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ON THE POWER OF ADAPTIVE INFORMATION
FOR FUNCTIONS WITH SINGULARITIES

G. w. WASILKOWSKI and f. gao

Abstract. We study from a probabilistic viewpoint the problem of locating
singularities of functions using function evaluations. We show that, under the
assumption of a Wiener-like probability distribution on the class of singular
functions, an adaptive algorithm can locate a singular point accurately with only
a small probability of failure. As an application, we show that an integration
algorithm that adaptively locates a singular point is probabilistically superior to
nonadaptive algorithms.

1. Introduction

We study the problem of locating singular points of functions. More specif-
ically, let /: [0, 1] -» R be such that for some point z = zf e (0, 1) the
function / restricted to [0, z) and to (z, 1] is in Ck , while over the interval
[0, 1], / is in Cs~x and /(î) does not exist at Zf. Here s and k are integers,
0 < s < k . We assume that the position of zy is unknown. Instead, we want
to locate Zf through evaluating / at a (presumably small) number of points.

Locating singular points is an important problem by itself. It is also a key
subproblem in a number of numerical problems including adaptive integration.

To be more specific, let us consider the integration problem for functions
with k large relative to s. If the singular point were known, one could ap-
proximate the desired integral by approximating ¡QZf f(x) dx and ¡z f(x) dx
separately, with small error using relatively few function evaluations, by tak-
ing advantage of high regularity of the integrand in the two subintervals. The
same would be possible if one were able to locate Zf with high accuracy. How-
ever, without locating Zf, one would need many more evaluations to guarantee
small error because of the overall low regularity of the integrand. Therefore,
not surprisingly, many integration codes contain adaptive schemes for locating
singular points. These schemes differ from one another, but most of them are
based on the following intuitive approach: evaluate f at a number of points
in [0,1] (a partition of [0, 1]), and find out where the computed values of
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286 G. W. WASILKOWSKI AND F. GAO

/ (or divided differences) change most drastically; if such a change in some
interval is noticed, then restrict attention to this interval, partition it, and carry
out the same procedure there; otherwise, take another partition of [0, 1] by
introducing extra points. This is repeated until a sufficiently small interval is
determined to include possibly the singularity. The idea behind this approach
is that the singularity at Zf is likely to cause / to behave more drastically near
zf.

It is well known that unless more properties of / are known and exploited,
for any code there are always functions that will fool it. This implies that in
the worst case, adaption does not help for the integration problem. In fact, in
the worst case one cannot approximate singular points with error less than \
of the length of the interval (see §2).

Adaptive integration rules are common in practice. Although they do not
always work, they do work satisfactorily "most of the time,'" at least empirically.

This paper presents a mathematical model for studying this problem. By
assuming the existence of a reasonable probability distribution on functions
with a singularity in their 5th derivatives, we give an algorithm based on the
above intuitive approach, which locates z to high accuracy in a small number
of steps, provided one permits a very small probability of failure. For a more
rigorous statement and the result, see §5. Next, we apply our result to the
integration problem. The conclusion is that adaptive integration rules are much
superior to nonadaptive rules for all functions except a set of small measure.

Of course, the power of adaption depends very much on the underlying prob-
ability measure. If one, for instance, endows the class of functions with a Gaus-
sian measure, then adaption essentially does not help (see, e.g., [8]). (Roughly
speaking, this is because Gaussian measures are concentrated on functions with
no singularities.) On the other hand, one could endow the class with a measure
that conveys much information about a position of singular points. But this
would make the problem trivial and not interesting from a practical point of
view. Therefore, in this paper, we propose a new probability measure, which we
call Wiener-like measure (see §3). It has all the important properties of k-iolá
Wiener measures, and yet, unlike Wiener measures, it is concentrated on func-
tions with singularities. Some probability measures concentrated on singular
functions have been studied in the statistical literature, see, e.g., [7], however
they are more restrictive than our measure. We are not aware of any previous
use of the Wiener-like measure in the literature.

The implication of our study is twofold. First, it gives a quantitative formu-
lation of what the numerical analyst observes and believes in, namely a good
code works well most of the time. Second, it represents a new methodology for
tackling this problem: by using a probabilistic assumption that characterizes
the practical situation, the design and analysis of an algorithm can now be done
with mathematical rigor.

2. Worst-case analysis
Recall that we consider the following class of functions /: [0, 1] -» R. For

a given positive integer k, a function / has continuous A:th derivative every-
where except at the singular point Zf, i.e., /|m,Z/) € Ck and /|(Z/,i] £ Ck ;
at Zf, fls) does not exist but /(J_1) is absolutely continuous and ||/(î)||oo is
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THE POWER OF ADAPTIVE INFORMATION 287

bounded. Here, s = Sf is an integer, 0 <s <k; || • ||oo is the Loo-norm.
As stated in the Introduction, we would like to locate Zf using function

evaluations. To motivate our probabilistic analysis, we begin with a simple
observation concerning the worst case.

Proposition 1. For every n, any algorithm that uses n function evaluations has
worst-case absolute error not smaller than \ .
Sketch of Proof. Consider any algorithm that uses n function evaluations at
some points X\, ... , xn. (There is no assumption on the position of the points;
they can be chosen in any adaptive way.) Consider now two functions f and
f2 from our class that have the following properties:

(i) they attain the same values at the points x,, /i(x,) = f2{x¡) for i =
1, ... ,n,

(ii)   Zf » 0 and Z/2 « 1,
They are easy to construct. Because of (i), the algorithm cannot distinguish
between f and f2, and thus produces the same approximation for both of
them. Hence, (ii) completes the proof.   D

This result states that no matter what algorithm we use, there are always func-
tions that cause the algorithm to fail. However, endowing the class of functions
with a probability measure, we will demonstrate that for some algorithms the
probability of failure is very small.

3. WlENER-LIKE DISTRIBUTION

From now on, we shall endow the class of functions with a probability mea-
sure and analyze the performance of algorithms from a probabilistic perspective.
Of course, the conclusions of a probabilistic analysis depend on the underlying
probability distribution. Care must be exercised to choose an assumption that
is relevant to practice. As a very first step, we would like to use a more conven-
tional probability measure. To make it more practical, one can further tailor
the probabilistic assumption to suit specific practical situations.

Among the most frequently used measures on function spaces are the Wiener
and Â>fold Wiener measures. However, these measures are concentrated on
functions with no singularities, and hence do not allow analysis over a class of
functions with singular points. We propose new measures that have all impor-
tant properties of A:-fold Wiener measures and yet are concentrated on the class
of singular functions.

Recall that the k-ïolà Wiener measure wk is the Gaussian measure on
Ck[0, 1] with zero mean and correlation given by

EWk(f(x)f(y)) = j  {X~t]¿w~t)k+dt,    where (x-i# = max{(x -/)*, 0}.

Equivalently, / distributed according to wk can be viewed as the Gaussian
stochastic process with zero mean and correlation given above.

To define our Wiener-like measures, we first define the conditional probability
with Zf = z and s fixed. To define this conditional probability, denoted by
Probz, it is equivalent to specify its corresponding random functions (stochastic
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288 G. W. WASILKOWSKI AND F. GAO

processes) /. They are given as follows. For fixed z and 5  (s < k),

with

/(*)= f f{s)(t)d(-(x-ty+/s\)
Jo

f{s](x) = { gï(l-x)   ifx<z,
g2(x) ifx>z,

where gi, g2 are independent and identically distributed according to wk_s.
Equivalently,

f(x)= Í ((z-t)°+gi(l-t) + (t-z)°+g2(t))d(-(x-ty+/s\).
Jo

Obviously, /(s-1) is absolutely continuous, fls\z) does not exist, and f\[o,Z)
and /|(Z,i] are from Ck almost surely.

After defining conditional probability Probz , one could put some Borel prob-
ability measure p on z to get a corresponding Wiener-like probability measure
ßP,

pp(A)=fprób2(A)p(dz),

on the class of functions with singularities. (Of course, one could also model
functions with more than one singular point; see Remark 7.)

The results we are going to present are robust with respect to distributions on
z. Therefore, instead of choosing a specific p, we shall study the worst case
with respect to these distributions (or equivalently, the worst case with respect
to z). Similarly, our algorithm does not assume knowledge of 5, and the value
of 5 will be left as a parameter in the probability estimates. For simplicity (see
Remarks 1 and 4), we shall assume that

ze[a,e]c[0, 1]   with sufficiently large a and 1 - b.

We end this section by providing some simple facts (without proofs) con-
cerning the random functions /.

Given Zf — z, let

and

/.(*)= i gi(l-t)d(-(x-ty+/s\)
Jo

f2{x) = j\2{t)d{-{x-ty+/s\).

Obviously, f(x) = fi{x)+f2(x), and f and f2 are independent. The function
/1 is a Gaussian stochastic process with zero mean and correlation given by

«-In      .     ,,\k—s

r rz Cv _ ni'-'n _ « _ iAk~s
dvI (xp-vy-^i-v-u)^5

(s- l)\(k-s)\ du.
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THE POWER OF ADAPTIVE INFORMATION 289

In particular, for x > z, f is a polynomial of degree s - 1,

fi(x) = (-iy(g(i-z)-g(i))

(2)

;=i        ^ ■'■ 3~ *
with g distributed according to wk . The function f2 vanishes on [0, z], and
for x > z it is a Gaussian stochastic process with zero mean and correlation
given by

(3)
E(f2(xj)f2(xp))= j    j'

Ki{Xj-ty-l(t-u)k+-> f

(s-l)\(k-s)\

[x>(xp-vY-Hv-u)k+-<
Jz        (s-l)\(k-s)\ du.

4. Algorithm
To present the algorithm, we need some notation. Given h, and n + 1

equally spaced points xo,..., xn e [0, 1] (h = x,+i - x;), by X¡ - X¡(f; h)
we mean the (k + l)st backward difference of / at the point x¡, i.e.,

*' = E ^yy^ynxt-j)   for/ = fc+l,..., n.
7=0 ^   ■*    '

We say that the points {x/}"=0 form a semipartition of an interval [a, b] if
xk = a and x„_k = b.

Consider now a function T such that T(h) converges to zero slower than
hk+i'2, i.e.,

,.     T(h)
lim tttttV = +00-A-0 hk+l/2

Recall that we are interested in locating z/ in a given interval [an, ¿>o] =
[a, b] that is a proper subset of [0, 1 ]. For given no, «o > 4fc + 2, the al-
gorithm will perform a number of steps, in each producing a new subinterval
[a,+i, bi+i] that with large probability contains z/ and has a diameter signifi-
cantly smaller than the diameter of the previously constructed interval [a¡, b¡\.
Hence, with large probability, after the rth step, Zf will be located in a small
interval [ar+\, br+\], and (ar+i + br+i)/2 will be a very accurate approximation
to Zf. More precisely, the algorithm consists of the following steps:

Step 0. Set [ao, bo] - [a, b]. Choose «o +1 equally spaced points xo, ..., x„0
with xk = Oq and x„0_k - bo . Obviously, ho — x,+i - x, = (bo - ao)/("o - 2k).

Compute the backward differences X¡ for j = k + 1, ... , n0 > and find an
index / with \X¡\ > T(ho). If such an / exists, then

[ai, ¿>i] := [xt-k-\, x/] n [a0, b0].

Otherwise, [a{, b\] := [ao, bo].
Step i   (i > 1). If [a¡, bj] = [a,_i, ¿>,_i], then form a new semipartition of
[a,, b¡] with h¡ = A,_i/2 and the corresponding «, = 2n,_i - 2k. This can
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290 G. W. WASILKOWSKI AND F. GAO

be done by deleting x, (with i < \k/2~] and i > n¡ - \k/l\) from the old
partition, and adding extra «,_i -2k + 2f/c/2] points between the old points.

Else, take n,: = «n and a new semipartition for [a¡, b¡]. In this case, bi-a¡ <
hj-i(k + 1) = (Vi - fl/-i)(fc + l)/(»/-i - 2k) and A, < A,_i(fc + l)/(«0 - 2k).

Next, we compute the corresponding backward differences, construct [a,+i,
bi+i] (in the same way as in Step 0), and go to the next (i + l)st step.

Remark 1. For simplicity, we assume that the a priori bounds a and b on zy
are not too close to 0 and 1, respectively, so that a semipartition x0, ... , x„0
can be constructed. Formally, this means that a > kho and 1 - b > kho. If
this assumption does not hold, then in each step of the algorithm we consider
only those points xj that are in [0, 1].

This modification does not alter the algorithm performance if Zf = íí(Ao)
and 1 - Zf = Q(ho). In general, if Zf is not known to be far away from 0 and
1, we need another modification which is discussed in Remark 4.

5. Properties of the algorithm
We present a probabilistic analysis of the algorithm of §4, assuming that

the underlying probability measure is an arbitrary Wiener-like measure pp , as
defined in §3, with zy e [a, b] for any /.

Sections 5.1 and 5.2 deal with the algorithm's performance in one step. Note
that if an uncertainty interval [a¡, b¡] is reduced at the i'th step, then

u ^ un     in ^ (bj-ai){k+ 1)bi+i - fli+i < h¡(k + 1 < IA   —'-.
no — 2.K

Hence, the new uncertainty interval is at least («o - 2k )/(k+ 1) times smaller.
Although [a¡+\, b¡+\] need not contain the singular point z (we refer to this as
a wrong decision), this can happen only with small probability, as will be proven
in §5.1. We would also like to know whether the reduction of the uncertainty
interval occurs frequently. This is indeed the case, as will be proven in §5.2.

Using these results, we will prove in §5.3 that with a relatively large proba-
bility, the singular point zy can be located very accurately in a relatively small
number of steps.

5.1. Probability of wrong decision. Consider one step of the algorithm with
spacing h = h¡ and the number of points n + 1 = n¡ + 1. Then we have the
following lemma.

Lemma 1. The probability that \X¡\ > T(h) for some I, but z does not belong
to [x/_fc_!, x/] is bounded from above by

ñ
2hk+V2(n-2k)e^f-(T(h)y
n        T(h) *\ 2h2k+l

Proof. Since pp(A) = j^Probz(A)p(dz) < supao<z<6oProbz(,4) for an arbi-
trary measurable set A, it is enough to show that the expression given in the
lemma is an upper bound on Probz(|X/| > T(h)) for every z e [a0, b0].

Consider x¡ < z. Then X¡ is the backward difference of f . Since X¡
is a linear combination of /i(x/_,-)'s, the fact that the /i(x/_;)'s are Gaus-
sian implies that X¡ has a normal distribution with zero mean. Letting a¡ —
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THE POWER OF ADAPTIVE INFORMATION 291

E((Xi(fi ; h))2) be the covariance of X¡, we have

Probz(|X/| > T{h)) = -¡L= [ e-x2'{2ai) dx
y/2na¡ J\x\>T(h)

n T(h) -*- V     2a¡
We need to estimate a¡. It is easy to see that for x¡, xp < z, each inner integral
in (1) as a function of Xj (or xp) is a sum of a polynomial of degree k and
the term (1 - u - Xj)k+/k\. Therefore,

|2
"-JC/-J-IQÍ-r sm^ k\I ;=0

í/m.

Hence, ov does not depend on /, a¡ = a . Furthermore, it is well known (see,
e.g., [4]) that

a¡ = a<h2k+l.

Consider now z < X/_fc_i . Then X¡ = X¡(fi ; h) + X¡{f2 ; h) = X¡(f2 ; h)
because of (2). Also for this case we have a¡ = a < h2k+l. Indeed, each inner
integral in (3) as a function of x¡ (or xp) is a polynomial of degree k if u< z.
Hence, for such u, the backward difference is zero. For u > z, these integrals
reduce to (x - u)+/k\ and that is why a¡ = a < h2k+1.

Therefore, for any / with z £ [x¡-k-\, x{], we have

ProM|X,|>7-W)<V|^Çexp(^W£).
Since there are n -2k such indices /, the proof is complete.   D

5.2. Probability of not reducing the uncertainty interval. Consider now one step
with spacing h = h¡ and Zf e [a¡, b¡].
Lemma 2. The probability P(h) = pp([a,:, b¡] = [ai+i, 6,+i]) that the uncer-
tainty interval will not be reduced is bounded by

(4) P{h) < ßktS{T{h)h-{k+s)l2)k-s+l

with
= 2(*-'+o(*+'+2>/2(nt, mnk:r\k - s+iy.y2

k's n(k-s+lV2((2(k -s)- l)W)s(Uti *'!)3/2
Proof. As in the proof of Lemma 1, we consider the conditional probability
Probz.

Given z, let x¡ be the partition point such that x/_] < z < x¡. Then for
every p, the probability P(h) is bounded from above by

P(h)<     sup    Probz({\Xj(f;h)\<T(h):Vj = /,..., k +/}).
^;_|<Z<JC;

Since
Xj(f; h) = Xj(f ; h) + X,(f2 ; h)   for every l<j<k + l

and
[X,(fi;h),...,Xk+l(fi;h)]T       (1=1,2)
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are independent Gaussian random vectors, each with zero mean, Anderson's
inequality (see [1]) implies that

Probz({|X,(/; A)| < T(h): V; = /,..., k + /})
< PTobz({\Xj(f ; A)| < T(h) : V; = /,..., k +1})   Vi = 1, 2.

Assume first that

(6) z > j   and   x¡ - z > A/2.
The right-hand side of (5) can be estimated by considering i = 2 and I < j <
k - s +1 instead of I < j <k +1, i.e.,

Probz({|*;(/2; A)| < T(h): V/ = I, ... , k + I})
< Probz({|X,(/2; A)| < T(h): V; - /, ... , k - s + /}) =: Pz.

We need to estimate Pz . With y¡ = X¡(f2 ; A), the random vector

[v/,..., yks+i]T

has a normal distribution with zero mean and (k-s+l)x(k-s+l) covariance
matrix C = (dj)k-fJil with

ci,j = E(Xi(f2;h),Xj(f2;h)).
Thus,

?2 = n^ik-Jm /A«tr\ Í ^(-(C"1/, f)/2)dy(2nfk i+1)/Vdet(C) J\\y\\^<nh)
'   ' (T(h^k-s+l2(k-s+l)/2

-   n(k-s+l)/2^àët(C)  '

Hence, we need to estimate from below the determinant of the matrix C.
Note that

i,i= I gi(u)gj{u)du
Jo

with

H«)=fíífc+iv-iF rj(^~°r(f~M)r^

"fíV   P   r    j A (j-!)!(*-*)!       öi-
p=0

Thus,

,7 = /  8iiM)gj{u) du = ëjj + Cij,
Jo

-i

where
i,j= I  gi(u)gj(u)du   and   c¡j=      gi(u)gj{u)du.

Since  C = (¿,,7)  and  C = (Cjj)  are symmetric and nonnegative definite,
det(C) > det(C).
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We now estimate the determinant of C . For u < z ,

{Xi-ty-\t-u)k+

293

[* (Xi-ty-l(t-u)k+-s X (x,- - z)"(z - u)k-«
Jz (s-tWIr-eV 2L,(s-l)\(k-s)\ q=s q\{k-q)\

Therefore,

where

*i,j —     Z^     "Ql . «2 W, «1 W , 42 »
4i,42=s

r2k-ql-q1+\

J9\, Ql

and
(2k-ql-q2 + l)ql\q2](k-qi)\(k-q2)l

p=0 v   ^   '

Denoting 5 = (Ap,?)p;?=i and <f,: = [C/,i > • • • > C/,fc]T, we can write C = Z7BZ
with the matrix Z given by Z = [Q,..., U-s+i] • Obviously,

det(C) = det(5)(det(Z))2.

Furthermore, the determinant of Z equals the determinant of the matrix

/ (X/ - z)s    ■■■    {xk_s+i - z)s \

V =
\(x,-z)k (xk_s+i-z)kJ

However, V = VD, where D is a diagonal matrix, D = diag((x, - z)s)k=ls+l
and V is the following Vandermonde matrix:

V =
(X/ - z)

1
(xk-s+! - z)

\(x¡-z)k-s   •••    (xk_s+l - z)k~*

The determinant of D is obviously equal to

k-s+l
dct(D) =  [I (x,- - z)s.

i=l

It is known that

Hence,

k-s+l-l k-s+l

det(K)= n n^-^)-
;=/      7='+l

/k-s+l
(8)    det(C) > det(C) = det(Ä)       [ (x, -

V /=/
'k-s+l-\ k-s+ln n (*'-*>)

/=/      7=1+1
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In view of (6), we have
k-s+l

and

Thus,

where

k-s+l-1 k-s+I k-s+l-1
H \Xi-Xj\= Afc-i+,-'(Ä:-j + /-/)!

/=/      7=i+l ;=/

k—s
_ ^(*-í)(fc-*+l)/2 TT ¿i

¡=1

v/detiCy^A^^-^1)/2^,,,

Q,,=(ffi^^)'vdíPin«.
1=1

Hence, by (7),

with

Pz < (T(h)h^k+s)/2)k's+lßk<s{z)

2{k-s+l)(2s+\)/2

ßk-s{z)     K(k-í+i)ii<<2{k-s) - l)!!)iv/3ëp)nl~i'!'
To estimate the determinant of B, note that

detOB) = z^+1>2 \T\p\{k -p)\ J     det(/4_i+1),

where Hk_s+X is the (A: - 5 + 1) x (A: - 5 + 1) Hubert matrix. It is known that
Uk~,s(P)3

det(//,_i+1) = -^-
utr(k-s+i)\

Hence,

2(fc-,+ l)(2,+ l)/2(n^¿!)(n^+l(/<. _ s + t-)l)l/2
&.,(*) =

Ä(fc-*+D/22(*-i+i)V2((2(ife - j) - lí-ü^dl/Üi* *03/2

Since ßk,s(z) is decreasing, ßk,s{z) < ßk,sia) ■ This completes the proof under
the assumption (6).

Suppose that (6) does not hold. If z > ¿ (i.e., z—x¡ < A/2), then instead of
X[, ... , Xk_s+i consider Xk+¡, ... , Xs+¡ in estimating P(h) by supzPz . As
before, the problem reduces to estimating the determinant of a corresponding
matrix C. However, for i - s + I, ... , k +1, it is easy to see that

^■•icivr^f'
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THE POWER OF ADAPTIVE INFORMATION 295

Hence, the matrix C has the same structure as before, with the only difference
that instead of x¡.xk-s+i we have X/_i, ... , x¡_k+s-\ with \z - X/_i | >
A/2.   Hence the determinant of C is bounded exactly as in the case when
x¡ - z > A/2.

If z < 5 then we use (5) with i = I. Depending on the sign of x/-z > \ , we
consider X¡, ... , Xk_s+¡ or Xk+¡, ... , Xs+¡ in estimating P(h) by supzPz.
In order to estimate the determinant of the corresponding matrix C, we use
the following observation: If x, < z, then

(xj - ty+-l ( i -1 - u)k+~s _  rz (xj - ty- ' ( i -1 - u)k+-sr*(Xj-tY+-l(l-t-u)%-> =   fz
Jo       (s-iy.(k-s)\      'Jo

-fJx>

(s- l)!(Â:-s)!
(xj-ty-l(i-t-u)k-*

(s-l)\(k-s)\

Therefore, the corresponding function gj(u) equals

- '*+r\, .» r te-„-<r'(i-<-«)î-'«<■>-- E(^1)H)f/1
„ = Í4-/  \    r     ' Jx¡- (s-l)\(k-s)\p=i+l  s

dt.

Hence, the matrix C has the same structure as before with the only difference
being that the entries Ag,i?2 of the matrix B have (1 - z)2k~9i~g2+l instead of
z2k-ql-q2+i   smce z < \ implies \ — z>\, this completes the proof.   D

Remark 2. As we shall see, Lemma 2 plays a crucial role in our analysis. Al-
though (4) is not sharp for relatively large A , we believe that it provides a sharp
estimate of P(h) for sufficiently small A . Furthermore, even for moderate val-
ues of A , it gives a nontrivial bound on P(h).

To see this, consider T{h) = hk. The estimate (4) is a product of the
constant ßk s and the spacing A raised to the power a = (k-s+l)(k-s)/2.
The constant ßk s might be very large. However, when multiplied by ha , the
whole expression attains a small value for even a moderate value of A. For
instance, consider k = 4 and s = 0. Then /34;o « 2.3 x 1013 and a = 10, and
therefore the estimate (4) implies P(h) < 2300(10A)10.

For moderate values of h , one could consider a similar algorithm with the
only change being that the backward differences of order (k + 1) are replaced
by the backward differences of order (k + 1 ) with s < k < k . Then the corre-
sponding estimate would take the same form as in Lemma 2 with a replaced
by à = (k - s)(k - s + l)/2, which is smaller than a, but with the constant
ßk s smaller than ßk s.

For simplicity, we shall assume from now on that A is small enough; modi-
fications of the algorithm will be reported elsewhere (see Remark 6).

5.3. Main theorem. Consider T(h) = \/2hk+y with y e [0, \) and n0 > 4k+2.
Let

(k-s + 2y)(k-s+l) .      ,.       k +1
a =--2-    and   v = „(«o, *) = —^

Then the function P(h) from Lemma 2 is bounded by P(h) < ßk>sha with
ß 1{k-»wß
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For r > 1, let [ar, br] denote the uncertainty interval obtained after r steps.
Let Nr = Nr(f) denote the total number of function evaluations performed in
the steps 0, ... , r- I. As explained earlier, [ar, br] need not contain Zf. Of
course, we would like this to happen only with a small probability; this proba-
bility is bounded from above in part (i) of the following theorem. Otherwise,
if Zf € [ar, br], we would like the diameter b, - ar and the number Nr of
function evaluations to be small with large probability. Part (ii) of the following
theorem estimates this probability from below. Furthermore, it provides upper
bounds on the expected values of br - ar and Nr, respectively.

Theorem 1. (i) The uncertainty interval [ar, br] does not contain Zf with prob-
ability

pp(zf i [ar, br])

< (bo-aoy'2->(no-2ky/2+y^2¡(m+y)       (_ /2'(fip-2*r
v^ ¿J \   \   bo-ao

Hi^i))(^^";"'°'-a)"iVi-^-2tV'"
Vn y    \ bo-ao

(ii) Let Zf e [ar, br]. Then for every p = 0, ... , r - I,

Pp((br -ar< cp) A (Nr(f) < dp))
bo-ao    \al-2-a(r-P)

where cp = (A0 - ao)vr~p/2P, and

d„ = l

1 -2-«

r(n0+l)   ifp = 0,1,
* (2P - l)(«o - 2k)+p2\k/l\ + (r-p)(n0 + 1)   otherwise.

The expected value of br - ar is bounded from above by

<*»-"»» (''+Ä"(^t)°(K|+2°""">)
with

K\

i/r-'^y-!- //2Q+1I/=1

„ ,l-{2a+lv)l-r
V       2-(2°i/)-i      °thermSe

<r-^-maK{vr-l,2(a+W-rî},

and the expected value of Nr(f) is bounded from above by
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with

k2 = 2{no - 2k) {    x_2(l_a)-ï^r)
1 _ 9«(2-r)

+ (2[fc/21-2fc-l)- 1-2-«

- (no + 1 - 2r*/21) (li^ji - ( V';,    )
«0-2* ,        ,     ... .„Ar- l)2a(-2~

<„     o°w.,v-.     „+(»o+l-2rfc/2D-v;i -2-«)(2«-'-l)     v u '   '   u     1-2-°     '

Proo/. The first part follows from Lemma 1 and the fact that A, < Ao2-' in the
/th step.

We now prove the second part. Let R¡ be the set of functions for which the
uncertainty is reduced in the /th step, i.e., [ai+\, A,+i] ̂  [a¡, A,]. Let F, be
the complement of R¡. Consider the following families of sets:

r-2 r-2

G0=r|Äy,        Gp = Fp-inf)Rj   forp = l,...,r-2,        Gr_!=Fr_2,
7=0 7=P

and
Hp = GpnRr-l   forp = 0,...,r-l,       Hr = Fr-i.

Obviously, Hp ç Gp (p < r). Furthermore, {Gp}r~J0 and {Hp}p=0 form
partitions of our class of functions. Note that
(10) Probz(Hp) < Probz(G>) < PTobz(Fp-i) < ßk,shap-X < ßk,s(h02l-<>)a

for 1 < p < r - 1, and Probz(Hr) < A,s{ho2l~r)a .
We prove that the numbers cp and dp defined in the theorem satisfy

(11) cp> max(Ar - ar),        dp > max Nr(f) > max Nr(f)   Vp < r - 1.
f€Hp f€Gp f€Hp

Indeed, for / e Hp the algorithm reduces the uncertainty interval in all steps
from the pth through (r - l)st. Hence, br - ar < hp(k + l)ur~p < cp, since
hp < 2~pho- To show the bound on ma\feGpNr(f), let mj(f) denote the
number of function evaluations performed in the y'th step. Obviously, if j — 0
or / e Rj-i, then mj(f) < n0 + 1 . Otherwise, if / e Fj, then mJ+i =
n¡ - 2k + 2|"fc/2] . Since n¡ < 2(«y_1 - k), we have n¡ -2k < 2J(no - 2k).
Therefore, Nr(f) = «o + 1 + Syl! mj(f) ^ dp for any / e Gp , as claimed in
(11).

Note that (9) follows from (10), since ((br -ar> cp) V (Nr(f) > dp)) implies
that fe{)J=p+lHj.

To estimate the expected value of br - ar, observe that

j{br - Or) Vróbz{df) = ¿   Í   {br - flr) Probr(rf/) ,
J p=0 ^Hf

since the family {Hp}rp=o is a partition. Hence, br - ar < bo - ao, and (11)
imply

r-\

{br - ar) Probz(¿/) < Y, Cp Probz(tfp) + (bo - a0) ?Tobz(Hr).
p=0/'
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With the help of this and ( 10), it is easy to establish the bound on the expectation
of br - ar.

To estimate the expected value of yVr, we consider the partition {G>}£l0.
Then

I Nr(f) ?robz(df) = ¿ /  Nr(f) Probz(df)
J p=0 Jgp

r-l

< d0Probz(G0 UGi) + Y,dP?™bz(Gp).
P=2

Since dp>do for p > 2, from (10) we get
r r~l
/ Nr(f) Probz(df) <d0 + £(</, - do)ßk,s(h02l-P)a

J P=2

s^+i,+Ä..(^y«.
This completes the proof.   D

Remark 3. The proof of Theorem 1 (ii) relies heavily on the use of the estimate
of P(h) from Lemma 2. Even though this estimate seems to be sharp (we as-
sume, of course, that A is small), we believe that the bound (9) is not sharp.
A better estimate than (9) would be of interest. Nevertheless, even with this
estimate, the superiority of adaptive function evaluations for the singularity ap-
proximation problem is apparent. The same is valid for the integration problem
discussed in the next section.

Remark 4. We show how to modify the algorithm in the case of a « 0 or
b « 1. This includes a = 0 and ô = 0 where no a priori bound on Zf
is known and/or Zf can be very close to either 0 or 1. As we shall see, the
modified algorithm performs almost as well as the original algorithm with given
a and b that are not too close to 0 and 1.

This algorithm depends on parameters v and q¡ (i — 0, ... , v) whose
choice we shall discuss later.

For simplicity, we first outline the modified algorithm, assuming that a = 0
and b < (n0 - k)/n0 . Initially, /' = 0 and è(0) = b .

Al: Apply q¿ steps of the algorithm of §4 for the interval [0, A(,)] (in the
first such step we use A0() = A(,)/("o - k) and xj'} = jh^ , 0 < j < n0 ,
as a partition). If a new uncertainty interval is constructed, then we
apply r - q¡ additional steps and terminate. Otherwise, go to A2.

A2: If /' = v - 1, then we terminate. Otherwise, i :- i + I, A(,) :=
¿(¿-i)£2i-*-i, and Al is repeated.

For a>k/no and b = 1, the algorithm is defined in a similar way with the
only change being that instead of the interval [0, ¿(,)] we use [a(,), 1], where
ad) = i _ A('-i)jk2»—«-i.

Consider now a = 0 and b = 0. Perform Al and/or A2 for /' = 0 (a(0' =
0, A(0) = 1, and A(0) = l/n0). The algorithm will construct a new uncertainty
interval or, after q0 unsuccessful steps, will set /' := 1, A(1) := hmk2l~q°, and
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a(1) := 1 - A(0)/c21-90. Next, for /' > 1, Al and A2 are performed in parallel
for two subintervals [0, A(,)] and [a(,), 1].

We now discuss the performance of the modified algorithm. Let PW stand
for the probability of wrong decision. Obviously, the probability that the algo-
rithm will choose a wrong subinterval during Al (0 < /' < v - 1) is bounded
as in Theorem 1 (i) with a = 0 and b = 1. By Lemma 2, the probability that
in the (/' + l)st step the algorithm will search for Zf in [0, A('+0) u (a(,+1), 1]
whereas A</+1) <zf< a^i+l) is bounded by ßktS(2l-i'hW)a . Hence,

PW < (1 + o(l))("0~2Jl)1/2+),exp(-(ttn - 2*)1-20
V7t

Obviously,

v-2
+ßk,sY,vx~q'h(i))a-

¡=0

\tio-kJno- k no- k

with a = i - Y!j=o qt ■
Consider now

(12) q¡=l,        i= 1,2.

Then the probability of wrong decision is bounded by

PW<(l+o(l))(^n°~2^ exv(-(no-2k)1-2*)

+ ßk 29o~l (nQ-k)

Furthermore, for v > max{a/(k - s), r - p] and qo = P, one can show that
(9) of Theorem 1 holds with cp defined as before and dp equal to the old dp
plus (2" + 2(v — l))no ■ (This follows from already established results and the
simple fact that E(X¡X¡) > 0(|x/ - z\2s) for |x/ - z\ < (k + l)h .) This shows
that the modified algorithm (even for a = 0 and b — 0) works almost as well
as the algorithm of §4 (for a and b not too close to 0 and 1, respectively).

6. Integration problem
We now apply the results to the integration problem where one is interested

in approximating /0 f(x) dx to within a given accuracy e by performing as
few function evaluations as possible.

More specifically, suppose that we want to construct an approximation A(f)
to /0 f(x) dx with the error

/ f(x)dx-A(f)
Jo

^emaxdl/WlU, U/i*)««,}

for functions / from the class considered in this paper. Here, for simplicity,
we assume that s is fixed and given (see Remark 7).
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It can be easily shown that in order to produce such approximations, any
algorithm would require at least Q(l/e'/(i+1)) function evaluations in the worst
case. This lower bound is achieved by algorithms that use nonadaptive function
evaluations. Hence, from the worst-case point of view, adaption does not help.

Now relax the worst-case requirement by allowing the algorithm to fail with a
small probability, say with probability not exceeding a given small number S . If
nonadaptive evaluations are performed, then it can be shown that Sl(l/el^s+l))
of them are still needed. However, one can do much better by using adaptive
function evaluations.

Consider the following scheme. Choose no > 4k + 2 and start locating the
singular point until reaching [ar, br] with

Once such an interval is found, performing extra «o - 2k function evaluations
at equally spaced points in the interval [ar, br], one will be able to approxi-
mate jarf(x)dx with the error not exceeding e||/(î)||oo/2. The integral over
[0, ar] U [br, 1] can be approximated to within e||/(fc)||oo/2 by using function
values already computed plus at most h = e~xlk additional evaluations at points
outside the interval [ar, br].

Obviously, once we are able to construct the interval [ar, br] containing
Zf, this algorithm will approximate the integral of / with the error <
e maxill/^Hoo, ||/'^||oo} • The total number of function evaluations performed
does not exceed

(14) ñ + (n0 - 2k) + Nr,

where Nr is the number of evaluations needed to construct [ar, br].
Now, given e and S , we can apply Theorem 1 to choose «o s° that the total

number of function evaluations is small. To this end, recall that

(k-s + 2y)(k-s+l)
a =-r- H«.i)). .- *4    < -

no-2k     2 '
Note that Nr+(n0-2k) <dp + (n0-2k) = 2P(n0-2k)+2p\k/2]+{r-p)(n0+l),
where «o > r, and p < r are to satisfy

(15) M,<hf>M+Äi.(Jit^)"_L_s,
(the condition that with probability < ô , a wrong decision has been made, or
br - ar > cp , or Nr > dp) and

¡if,]        br-ar Cp      =     bo-ap (       e       \l/{s+l)
1    '       n0-2k-n0-2k     2P(n0-2k)        -\2{n0-2k)J
(to guarantee that (13) holds).

In what follows, we assume for simplicity that S is sufficiently small. Then
for «0-2* « \n{ô-l\nô-x) and 2P{n0 - 2k) « {b0 - a0)(2^>í/¿)1/a the
inequality (15) holds. Using this, we get that (16) holds for

r-p « (ln(2(«o - 2*)/e)'/(s+1> -ln(2~ßk,s/afla)/ln{l/v).
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For such values of «o, r, and p, we have

,r     ,l        j2ßks\XI°    lne"1 AnJ-'lná-1
Nr < (bo-ao)   -fM      +7TT       InlnJ-     + 1 > (1

Therefore, the total number of function evaluations is bounded by
/  ~    \ i/«... I7R,     \

h + (n0-k) + Nr< e~l/k + (b0 - a0) S

s + 1  V   lnln^-1
lne ' /lná 1 ln<5  '

(-—       \   1/q

for small e and S . Thus, for small e and ô , the adaptive integration rule is
much superior to any nonadaptive rule, especially when s < * .

For fixed ô, and e tending to zero, this adaptive integration can be improved
as follows. Suppose that in the adaptive scheme presented above, the integrals
over [0, ar] and [br, I] are approximated by the integrals of natural splines
of degree 2k + 1 that interpolate / at equally spaced points. Since f\[o,ar]
is distributed according to wk, the results from [6, p. 366] for probabilistic
integration with normalized error criterion state that using

/ /r-pr\ (i+»d))/(*+i)
«i = ñi(e, S) = I-J evaluations,

the error of approximating J0a' f{x)dx does not exceed e||/W||oo/4 with prob-
ability at least 1 - Ô/4. The same can be proven for the integral over [br, 1].
Hence, using

/  /        ,\ (i+o(i))M+')
ñ = n{e, S) — [-1 evaluations,

the error of approximating the integral over [0, a,] U [b,, 1] does not exceed
£||/^||oo/2 with probability at least 1 -a/2. Replacing the right-hand side ô
of (15) by 3/2, we get that with probability at least 1 - S, the error of ap-
proximating the integral /0 f(x)dx does not exceed emax{||/(s)||oo, ||/(/c)||oo}
when using

/   jT—r-r\ (l+0(l))/(k+I)

ñ + (no-k) + Nr< (**ßL)
(18)

/     a       \    'a

+ (b0 - a0) I     k's 1      evaluations.

We do not know if this adaptive rule is optimal with respect to S . However,
if one considers fixed (even very small) ô, and e tending to zero, then the rule
is (modulo constants) optimal. Indeed, for small e the number of evaluations
is proportional to ñ(s, S). Even if the singular points were given explicitly for
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every function /, one would still need n(e, S) function evaluations, which has
been proven in [6, p. 366].

For ô small relative to e, the bound on the number of function evaluations
depends on ô essentially through (2ßk^s/o)xla. We believe that the actual
number of function evaluations is smaller than the bound presented above. In
order to get such a smaller bound, one would need to improve the estimate (9)
(see Remarks 3 and 6).

We end this section with the following remark.

Remark 5. Our adaptive information scheme is based on computing backward
differences and comparing them to hk . Although in some adaptive quadrature
rules there is no explicit use of backward differences, the backward differences
are often used implicitly. To see this, let us very briefly consider the adaptive
Simpson's rule (see, e.g., [2, 3]), where the decision about partition is made
based on whether \S¡ - 5,1/15 is small. Here, S¡ is the (composite) Simp-
son's rule based on f(x¡), /(x, + h), ... , f(x¡ + 4A), and S¡ is the Simpson's
rule based on f(x¡), /(x, + 2A), f(x¡ + 4A). A simple calculation gives us
(Si - Si)/15 = -h(A*+4f)/45 , where Af+4f is the 4th-order backward differ-
ence of / at xI+4 . This means that new evaluation points are chosen based on
the size of a corresponding backward difference, which is the approach taken in
our algorithm.

7. Concluding remarks
We end the paper with a number of remarks outlining our research plans.

Remark 6. We would like to improve the estimates obtained in Theorem 1.
Note that small improvements in (9) can be easily obtained. For instance, we
could take T(h) that is closer to hk+x'2 than T(h) = V2hk+y (y < ±), say
T(h) « hk+xl2/lnh~x , or we could take (in initial steps) backward differences
of order smaller than * + 1 (see Remark 2). However, significant improve-
ments might require much more elaborate analysis and/or modification of our
algorithm.

One might improve the algorithm by introducing a backtracking technique.
For instance, if the uncertainty interval is not reduced after several steps, the
algorithm will backtrack to an earlier partition and find a new interval to work
on. This should reduce the probability of making wrong decisions.

Remark 1. In this paper we consider functions / with exactly one singular
point Zf. Hence, each / consists of two pieces of ^-regular functions such
that /(s_1) is absolutely continuous. We plan to extend our analysis for classes
of functions / that consist of an unknown (bounded) number of regular pieces
(i.e., / might have a number of singular points), each piece of different regu-
larity *, and each singular point of different regularity s¡. The parameters *,
and Si need not be known, and some *, 's might equal infinity. Some singular
points z, might be poles of fis,). However, poles are easier to approximate
than z, 's with bounded ||/(i/)||oo , as assumed in this paper.

We plan to analyze the problem of approximating the singular points for such
a generalized class of functions. Here, by approximating all singular points of /
we mean constructing a set (a union of intervals) containing the singular points
and having small Lebesgue measure.
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If we assume that an upper bound on the number of singular points is given,
then a relatively simple modification of our algorithm approximates the singular
points well with high probability. This modification is based on the following
observation. Let X£ = X%(f) be the backward difference of order p of f
at a point x. Consider x such that f\(Z,X] € Ck. Then for every p < s,
the expected value of (X%)2 is proportional to h2p. For s < p < k, it is
proportional to A2j or to A2^ depending on whether x is close to z or not.
This, together with the analysis, will be reported in the future. We also plan to
analyze the problem of estimating the regularity parameters *, and s, along
with the points z,.

Remark 8. In §6 we used an integration problem only for the purpose of illus-
tration. Some practically important questions were left untouched. One such
question concerns getting an a posteriori error estimate. To be more specific, re-
call that in the integration problem of §6 we wanted to approximate J0 f(x) dx
with an error not exceeding emax-dl/^Hoo , ||/(fc,||oo} . Adaptive rules try to
approximate integrals with small errors, but in addition to that, they attempt to
provide the user with an a posteriori bound on the error. For instance, in the
adaptive Simpson's rule (see Remark 5), (S¡ - S¡)/15 is used as an estimate of
g*f(x)dx-Ei.

We want to analyze classical techniques for getting a posteriori bounds, which
we expect to be reliable in a probabilistic sense (of course, in the worst case,
getting nontrivial reliable bounds is impossible). In particular, we would like to
know the probability that

IS- — SI I fx'+* -
small    ' implies   small    /      f(x)dx-S¡ .

* ̂  I Jx¡
This is in the spirit of [5], where for functions with no singularities prob-

abilistic a posteriori estimates have been studied. We plan to investigate this
problem for functions with a number of singular points (see Remark 7) and we
want to study adaptive quadrature rules that are efficient (require a relatively
small number of function evaluations) and provide probabilistically reliable er-
ror estimates.
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