then we define:

M(G) = {x ∈ G ; ⟨x⟩ < · G}.

Theorem 10 Suppose G is a non-cyclic group and x ∈ G such that ⟨x⟩ < ·G. Define r(x) = ∪y∈M(G)−⟨x⟩
(

⟨x⟩ ∩ ⟨y⟩
)

.
Then,

κ(P(G)) ≤Min{|r(x)| ; ⟨x⟩ < · G}.
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Proof Suppose ⟨x⟩ is a maximal cyclic subgroup of G. We claim that r(x) is a cut set of P(G). Since G is
noncyclic, there exists another maximal cyclic subgroup ⟨y⟩ different from ⟨x⟩. If r(x) is not a cut set of P(G)
then there exists a shortest path Q : x = x0, x1, x2, ..., xn−1, xn = y in P(G) connecting x and y. Without loss
of generality we can assume that x2k, 0 ≤ k ≤ ⌈ n

2 ⌉, are generators of maximal cyclic subgroups of G. Thus,
x1 ∈ ⟨x⟩ ∩ ⟨x2⟩ ⊆ r(x) contradict by our assumption. This completes the proof.

For a finite group G, the set of all maximal cyclic subgroups of G is denoted by MaxCyc(G).

Lemma 11 Suppose G is a non-cyclic finite group, S ⊆ G − M(G), MaxCyc(G) = {⟨x1⟩, ..., ⟨xr⟩} and A =
{x1, ..., xr}. S is a minimal cut set with this property that each component of P(G)−S has exactly one element
of A if and only if S = ∪x∈M(G)r(x).

Proof If S = ∪x∈M(G)r(x) then by an argument similar to the proof of Theorem 10, one can see that if x, y ∈M(G)
and ⟨x⟩ , ⟨y⟩ then {x1, x3, · · · } ⊆ S, where x = x0, x1, x2, ..., xn−1, xn = y is a shortest path in P(G) connecting x
and y. Therefore, if x, y ∈M(G), ⟨x⟩ , ⟨y⟩ then x and y are not in the same component of P(G) − S.

Conversely, we assume that S is a cut set with this property that each component of P(G)− S has exactly
one element of A and x, y ∈ A. Suppose ł ∈ ⟨x⟩ ∩ ⟨y⟩ and ł < S. Then ł is adjacent to x and y and so there
exists a component of P(G) − S containing both of x and y, a contradiction. Therefore, ∪x∈M(G)r(x) ⊆ S. On
the other hand, we assume that z ∈ S and ⟨t⟩ is a maximal cyclic subgroup of G containing z. By minimality
of S, there are at least two components X1 and X2 of P(G)−S such that z is adjacent to a vertex v1 ∈ X1 and a
vertex v2 ∈ X2. Without loss of generality, we can assume that X1 is the component containing t and v1 = t.
Obviously, ⟨v2⟩ * ⟨t⟩ and so there exists a vertex t′ ∈ A ∩ X2 such that ⟨v2⟩ ⊆ ⟨t

′⟩. Since z is adjacent to v2,
⟨z⟩ ⊆ ⟨v2⟩ or ⟨v2⟩ ⊆ ⟨z⟩. If ⟨z⟩ ⊆ ⟨v2⟩ then z ∈ ⟨t⟩ ∩ ⟨t′⟩, as desired. If ⟨v2⟩ ⊆ ⟨z⟩ then v2 is adjacent to t which
is impossible. This completes our argument.

It is easily seen that the power graph of a p−group Q is a union of some complete graphs of order p
which share in identity vertex if and only if Q has exponent p. In the following theorem we investigate the
same problem for an arbitrary group.

Theorem 12 P(G) is a union of complete graphs which share the identity element of G if and only if G is an
EPPO-group and for every maximal cyclic subgroup A and B with A , B, A ∩ B = {e}.

Proof Suppose there exist x ∈ G and prime numbers p1 and p2 such that p1, p2|o(x). Then the cyclic subgroup
⟨x⟩ is containing non-adjacent elements x1 of order p1 and x2 of order p2. Since x1 and x2 are adjacent to x,
they are in the same block of P(G), a contradiction. If A = ⟨a⟩ and B = ⟨b⟩ are maximal cyclic subgroup of G
such that e , x ∈ A ∩ B then x, a and b are mutually adjacent and so A ⊆ B or B ⊆ A, which is impossible.
Conversely, we assume that maximal cyclic subgroups of G have prime power order and for every maximal
cyclic subgroup A and B with A , B, A ∩ B = {e}. By Lemma 11, S = ∪x∈M(G)r(x) = {e}. On the other hand,
if MaxCyc(G) = {⟨x1⟩, ..., ⟨xr⟩} and A = {x1, ..., xr} then by Lemma 11, each component of P(G) − {e} is of form
⟨xi⟩ − {e}, for some i, 1 ≤ i ≤ r, which is a complete subgraph of P(G). This completes the proof.

Corollary 13 If G is an EPO−group then P(G) is a union of some complete graphs which share in the identity
element of G.

Lemma 14 A finite group G is EPPO if and only if the vertices of every maximal clique of P(G) is a maximal
cyclic subgroup of G.

Proof (⇐=) Suppose H is a maximal clique in P(G) and x ∈ H. If o(x) has at least two prime divisors p and q
then there are elements of these orders in H which is impossible.

(=⇒) By Lemma 1, we map the maximal clique H in P(G) to the chain 1 ⊆ ⟨x1⟩ ⊆ ⟨x2⟩ ⊆ · · · ⊆ ⟨xt⟩. Then
xt has prime power order pα and since G is EPPO group, pα = 1 + ϕ(p) + · · · + ϕ(pα). This implies that
H = ⟨xt⟩.

A Chinese group theorist Wujie Shi [14] conjectured that a finite group and a finite simple group are
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isomorphic if they have the same orders and sets of element orders, see also [16, Question 12.39]. Vasiliev,
Grechkoseeva and Mazurov gave an affirmative answer to this question in [17]. In the following theorem
this result is applied to obtain a new characterization of finite simple groups by their power graphs.

Theorem 15 If G1 is one of the following finite groups

a) A simple group,
b) A cyclic group,
c) A symmetric group,
d) A diheral group,
e) A generalised quaternion group,

and G2 is a finite group such that P(G1) � P(G2) then G1 � G2.

Proof Since P(G1) � P(G2), by [3, Corollary 3] G1 and G2 have the same numbers of elements of each order.
To prove (a) it is enough to use this corollary and the main result of [17] mentioned in Introduction.

b) If P(G2) � P(Zn) then by the mentioned result of Cameron, G2 have to exists an element of order n.
c) By [14], G2 � Sn if and only if πe(G2) = πe(Sn) and |G2| = |Sn|, proving the part (c).
d) Suppose P(G2) � P(D2n) then |G2| = 2n and G2 has an element a of order n. Since G has the same

number of elements of order 2 as the dihedral group D2n, we can choose an element b of order 2 in G2 such
that ⟨a⟩ ∩ ⟨b⟩ = 1. This implies that G2 is a semi-direct product of the cyclic group Zn by Z2. Therefore,
G2 � D2n.

e) Suppose Q4n denotes the generalized quaternion group of order 4n and P(G2) � P(Q4n). Then |S| > 1,
where S is the set of vertices of the power graph P(G2) which are joined to all other vertices. We now apply
[3, Proposition 4] to deduce that G2 is isomorphic to Q4n.

Let p be an odd prime number. Two groups of order 2p2 have isomorphic power graph if and only
if they are isomorphic. This is a direct consequence of [13, Lemma 1]. In [2, Theorem 1], Peter Cameron
characterized abelian groups by their power graphs. In the following theorem a simple proof for this result
is presented.

Theorem 16 If G1 and G2 are finite abelian groups such that P(G1) � P(G2) then G1 � G2.

Proof Suppose G1 and G2 are finite abelian groups such that P(G1) � P(G2). Then by [3, Corollary 3], G1 and
G2 are conformal. On the other hand, by [12, pp 107-109], finite abelain conformal groups are isomorphic.
Therefore, G1 � G2.

Suppose p is prime. Then there are five groups of order p3 up to isomorphism. From the cyclic
decomposition of finite abelian groups, there are three abelian groups isomorphic to G1 � Zp × Zp × Zp,
G2 � Zp × Zp2 , G3 � Zp3 . There are also two non-abelian groups, G4 and G5, of order p3. If p = 2 then these
groups are isomorphic to D8 and Q8, respectively. If p is odd then

G4 � ⟨a, b|a
p2

= bp = babp−1ap2−p−1 = e⟩,

is a non-abelian group of order p3. It has p2 − 1 elements of order p, which fall into two conjugacy classes,
of sizes p − 1 and p2 − p; and p3 − p2 elements of order p2, forming a single conjugacy class. There is also
another group isomorphic to semi-direct product Zp2 ∝ Zp. It has p3−1 elements of order p falling into three

conjugacy classes of sizes p − 1, p2 − p and p3 − p2. Suppose G = G1 and H = G4. An easy calculation shows
that P(G) � P(H). Therefore, non-cyclic abelian groups cannot be characterized by their power graphs.

Theorem 17 Let G be a finite group. The power graph P(G) is bipartite if and only if G is an elementary
abelian group of even order.

Proof Suppose P(G) is bipartite. If an odd prime p divides |G| then the complete graph Kp can be embedded
into P(G), a contradiction. On the other hand, if G has an element of order 4 then P(G) is containing a copy
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of K4 which is impossible. Therefore, G is an elementary abelian group of even order. The converse is
trivial.

A matching on a graph G is a set of edges of G such that no two of them share a vertex in common. A
maximum matching of G is a matching with the largest size among all matchings in G. A vertex cover of
G is a subset Q ⊆ V(G) that contains at least one end point of each edge. The König-Egerváry theorem [18,
Theorem 3.1.16], states that in any bipartite graph, the number of edges in a maximum matching equals the
number of vertices in a minimum vertex cover.

Theorem 18 The power graph P(Zpn ) has the maximum number of edges among all power graphs of
p−groups of order pn.

Proof Suppose G is a non-cyclic p−groups of order pn. We construct a bipartite graph Γ = (X,Y) as follows:

X = G, Y = Zpn and E(Γ) = {ab | a ∈ X, b ∈ Y and o(a) ≤ o(b)}.

We first assume that Γ has a perfect matching M and f : G −→ Zpn is a bijective mapping such that for each
a ∈ G, a and f (a) are saturated by M. Thus, o(a) − ϕ(o(a)) ≤ o( f (a)) − ϕ(o( f (a)) and since G is not cyclic,

∑

a∈G

[2o(a) − ϕ(o(a))] <
∑

a∈G

[2o( f (a)) − ϕ(o( f (a))].

But 1
2

[∑

a∈G[2o(a) − ϕ(o(a))] − 1
]

and 1
2

[∑

a∈G[2o( f (a)) − ϕ(o( f (a))] − 1
]

are the number of edges in P(G)
and P(Zpn ), respectively. So, it is enough to prove that Γ has a perfect matching. By König-Egerváry
theorem we have to show that a minimum vertex cover of Γ has exactly pn elements. Suppose that A is a
minimum vertex cover of Γ and pγ = max{o(x) | x ∈ G}. If A = X then there is nothing to prove that |A| = pn.
Otherwise, elements of orders pγ+1, pγ+2, · · · , pn of Y are adjacent to all elements of G and so these elements
are in A. We claim that A contains all elements of Y of order pk, k ≤ γ. Define,

Lk = {(x, y) ∈ X × Y | o(x) = o(y) = pk},

where k ≤ γ. By our definition, if (x, y) ∈ Lk then x is adjacent to y and so if (x, y) ∈ Lk then x ∈ A or y ∈ A.
One can easily seen that Lk induces a complete bipartite induced subgraph of Γ and hence Ωpk (G) ⊆ A or
Ωpk (Zpn ) ⊆ A. Since |Ωpk (G)| ≤ |Ωpk (Zpn )|, by minimality we can assume that Ωpk (Zpn ) ⊆ A, where 1 ≤ k ≤ γ.
Therefore, A = Y and Γ has a perfect matching. This completes the proof.

Corollary 19 If G is a non-cyclic p−group of order pn then
∑

x∈G o(x) <
∑

x∈Zpn o(x).

Our calculations with groups of small order suggest the following conjecture:

Conjecture 2: The power graph P(Zn) has the maximum number of edges among all power graphs of
groups of order n.

Acknowledge. We are grateful to the referee for suggestions and helpful remarks.
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