On the Power Graph of a Finite Group

M. Mirzargar, A. R. Ashrafi, M. J. Nadjafi-Arani
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan, Kashan 87317-51167, I. R. Iran

Abstract

The power graph $P(G)$ of a group G is the graph whose vertex set is the group elements and two elements are adjacent if one is a power of the other. In this paper, we consider some graph theoretical properties of a power graph $P(G)$ that can be related to its group theoretical properties. As consequences of our results, simple proofs for some earlier results are presented.

1. Introduction

All groups and graphs in this paper are finite. Throughout the paper, we follow the terminology and notation of [11, 12] for groups and [18] for graphs.

Groups are the main mathematical tools for studying symmetries of an object and symmetries are usually related to graph automorphisms, when a graph is related to our object. Groups linked with graphs have been arguably the most famous and productive area of algebraic graph theory, see $[1,11]$ for details. The power graphs is a new representation of groups by graphs. These graphs were first used by Chakrabarty et al. [4] by using semigroups. It must be mentioned that the authors of [4] were motivated by some papers of Kelarev and Quinn [8-10] regarding digraphs constructed from semigroups. We also encourage interested readers to consult papers by Cameron and his co-workers on power graphs constructed from finite groups [2,3].

Suppose G is a finite group. The power graph $P(G)$ is a graph in which $V(P(G))=G$ and two distinct elements x and y are adjacent if and only if one of them is a power of the other. If G is a finite group then it can be easily seen that the power graph $P(G)$ is a connected graph of diameter 2 . In [4], it is proved that for a finite group $G, P(G)$ is complete if and only if G is a cyclic group of order 1 or p^{m}, for some prime number p and positive integer m.

Following $[12,13]$, two finite groups G and H are said to be conformal if and only if they have the same number of elements of each order. In [13], the following question was investigated:

Question: For which natural numbers n are any two conformal groups of order n isomorphic?
Let G be a group and $x \in G$. We denote by $o(x)$ the order of x and G is said to be EPO-group, if all non-trivial element orders of G are prime. An EPPO-group is that its element orders are prime power.

[^0]The set of all elements order of G is called its spectrum, denoted by $\pi_{e}(G)$, A maximal subgroup H of G is denoted by $H<\cdot G$ and the set of all elements of G of order k is denoted by $\Omega_{k}(G)$.

Suppose Γ is a graph. A subset X of the vertices of Γ is called a clique if the induced subgraph on X is a complete graph. The maximum size of a clique in Γ is called the clique number of Γ and denoted by $\omega(\Gamma)$. A subset Y of $V(\Gamma)$ is an independent set if the induced subgraph on X has no edges. The maximum size of an independent set is called the independence number of G and denoted by $\alpha(G)$. The chromatic number of Γ is the smallest number of colors needed to color the vertices of Γ so that no two adjacent vertices share the same color. This number is denoted by $\chi(\Gamma)$.

Throughout this paper our notation is standard and they are taken from the standard books on graph theory and group theory such as $[12,18]$.

2. Main Results

Suppose G is a finite group of order n. Chakrabarty, Ghosh and Sen [4] proved that the number of edges of $P(G)$ can be computed by the following formula:

$$
e=\frac{1}{2} \sum_{a \in G}\{2 o(a)-\phi(o(a))-1\}
$$

where ϕ is the Euler's totient function. In the case that G is cyclic, we have:

$$
e=\frac{1}{2} \sum_{d \mid n}\{2 d-\phi(d)-1\} \phi(d)
$$

Moreover, $P\left(Z_{n}\right)$ is nonplanar when $\phi(n)>7$ or $n=2^{m}, m \geq 3$. Finally, if $n \geq 3$ then $P\left(Z_{n}\right)$ is Hamiltonian.
Suppose $D(n)$ denotes the set of all positive divisors of n. It is well-known that $(D(n), \mid)$ is a distributive lattice. $D(n)$ is a Boolean algebra if and only if n is square-free. In the following theorem we apply the structure of this lattice to compute the clique and chromatic number of $P\left(Z_{n}\right)$.

Lemma 1 Suppose G is a group and $A \subseteq G$. The vertices of A constitute a complete subgraph in $P(G)$ if and only if $\{\langle x\rangle \mid x \in A\}$ is a chain.

Proof Suppose C is a clique in $P(G)$. To prove that $\{\langle x\rangle \mid x \in C\}$ is a chain, we proceed by induction on $|V(C)|$. If $|C|=2$ the result is obvious. If $V(C)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ then by induction hypothesis, $\left\{\left\langle x_{i}\right\rangle \mid 1 \leq i \leq n-1\right\}$ is a chain in $P(G)$. Without loss of generality we can assume that $1 \subseteq\left\langle x_{1}\right\rangle \subseteq\left\langle x_{2}\right\rangle \subseteq \cdots \subseteq\left\langle x_{n-1}\right\rangle$. Consider $t=\max \left\{i \mid\left\langle x_{i}\right\rangle \subseteq\left\langle x_{n}\right\rangle\right\}$. If $t=n-1$ then the result is proved. Otherwise, $\left\langle x_{t}\right\rangle \subseteq\left\langle x_{n}\right\rangle \subseteq\left\langle x_{t+1}\right\rangle$, as desired. Conversely, by definition of power graph, every chain of cyclic subgroups is a clique.

Theorem 2 Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, where $p_{1}<p_{2}<\ldots<p_{r}$ are prime numbers. Then

$$
\omega\left(P\left(Z_{n}\right)\right)=\chi\left(P\left(Z_{n}\right)\right)=p_{r}^{\alpha_{r}}+\sum_{j=0}^{r-2}\left(p_{r-j-1}^{\alpha_{r-j-1}}-1\right)\left(\prod_{i=0}^{j} \phi\left(p_{r-i}^{\alpha_{r-i}}\right)\right) .
$$

Proof Define the relation \sim on Z_{n} by $a \sim b$ if and only if they have the same order. Then it can easily seen that \sim is an equivalence relation on Z_{n} and $\frac{Z_{n}}{\sim}$ can be equipped with an order such that $\frac{Z_{n}}{\sim} \cong D(n)$. Here $\underset{\sim}{\sim}$ $\leq \frac{b}{\sim}$ if and only if $o(a) \mid o(b)$. Choose an element $a \in Z_{n}$. By our definition, the elements of $\underset{\sim}{a}$ are adjacent in $P\left(Z_{n}\right)$. Moreover, for each chain $\frac{v_{1}}{\sim}, \frac{v_{2}}{\sim}, \cdots, \frac{v_{t}}{\sim}$ of elements in $\frac{Z_{n}}{\sim}, \bigcup_{i=1}^{t} \stackrel{v_{i}}{\sim}$ is a complete subgraph of $P\left(Z_{n}\right)$. For an arbitrary element $\underset{\sim}{u} \in \frac{Z_{n}}{\sim}$, define $d\left(\frac{o}{\sim}, \frac{u}{\sim}\right)$ to be the same as distance between corresponding elements of $D(n)$.

To find a maximal complete subgraph of $P\left(Z_{n}\right)$, by Lemma 1 it is enough to obtain a maximal chain

$$
\begin{equation*}
Q: \frac{a_{0}}{\sim}=\frac{o}{\sim}, \frac{a_{1}}{\sim}, \frac{a_{2}}{\sim}, \cdots, \frac{a_{l}}{\sim}, \frac{n}{\sim}=\frac{a_{l+1}}{\sim} \tag{1}
\end{equation*}
$$

such that Q has the maximum length, $\frac{a_{1}}{\sim} \cup \frac{a_{2}}{\sim} \cup \cdots \cup \frac{a_{l}}{\sim}$ has the maximum possible size and $l+1=\alpha_{1}+\cdots+\alpha_{r}$. To do this, it is enough to choose a_{1} to be an element of order p_{r}, a_{2} to be an element of order $p_{r}^{2}, \ldots ., a_{\alpha_{r}}$ to be an element of order $p_{r}^{\alpha_{r}}, a_{\alpha_{r+1}}$ to be an element of order $p_{r}^{\alpha_{r}} p_{r-1}$ and so on. Therefore,

$$
\begin{aligned}
\omega\left(P\left(Z_{n}\right)\right) & =\left|\frac{a_{0}}{\sim}\right|+\left|\frac{a_{1}}{\sim}\right|+\cdots+\left|\frac{a_{l+1}}{\sim}\right| \\
& =\left(\phi\left(p_{r}\right)+\phi\left(p_{r}^{2}\right)+\cdots+\phi\left(p_{r}^{\alpha_{r}}\right)\right) \\
& +\phi\left(p_{r}^{\alpha_{r}}\right)\left(\phi\left(p_{r-1}\right)+\cdots+\phi\left(p_{r-1}^{\alpha_{r-1}}\right)\right) \\
& +\cdots \\
& +\phi\left(p_{r}^{\alpha_{r}}\right) \cdots \phi\left(p_{2}^{\alpha_{2}}\right)\left(\phi\left(p_{1}\right)+\cdots+\phi\left(p_{1}^{\alpha_{1}}\right)\right)+1 \\
& =p_{r}^{\alpha_{r}}+\sum_{j=0}^{r-2}\left(p_{r-j-1}^{\alpha_{r-j-1}}-1\right)\left(\prod_{i=0}^{j} \phi\left(p_{r-i}^{\alpha_{r-i}}\right)\right) .
\end{aligned}
$$

To complete the proof we have to prove that $\omega\left(P\left(Z_{n}\right)\right)=\chi\left(P\left(Z_{n}\right)\right)$ and this is a direct consequence of the strong perfect graph theorem [5].

The exponent of a finite group G is defined as the least common multiple of all elements of G, denoted by $\operatorname{Exp}(G)$. It is easy to see that if G is nilpotent then there exists an element $a \in G$ such that $o(a)=\operatorname{Exp}(G)$. Such groups are said to be full exponent.

Theorem 3 Suppose that G is a full exponent group and $n=\operatorname{Exp}(G)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{r}^{\beta_{r}}$, where $p_{1}<p_{2}<\ldots<p_{r}$ are prime numbers. If x is an element of order n then

$$
\omega(P(G))=\chi(P(G))=p_{r}^{\beta_{r}}+\sum_{j=0}^{r-2}\left(p_{r-j-1}^{\beta_{r-j-1}}-1\right)\left(\prod_{i=0}^{j} \phi\left(p_{r-i}^{\beta_{r-i}}\right)\right)
$$

Proof By Lemma 1, a subset A of G constitutes a clique in $P(G)$ if and only if $\{\langle x\rangle \mid x \in A\}$ is a chain. To obtain a maximal clique in $P(G)$, we have to choose a chain $1 \subseteq\left\langle x_{1}\right\rangle \subseteq\left\langle x_{2}\right\rangle \subseteq \cdots \subseteq\left\langle x_{t}\right\rangle$ such that $o\left(x_{t}\right)=o(x)$ and $1+\sum_{i=1}^{t} \varphi\left(o\left(x_{i}\right)\right)$ has maximum value among all possible chains of subgroups of $\langle x\rangle$. Now a similar argument as given in the proof of Theorem 2, completes the proof.

Our calculations on the small group library of GAP [15] suggest the following conjecture:
Conjecture 1: The Theorem 3 is correct in general.
Corollary 4 Let G be a finite group. Then the power graph $P(G)$ is planar if and only if $\pi_{e}(G) \subseteq\{1,2,3,4\}$.
Proof Suppose $P(G)$ is planar. Then $P(G)$ does not have the complete graph K_{5} as its induced subgraph and the Theorem 3 concludes the result. Conversely, if $\pi_{e}(G) \subseteq\{1,2,3,4\}$ then it can easily seen that $P(G)$ can be embedded into sphere, as desired.

In [4, Lemma 4.7], the authors proved that if G is a cyclic group of order $n, n \geq 3$ and $\phi(n)>n$ then $P(G)$ is not planar. Also, in [4, Lemma 4.8] it is proved that a cyclic group of order $2^{n}, n \geq 3$, is not planar. In the following corollary we apply Corollary 4 to find a simple classification for planarity of the power graph of cyclic groups.

Corollary 5 The power graph of a cyclic group of order n is planar if and only if $n=2,3,4$.

In what follows, U_{n} denotes the groups of units in the ring Z_{n}. In the following corollary a new simple proof for [4, Lemma 4.10] is presented.

Corollary 6 The power graph of U_{n} is planar if and only if $n \mid 240$.
Proof Suppose $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct primes. Then by [7, Theorems 6.11, 6.13 and Corollary 6.14], $U_{p^{c}}$ is cyclic for odd $p, U_{2} \cong 1, U_{4} \cong Z_{2}, U_{2^{n}} \cong Z_{2} \times Z_{2^{n-2}}$ and $U_{n} \cong U_{p_{1}^{e_{1}}} \times \cdots \times U_{p_{k}{ }^{e_{k}}}$. Therefore, by Corollary $4, n \mid 240$.

Consider the dihedral group $D_{2 n}$ presented by

$$
D_{2 n}=\left\langle x, y \mid x^{n}=y^{2}=e \& y^{-1} x y=x^{-1}\right\rangle .
$$

From [4, Corollary 4.3], we can deduce that the number of edges of $P\left(D_{2 n}\right)$ is given by $e=\frac{1}{2} \sum_{d \mid n}\{2 d \phi(d)-$ $\left.\phi(d)^{2}\right\}+n$. This graph is neither Eulerian nor hamitonian, since the group has elements of order 2 .

By corollary 5, it is easy to prove the power graph of a dihedral group of order $2 n$ is planar if and only if $n=2,3,4$.

Corollary $7 \chi\left(P\left(D_{2 n}\right)\right)=\omega\left(P\left(D_{2 n}\right)\right)=\chi\left(P\left(Z_{n}\right)\right)$.
Proof Notice that the power graph $P\left(D_{2 n}\right)$ is a union of $P\left(Z_{n}\right)$ and n copy of K_{2} that share in the identity element of $D_{2 n}$.

The semi-dihedral group $S D_{2^{n}}$ is presented by

$$
S D_{2^{n}}=\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, y x y=r^{2^{n-2}-1}\right\rangle .
$$

Corollary 8 The power graph $P\left(S D_{2^{n}}\right)$ is a union of a complete graph of order 2^{n} and 2^{n} copies of K_{2} that share in the identity vertex. This graph is non-Eulerian, non-hamiltonian and nonplanar, for $n \geq 3$. Moreover, $\chi\left(P\left(S D_{2^{n}}\right)\right)=\omega\left(P\left(S D_{2^{n}}\right)\right)=\alpha\left(P\left(S D_{2^{n}}\right)\right)=2^{n}$.

Following [6] we assume that P is a finite partially ordered set (poset for short) which possesses a rank function $r: P \longrightarrow \mathbb{N}$ with the property that $r(p)=0$, for some minimal element p of P and $r(q)=r(p)+1$ whenever q covers p. Let $N_{k}:=\{p \in P: r(p)=k\}$ be its $k^{\text {th }}$ level and let $r(P):=\max \{r(p): p \in P\}$ be the rank of P. An antichain or Sperner family in P is a subset of pairwise incomparable elements of P. It is clear that each level is an antichain. The width (Dilworth or Sperner number) of P is the maximum size $d(P)$ of an antichain of P. The poset P is said to have the Sperner property if $d(P)=\max _{k}\left|N_{k}\right|$. A k-family in P, $1 \leq k \leq r(P)$, is a subset of P containing no $(k+1)$-chain in P, and P has the strong Sperner property if for each k the largest size of a k-family in P equals the largest size of a union of k levels.

Theorem 9 Suppose that $n=p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}}$ is the prime decomposition of n and $m=\beta_{1}+\cdots+\beta_{r}$. Then $\alpha\left(P\left(Z_{n}\right)\right)$ is the coefficient of the middle or the two middle term of $\prod_{j=1}^{m}\left(1+x+\cdots+x^{\beta_{j}}\right)$.

Proof It is well-known that the lattice of divisors of a natural number, ordered by divisibility, has strong Sperner property and so its largest antichain is its largest rank level.

Let Γ be a graph. The minimum number of vertices of Γ which need to be removed to disconnect the remaining vertices of Γ from each other is called the connectivity of Γ, denoted by $\kappa(\Gamma)$. If G is finite group then we define:

$$
M(G)=\{x \in G ;\langle x\rangle<\cdot G\}
$$

Theorem 10 Suppose G is a non-cyclic group and $x \in G$ such that $\langle x\rangle\left\langle\cdot G\right.$. Define $r(x)=\cup_{y \in M(G)-\langle x\rangle}(\langle x\rangle \cap\langle y\rangle)$. Then,

$$
\kappa(P(G)) \leq \operatorname{Min}\{|r(x)| ;\langle x\rangle<\cdot G\} .
$$

Proof Suppose $\langle x\rangle$ is a maximal cyclic subgroup of G. We claim that $r(x)$ is a cut set of $P(G)$. Since G is noncyclic, there exists another maximal cyclic subgroup $\langle y\rangle$ different from $\langle x\rangle$. If $r(x)$ is not a cut set of $P(G)$ then there exists a shortest path $Q: x=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=y$ in $P(G)$ connecting x and y. Without loss of generality we can assume that $x_{2 k}, 0 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$, are generators of maximal cyclic subgroups of G. Thus, $x_{1} \in\langle x\rangle \cap\left\langle x_{2}\right\rangle \subseteq r(x)$ contradict by our assumption. This completes the proof.

For a finite group G, the set of all maximal cyclic subgroups of G is denoted by $\operatorname{MaxCyc}(G)$.
Lemma 11 Suppose G is a non-cyclic finite group, $S \subseteq G-M(G), \operatorname{MaxCyc}(G)=\left\{\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{r}\right\rangle\right\}$ and $A=$ $\left\{x_{1}, \ldots, x_{r}\right\} . S$ is a minimal cut set with this property that each component of $P(G)-S$ has exactly one element of A if and only if $S=\cup_{x \in M(G)} r(x)$.

Proof If $S=\cup_{x \in M(G)} r(x)$ then by an argument similar to the proof of Theorem 10, one can see that if $x, y \in M(G)$ and $\langle x\rangle \neq\langle y\rangle$ then $\left\{x_{1}, x_{3}, \cdots\right\} \subseteq S$, where $x=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=y$ is a shortest path in $P(G)$ connecting x and y. Therefore, if $x, y \in M(G),\langle x\rangle \neq\langle y\rangle$ then x and y are not in the same component of $P(G)-S$.

Conversely, we assume that S is a cut set with this property that each component of $P(G)-S$ has exactly one element of A and $x, y \in A$. Suppose $¥ \in\langle x\rangle \cap\langle y\rangle$ and $¥ \notin S$. Then \supsetneqq is adjacent to x and y and so there exists a component of $P(G)-S$ containing both of x and y, a contradiction. Therefore, $\cup_{x \in M(G)} r(x) \subseteq S$. On the other hand, we assume that $z \in S$ and $\langle t\rangle$ is a maximal cyclic subgroup of G containing z. By minimality of S, there are at least two components X_{1} and X_{2} of $P(G)-S$ such that z is adjacent to a vertex $v_{1} \in X_{1}$ and a vertex $v_{2} \in X_{2}$. Without loss of generality, we can assume that X_{1} is the component containing t and $v_{1}=t$. Obviously, $\left\langle v_{2}\right\rangle \nsubseteq\langle t\rangle$ and so there exists a vertex $t^{\prime} \in A \cap X_{2}$ such that $\left\langle v_{2}\right\rangle \subseteq\left\langle t^{\prime}\right\rangle$. Since z is adjacent to v_{2}, $\langle z\rangle \subseteq\left\langle v_{2}\right\rangle$ or $\left\langle v_{2}\right\rangle \subseteq\langle z\rangle$. If $\langle z\rangle \subseteq\left\langle v_{2}\right\rangle$ then $z \in\langle t\rangle \cap\left\langle t^{\prime}\right\rangle$, as desired. If $\left\langle v_{2}\right\rangle \subseteq\langle z\rangle$ then v_{2} is adjacent to t which is impossible. This completes our argument.

It is easily seen that the power graph of a p-group Q is a union of some complete graphs of order p which share in identity vertex if and only if Q has exponent p. In the following theorem we investigate the same problem for an arbitrary group.

Theorem $12 P(G)$ is a union of complete graphs which share the identity element of G if and only if G is an EPPO-group and for every maximal cyclic subgroup A and B with $A \neq B, A \cap B=\{e\}$.

Proof Suppose there exist $x \in G$ and prime numbers p_{1} and p_{2} such that $p_{1}, p_{2} \mid o(x)$. Then the cyclic subgroup $\langle x\rangle$ is containing non-adjacent elements x_{1} of order p_{1} and x_{2} of order p_{2}. Since x_{1} and x_{2} are adjacent to x, they are in the same block of $P(G)$, a contradiction. If $A=\langle a\rangle$ and $B=\langle b\rangle$ are maximal cyclic subgroup of G such that $e \neq x \in A \cap B$ then x, a and b are mutually adjacent and so $A \subseteq B$ or $B \subseteq A$, which is impossible. Conversely, we assume that maximal cyclic subgroups of G have prime power order and for every maximal cyclic subgroup A and B with $A \neq B, A \cap B=\{e\}$. By Lemma 11, $S=\cup_{x \in M(G)} r(x)=\{e\}$. On the other hand, if $\operatorname{MaxCyc}(G)=\left\{\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{r}\right\rangle\right\}$ and $A=\left\{x_{1}, \ldots, x_{r}\right\}$ then by Lemma 11, each component of $P(G)-\{e\}$ is of form $\left\langle x_{i}\right\rangle-\{e\}$, for some $i, 1 \leq i \leq r$, which is a complete subgraph of $P(G)$. This completes the proof.

Corollary 13 If G is an EPO-group then $P(G)$ is a union of some complete graphs which share in the identity element of G.

Lemma 14 A finite group G is $E P P O$ if and only if the vertices of every maximal clique of $P(G)$ is a maximal cyclic subgroup of G.

Proof (\Longleftarrow) Suppose H is a maximal clique in $P(G)$ and $x \in H$. If $o(x)$ has at least two prime divisors p and q then there are elements of these orders in H which is impossible.
(\Longrightarrow) By Lemma 1, we map the maximal clique H in $P(G)$ to the chain $1 \subseteq\left\langle x_{1}\right\rangle \subseteq\left\langle x_{2}\right\rangle \subseteq \cdots \subseteq\left\langle x_{t}\right\rangle$. Then x_{t} has prime power order p^{α} and since G is EPPO group, $p^{\alpha}=1+\varphi(p)+\cdots+\varphi\left(p^{\alpha}\right)$. This implies that $H=\left\langle x_{t}\right\rangle$.

A Chinese group theorist Wujie Shi [14] conjectured that a finite group and a finite simple group are
isomorphic if they have the same orders and sets of element orders, see also [16, Question 12.39]. Vasiliev, Grechkoseeva and Mazurov gave an affirmative answer to this question in [17]. In the following theorem this result is applied to obtain a new characterization of finite simple groups by their power graphs.

Theorem 15 If G_{1} is one of the following finite groups
a) A simple group,
b) A cyclic group,
c) A symmetric group,
d) A diheral group,
e) A generalised quaternion group,
and G_{2} is a finite group such that $P\left(G_{1}\right) \cong P\left(G_{2}\right)$ then $G_{1} \cong G_{2}$.
Proof Since $P\left(G_{1}\right) \cong P\left(G_{2}\right)$, by [3, Corollary 3] G_{1} and G_{2} have the same numbers of elements of each order. To prove (a) it is enough to use this corollary and the main result of [17] mentioned in Introduction.
b) If $P\left(G_{2}\right) \cong P\left(Z_{n}\right)$ then by the mentioned result of Cameron, G_{2} have to exists an element of order n.
c) By [14], $G_{2} \cong S_{n}$ if and only if $\pi_{e}\left(G_{2}\right)=\pi_{e}\left(S_{n}\right)$ and $\left|G_{2}\right|=\left|S_{n}\right|$, proving the part (c).
d) Suppose $P\left(G_{2}\right) \cong P\left(D_{2 n}\right)$ then $\left|G_{2}\right|=2 n$ and G_{2} has an element a of order n. Since G has the same number of elements of order 2 as the dihedral group $D_{2 n}$, we can choose an element b of order 2 in G_{2} such that $\langle a\rangle \cap\langle b\rangle=1$. This implies that G_{2} is a semi-direct product of the cyclic group Z_{n} by Z_{2}. Therefore, $G_{2} \cong D_{2 n}$.
e) Suppose $Q_{4 n}$ denotes the generalized quaternion group of order $4 n$ and $P\left(G_{2}\right) \cong P\left(Q_{4 n}\right)$. Then $|S|>1$, where S is the set of vertices of the power graph $P\left(G_{2}\right)$ which are joined to all other vertices. We now apply [3, Proposition 4] to deduce that G_{2} is isomorphic to $Q_{4 n}$.

Let p be an odd prime number. Two groups of order $2 p^{2}$ have isomorphic power graph if and only if they are isomorphic. This is a direct consequence of [13, Lemma 1]. In [2, Theorem 1], Peter Cameron characterized abelian groups by their power graphs. In the following theorem a simple proof for this result is presented.

Theorem 16 If G_{1} and G_{2} are finite abelian groups such that $P\left(G_{1}\right) \cong P\left(G_{2}\right)$ then $G_{1} \cong G_{2}$.
Proof Suppose G_{1} and G_{2} are finite abelian groups such that $P\left(G_{1}\right) \cong P\left(G_{2}\right)$. Then by [3, Corollary 3], G_{1} and G_{2} are conformal. On the other hand, by [12, pp 107-109], finite abelain conformal groups are isomorphic. Therefore, $G_{1} \cong G_{2}$.

Suppose p is prime. Then there are five groups of order p^{3} up to isomorphism. From the cyclic decomposition of finite abelian groups, there are three abelian groups isomorphic to $G_{1} \cong Z_{p} \times Z_{p} \times Z_{p}$, $G_{2} \cong Z_{p} \times Z_{p^{2}}, G_{3} \cong Z_{p^{3}}$. There are also two non-abelian groups, G_{4} and G_{5}, of order p^{3}. If $p=2$ then these groups are isomorphic to D_{8} and Q_{8}, respectively. If p is odd then

$$
G_{4} \cong\left\langle a, b \mid a^{p^{2}}=b^{p}=b a b^{p-1} a^{p^{2}-p-1}=e\right\rangle,
$$

is a non-abelian group of order p^{3}. It has $p^{2}-1$ elements of order p, which fall into two conjugacy classes, of sizes $p-1$ and $p^{2}-p$; and $p^{3}-p^{2}$ elements of order p^{2}, forming a single conjugacy class. There is also another group isomorphic to semi-direct product $Z_{p^{2}} \propto Z_{p}$. It has $p^{3}-1$ elements of order p falling into three conjugacy classes of sizes $p-1, p^{2}-p$ and $p^{3}-p^{2}$. Suppose $G=G_{1}$ and $H=G_{4}$. An easy calculation shows that $P(G) \cong P(H)$. Therefore, non-cyclic abelian groups cannot be characterized by their power graphs.

Theorem 17 Let G be a finite group. The power graph $P(G)$ is bipartite if and only if G is an elementary abelian group of even order.

Proof Suppose $P(G)$ is bipartite. If an odd prime p divides $|G|$ then the complete graph K_{p} can be embedded into $P(G)$, a contradiction. On the other hand, if G has an element of order 4 then $P(G)$ is containing a copy
of K_{4} which is impossible. Therefore, G is an elementary abelian group of even order. The converse is trivial.

A matching on a graph G is a set of edges of G such that no two of them share a vertex in common. A maximum matching of G is a matching with the largest size among all matchings in G. A vertex cover of G is a subset $Q \subseteq V(G)$ that contains at least one end point of each edge. The König-Egerváry theorem [18, Theorem 3.1.16], states that in any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.

Theorem 18 The power graph $P\left(Z_{p^{n}}\right)$ has the maximum number of edges among all power graphs of p-groups of order p^{n}.

Proof Suppose G is a non-cyclic p-groups of order p^{n}. We construct a bipartite graph $\Gamma=(X, Y)$ as follows:

$$
X=G, Y=Z_{p^{n}} \text { and } E(\Gamma)=\{a b \mid a \in X, b \in Y \text { and } o(a) \leq o(b)\}
$$

We first assume that Γ has a perfect matching M and $f: G \longrightarrow Z_{p^{n}}$ is a bijective mapping such that for each $a \in G, a$ and $f(a)$ are saturated by M. Thus, $o(a)-\varphi(o(a)) \leq o(f(a))-\varphi(o(f(a))$ and since G is not cyclic,

$$
\sum_{a \in G}[2 o(a)-\varphi(o(a))]<\sum_{a \in G}[2 o(f(a))-\varphi(o(f(a))] .
$$

But $\frac{1}{2}\left[\sum_{a \in G}[2 o(a)-\varphi(o(a))]-1\right]$ and $\frac{1}{2}\left[\sum_{a \in G}[2 o(f(a))-\varphi(o(f(a))]-1]\right.$ are the number of edges in $P(G)$ and $P\left(Z_{p^{n}}\right)$, respectively. So, it is enough to prove that Γ has a perfect matching. By König-Egerváry theorem we have to show that a minimum vertex cover of Γ has exactly p^{n} elements. Suppose that A is a minimum vertex cover of Γ and $p^{\gamma}=\max \{o(x) \mid x \in G\}$. If $A=X$ then there is nothing to prove that $|A|=p^{n}$. Otherwise, elements of orders $p^{\gamma}+1, p^{\gamma+2}, \cdots, p^{n}$ of Y are adjacent to all elements of G and so these elements are in A. We claim that A contains all elements of Y of order $p^{k}, k \leq \gamma$. Define,

$$
L_{k}=\left\{(x, y) \in X \times Y \mid o(x)=o(y)=p^{k}\right\}
$$

where $k \leq \gamma$. By our definition, if $(x, y) \in L_{k}$ then x is adjacent to y and so if $(x, y) \in L_{k}$ then $x \in A$ or $y \in A$. One can easily seen that L_{k} induces a complete bipartite induced subgraph of Γ and hence $\Omega_{p^{k}}(G) \subseteq A$ or $\Omega_{p^{k}}\left(Z_{p^{n}}\right) \subseteq A$. Since $\left|\Omega_{p^{k}}(G)\right| \leq\left|\Omega_{p^{k}}\left(Z_{p^{n}}\right)\right|$, by minimality we can assume that $\Omega_{p^{k}}\left(Z_{p^{n}}\right) \subseteq A$, where $1 \leq k \leq \gamma$. Therefore, $A=Y$ and Γ has a perfect matching. This completes the proof.

Corollary 19 If G is a non-cyclic p-group of order p^{n} then $\sum_{x \in G} o(x)<\sum_{x \in Z_{p^{n}}} o(x)$.
Our calculations with groups of small order suggest the following conjecture:
Conjecture 2: The power graph $P\left(Z_{n}\right)$ has the maximum number of edges among all power graphs of groups of order n.

Acknowledge. We are grateful to the referee for suggestions and helpful remarks.

References

[1] N. Biggs, Algebraic Graph Theory, Second ed., Cambridge Univ. Press, Cambridge, 1993.
[2] P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete Mathematics, 311 (2011) 1220-1222.
[3] P. J. Cameron, The power graph of a finite group, II, Journal of Group Theory 13 (2010) 779-783.
[4] I. Chakrabarty, S. Ghosh, M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum 78 (2009) 410-426.
[5] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Annals of Mathematics 164 (1) (2006) 51-229.
[6] Encyclopaedia of Mathematics, Supplement Vol. III, Edited by M. Hazewinkel, Kluwer Academic Publishers, Dordrecht, 2001.
[7] G. A. Jones, J. M. Jones, Elementary Number Theory, Springer, New Delhi, 2005.
[8] A. V. Kelarev, S. J. Quinn, A combinatorial property and power graphs of groups, Contributions to general algebra, 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.
[9] A. V. Kelarev, S. J. Quinn, Directed graph and combinatorial properties of semigroups, Journal of Algebra 251 (2002) 16-26.
[10] A. V. Kelarev, S. J. Quinn, A combinatorial property and power graphs of semigroups, Commentationed Mathematicae Universitatis Carolinae 45 (2004) 1-7.
[11] J. Lauri, R. Scapellato, Topics in Graphs Automorphisms and Reconstruction, London Mathematical Society Student Texts 54, Cambridge University Press, Cambridge, 2003.
[12] G. A. Miller, H. F. Blichfeldt, L. E. Dickson, Theory and applications of finite groups, Dover Publications, Inc., New York, 1961.
[13] R. Scapellato, Finite groups with the same number of elements of each order, Rendiconti di Matematica, Serie VII, 8 (1988) 339-344.
[14] W. J. Shi, A new characterization of the sporadic simple groups, in Group Theory, Proc., 1987, Singapore Group Theory Conference, Walter de Gruyter, New York , 531-540, 1989.
[15] The GAP Team, GAP, Groups, Algorithms and Programming, Lehrstuhl De fr Mathematik, RWTH, Aachen, 1995.
[16] Unsolved problems in group theory, The Kourovka notebook, Thirteenth augmented edition, Edited by V.D. Mazurov, E. I. Khukhro, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995.
[17] A. V. Vasiliev, M. A. Grechkoseeva, V. D. Mazurov, Characterization of the finite simple groups by spectrum and order, Algebra and Logic 48 (2009) 385-409.
[18] D. B. West, Introduction to Graph Theory, Prentice Hall. Inc. Upper Saddle River, NJ, 1996.

[^0]: 2010 Mathematics Subject Classification. Primary 05C25.
 Keywords. Power graph; Clique number; EPPO-group; Maximal cyclic subgroup.
 Received: October 22, 2011; Accepted: November 27, 2011
 Communicated by Dragan Stevanović
 Email address: ashrafi@kashanu.ac.ir (A. R. Ashrafi)

