
On the Power of Bitslice Implementation on

Intel Core2 Processor

Mitsuru Matsui and Junko Nakajima

Information Technology R&D Center
Mitsubishi Electric Corporation

5-1-1 Ofuna Kamakura Kanagawa, Japan
{Matsui.Mitsuru@ab,Junko.Nakajima@dc}.MitsubishiElectric.co.jp

Abstract. This paper discusses the state-of-the-art fast software imple-
mentation of block ciphers on Intel’s new microprocessor Core2, partic-
ularly concentrating on “bitslice implementation”. The bitslice parallel
encryption technique, initially proposed by Biham for speeding-up DES,
has been successful on RISC processors with many long registers, but
on the other side bitsliced ciphers are not widely used in real applica-
tions on PC platforms, because in many cases they were actually not
very fast on previous PC processors. Moreover the bitslice mode requires
a non-standard data format and hence an additional format conversion
is needed for compatibility with an existing parallel mode of operation,
which was considered to be expensive.

This paper demonstrates that some bitsliced ciphers have a remark-
able performance gain on Intel’s Core2 processor due to its enhanced
SIMD architecture. We show that KASUMI, a UMTS/GSM mobile stan-
dard block cipher, can be four times faster when implemented using a
bitslice technique on this processor. Also our bitsliced AES code runs
at the speed of 9.2 cycles/byte, which is the performance record of AES
ever made on a PC processor. Next we for the first time focus on how to
optimize a conversion algorithm between a bitslice format and a standard
format on a specific processor. As a result, the bitsliced AES code can
be faster than a highly optimized “standard AES” code on Core2, even
taking an overhead of the conversion into consideration. This means that
in the CTR mode, bitsliced AES is not only fast but also fully compati-
ble with an existing implementation and moreover secure against cache
timing attacks, since a bitsliced cipher does not use any lookup tables
with key/data-dependent address.

Keywords: Fast Software Encryption, Bitslice, AES, KASUMI, Core2.

1 Introduction

The purpose of this paper is to study software performance optimization tech-
niques for symmetric primitives on PC processors, particularly focusing on “bit-
slice implementation” on Intel’s new Core2 microprocessor, and show that, by
fully utilizing its enhanced SIMD instructions, many important ciphers such as

P. Paillier and I. Verbauwhede (Eds.): CHES 2007, LNCS 4727, pp. 121–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 M. Matsui and J. Nakajima

KASUMI, AES and Camellia can be much faster than previously expected with
keeping full compatibility with an existing parallel mode of operation.

The bitslicing technique was introduced by Biham [5] in 1997 for speeding-
up DES, which was actually implemented on several processors and used for
brute force key search of DES in the distributed.net project [7]. In the bitslice
implementation one software logical instruction corresponds to simultaneous ex-
ecution of n hardware logical gates, where n is a register size, as shown in figure 1
Hence bitslicing can be efficient when the entire hardware complexity of a target
cipher is small and an underlying processor has many long registers.

Therefore the bitslice implementation is usually successful on RISC proces-
sors such as Alpha, PA-RISC, Sparc, etc, but unfortunately was not considered
to be very attractive on Intel x86 processors in many cases due to the small
number of registers. While several papers already discussed bitslice techniques
of block ciphers [4][14][15][18][20], as far as we know, only one paper reported
actually measured performance of a real bitslice code of AES on a PC processor
[14]. Moreover a conversion of data format is required for compatibility with an
existing parallel mode of operation such as the CTR mode, but no papers have
investigated an overhead of this conversion in a real platform.

In [14] we studied an optimization of AES on 64-bit Athlon64 and Pentium4
processors, where his bitsliced AES ran still (or only) 50% slower than an opti-
mized standard AES (i.e. a code written in a usual block-by-block style). The
bitsliced AES code shown in the paper was implemented on 64-bit general regis-
ters, not on 128-bit XMM registers. This was because on these processors XMM
instructions were more than two times slower than the corresponding x64 in-
structions and hence using 128-bit instructions did not have any performance
advantage. Also note that we did not include an overhead of format conversion
in the cycle counts.

Our current paper gives performance figures of several highly optimized bit-
sliced block ciphers on Intel’s new Core2 processor, which was launched into PC
market last summer and has since been very widely used in desktop and mo-
bile PCs. Core2 has several significant improvements over previous processors,
of which the most advantageous one for us is that its all execution ports support
full 128-bit data. Three logical 128-bit XMM instructions can now run in paral-
lel (although some hidden stall factors still remain as previous Intel processors),
which is expected to boost performance of a bitsliced cipher.

First we implement KASUMI, a UMTS/GSM standard cipher, in both stan-
dard and bitslice modes. We show an optimization technique for a single block en-
cryption, which results in 36.3 cycles/byte. On the other side, our bitsliced code
runs at the speed of 9.3 cycles/byte, four times faster, thanks to its hardware-
oriented lookup tables and improved XMM instructions of the Core2 processor.
Since the mode of operation adopted in the UMTS standard is not a parallel
mode, this bitslice technique cannot be direct applied to a handset, but can be
used in a radio network controller, which has to treat many independent data
streams.

On the Power of Bitslice Implementation 123

Our next target is AES in the bitslice mode, fully utilizing 128-bit XMM reg-
isters and instructions. Our optimized code has achieved the encryption speed
of 9.2 cycles/byte on Core2, which is the highest speed of AES ever achieved
on a PC processor. Also we present a specific code sequence for converting data
between a bitslice mode and a standard mode. This format conversion is essen-
tially an entire bitwise data reallocation, which was believed to be expensive.
Our conversion algorithm fully utilizes SIMD instructions and successfully runs
in less than 1 cycle/byte.

As a result, we conclude that bitsliced AES that is fully compatible with the
CTR mode can run still faster than highly optimized standard AES on Core2.
Moreover note that a bitslice cipher is safe against implementation attacks such
as cache timing attacks [17]. We believe that the bitslice implementation is in
fact very promising in real applications in current and future PC processors.

Table 1 shows our reference machines and environments.

n -bit register 1
n -bit register 2
n -bit register 3

n -bit register b

n : Register size

= the number of encrypted blocks

b : Block size

= the number of registers

Cipher
Block
1

Cipher
Block
2

Cipher
Block
n

Fig. 1. The basic concept of bitslicing

Table 1. Our reference machines and environments

Processor Name Intel Pentium 4 AMD Athlon 64 Intel Core2 Duo
561 3500+ E6400

Core Name Prescott Winchester Conroe

Clock Frequency 3.6GHz 2.2GHz 2.13GHz

Cache (Code/Data) 12Kµops / 16KB 64KB / 64KB 32KB / 32KB

Memory 1GB 1GB 1GB

Operation System Windows XP 64-bit Edition

Compiler Microsoft Visual Studio 2005

2 Core2 Architecture

This section briefly describes internal architecture of Core2 and points out what
a programmer of symmetric algorithms should notice in optimizing performance

124 M. Matsui and J. Nakajima

on this processor. Intel has not published details of its pipeline hardware
mechanism, and moreover undocumented pipeline stalls are often observed. This
section hence largely comes from external resources [9][11] and our own experi-
mental results.

Intel Core2 processor came after Pentium 4, which one-side focused on high
clock frequency and reached its dead end due to an overheating problem. The
pipeline of Core2 has 14 stages, significantly shorter than that of Pentium 4,
aiming at higher superscalarity rather than higher frequency as shown below.
The pipeline of Core2 includes the following stages:

– Instruction Fetch and Predecoding
Instructions are fetched from memory and sent to the predecoder, which
detects where each instruction begins. Unfortunately the predecoder can
process only 16 bytes/cycle, which is very likely a performance bottleneck.
So using a short instruction and a short offset is essential for optimization.
For instance, three XMM “xor” instructions xorps, xorpd and pxor are log-
ically equivalent, but the second and third ones are one byte longer than
the first one. The same applies to movaps, movapd and movdqa. Another
example is that using registers xmm8 to xmm15 leads to an additional prefix
byte.

– Instruction Decoding
In this stage, an instruction is broken down into micro-operations (µops).
Core2 can treat a read-modify instruction as one µop, called a fused µop,
while previous processors counted it as two µops. The same applies to a
memory write instruction. Since an instruction consisting of two or more
µops can be decoded in only one of the four decoders of Core2, this fu-
sion mechanism greatly improves decoding efficiency. We expect that the
decoding stage is not a performance bottleneck in programming a block ci-
pher.

– Register Renaming
In this stage a register to be written or modified is renamed into a virtual
register, and then µops are sent to the reordering buffer. This stage can han-
dle up to 4µops/cycle, which is the overall performance limitation of Core2.
In other words, assembly programmer’s objective is to write a code that runs
at the speed of (as close as possible to) 4µops/cycle. Also this stage contains
another bottleneck factor called “register read stall”; i.e. only two registers
can be renamed per cycle, excluding those that have been modified within
the last few cycles [9]. We hence have to avoid registers that are frequently
read without being written. It is however difficult to avoid this stall without
causing another penalty in practice.

– Execution Units
A fused µop is finally broken down into unfused µops, which are issued to-
ward execution units. Core2 has a total of six ports; three for ALUs, one for

On the Power of Bitslice Implementation 125

read, one for write address, and one for write data. A very good news for us
is that all ports support the full 128-bit data and each of the three ALUs
independently accept a 128-bit XMM logical instruction with throughput
and latency 1. This is a remarkable improvement of Core2 over previous
processors such as Pentium 4 and Athlon 64, and is the most contributing
factor in high speed encryption in the bitslice mode.

Table 2 shows a list of latency (left) and throughput (right) of instructions
frequently used in a block cipher code on Pentium 4, Athlon 64 and Core2. It
is clearly seen that while Athlon 64 still outperforms Core2 for x64 instructions,
Core2 has much stronger 128-bit ALU units; in particular three XMM logical
instructions can run in parallel, which is extremely beneficial for the bitslice
implementation. This list was created on the basis of our experiments, since
sometimes what Intel’s documents say does not agree with our experimental re-
sults. For instance, our measurements show that the throughput of add reg,reg
never reaches 3 on Pentium 4, contrary to Intel’s claim. An unknown stall fac-
tor must exist in its pipeline. Note that it is common that unexpected things
happen on Intel processors. For another simple example, on Core2, a repetition
of Code1A below runs in 2.0 cycles/iteration as expected, but Code1B and
Code1C run in 2.5 and 3.0 cycles/iteration, respectively. On Athlon64 all the
three codes actually work in 2.0 cycles/iteration.

Table 2. A list of an instruction latency and throughput

Processor Pentium4 Athlon64 Core2

Operand Type 64-bit general registers

mov reg,[mem] 4, 1 3, 2 3, 1
mov reg,reg 1, 3 1, 3 1, 3
add reg,reg 1, 2.88 1, 3 1, 3
xor/and/or reg,reg 1, 7/4 1, 3 1, 3
shr reg,imm 7, 1 1, 3 1, 2
shl reg,imm 1, 7/4 1, 3 1, 2
ror/rol reg,imm 7, 1/7 1, 3 1, 1

Operand Type 128-bit XMM registers

movaps xmm,[mem] −, 1 −, 1 −, 1
movaps xmm,xmm 7, 1 2, 1 1, 3
paddb/w/d xmm,xmm 2, 1/2 2, 1 1, 2
paddq xmm,xmm 5, 2/5 2, 1 1, 1
xorps/andps/orps xmm,xmm 2, 1/2 2, 1 1, 3
psllw/d/q xmm,imm 2, 2/5 2, 1 2, 1
pslldq xmm,imm 4, 2/5 2, 1 2, 1
punpcklbw/wd/dq xmm,xmm 2, 1/2 2, 1 4, 1/2
punpcklqdq xmm,xmm 3, 1/2 1, 1 1, 1
pmovmskb reg,xmm −, 1/2 −, 1 −, 1

126 M. Matsui and J. Nakajima

and rax,rax and rax,rdx and rax,rax

and rbx,rbx and rbx,rsi and rbx,rax

and rcx,rcx and rcx,rdi and rcx,rax

and rdx,rdx and rdx,rax and rdx,rax

and rsi,rsi and rsi,rbx and rsi,rax

and rdi,rdi and rdi,rcx and rdi,rax

Code1A: 2.0 cycles Code1B: 2.5 cycles Code1C: 3.0 cycles

One of the block cipher algorithms that can have the biggest benefit of Core2
is 128-bit block cipher Serpent[2]. Serpent was designed in a 32-bit bitslice style;
specifically, it internally applies 32 lookup tables with 4-bit input/output in
parallel in a single round, which can be coded with 32-bit logical and shift
instructions only. Table 3 demonstrates that our four-block parallel encryption
code using XMM instructions dramatically improves its performance on Core2
as compared with a highly optimized single block encryption program written by
Gladman[10]. Serpent was known as a block cipher with a high security margin
and a low encryption speed but our result shows that Serpent will be categorized
into fast ciphers on future processors.

Table 3. Performance of Serpent in single-block and four-block parallel modes

Processor Pentium 4 Athlon 64 Core2

Style 4-Parallel Single [10] 4-Parallel Single [10] 4-Parallel Single [10]

Cycles/block 681 689 466 569 243 749
Cycles/byte 42.6 43.1 29.1 35.6 15.2 46.8
Instrs/cycle 0.71 1.98 1.03 2.40 1.98 1.83

3 KASUMI

KASUMI [1] is a 64-bit block cipher with 128-bit key that forms the heart of
UMTS confidentiality algorithm f8 and integrity algorithm f9. KASUMI has been
also adopted as one of GSM standard ciphers for confidentiality. KASUMI was
designed on the basis of MISTY1 block cipher with 64-bit block and 128-bit key
[13], which has been included in the ISO-18033 standard [12]. Since these ciphers
highly focus on hardware platforms, we can naturally expect that they achieve
high performance when implemented in a bitslice style. In this section, we start
with discussing an optimization of a single block encryption for comparison, and
then move to the bitslice implementation

3.1 KASUMI and MISTY1

Both of KASUMI and MISTY1 have an eight-round Feistel structure, whose
round function is called FO function, and additionally a small component called
FL function is inserted several times outside the FO functions. The FO function
itself has a ladder structure with three inner rounds, each of which is called FI

On the Power of Bitslice Implementation 127

function. Therefore these ciphers have a total of 24 FI functions, which dominate
their encryption performance.

The left side of figure 2 shows the detailed structure of the FI function of
KASUMI. The FI has again a ladder structure with two lookup tables S7 and
S9, which are internally applied two times each. Unlike KASUMI, the FI of
MISTY1 has only three rounds (S9 - S7 - S9) with slightly different S7 and
S9. S7 and S9 (for both of KASUMI and MISTY1) are linearly equivalent to a
power function over Galois field GF (27) and GF (29), and their algebraic degree
is 3 and 2, respectively. These low degree tables significantly contribute to small
hardware in real applications.

The key scheduling part of KASUMI is extremely simple, consisting of 16-bit
rotate shifts by a constant size and xor operations with a constant value only,
which is compactly implemented in hardware. Also the key scheduling part of
MISTY1 is not costly, consisting of eight parallel FI functions. For more details,
see [1] and [13].

S9

S7

S9

S7

16
9 7

16
9 7

S9E S7E

7 9

S7E S9E
KIij,2KIij,1

KIij

zero-extend

truncate

zero-extend

truncate

16 16

16 16

Fig. 2. Equivalent forms of the FI function of KASUMI

3.2 Single Block Implementation

First we show our implementation of KASUMI in a usual single block encryption
style. As stated above, the complexity of the FI function dominates the entire
performance of the KASUMI algorithm. A straightforward implementation of the
FI on Core2 (or any other PC processors) requires approximately 16 instructions.
However by preparing the following two new tables S7E and S9E, we can create
a simpler form that is equivalent to the FI function as shown in the right side of
figure 2.

S9E[x] = ((S9[x]<<9)^S9[x]) & 0xffff ; 9-bit -> 16-bit

S7E[x] = ((S7[(x&0x7f)]^(x&0x7f))<<9) ^ (x&0x7f) ; 8-bit -> 16-bit

128 M. Matsui and J. Nakajima

Use of S7E and S9E reduces the number of instructions of the FI function
down to 10. Code2 shows the specific 10-line implementation. Note that S7E
must accept an eight-bit input (and ignore its highest bit), which results in a
saving of one instruction at the beginning of the code. Since an output of S7E
and S9E is stored in a 32-bit entry in practice, a total size of the new tables is
28 × 4 bytes (S7E) + 29 × 4 bytes (S9E) = 3072 bytes.

01 movzx esi,al ; extract right 8 bits

02 shr eax,7 ; extract left 9 bits

03 mov eax,S9E[rax*4]

04 xor eax,S7E[rsi*4]

05 xor eax,[key] ; xor subkey

06 mov esi,eax

07 shr esi,9 ; extract left 7 bits

08 and eax,01ffh ; extract right 9 bits

09 mov eax,S9E[rax*4]

10 xor eax,S7E[rsi*4]

Code2: An optimized code of the FI function of KASUMI.

Note that in an x64 environment we can equivalently use 64-bit registers
instead of 32-bit registers, say, shr rsi,9 instead of shr esi,9, but this should
be avoided in general because use of a 64-bit general register as a data register
makes an instruction length longer. Also since two adjacent FI functions are
mutually independent even if they are not contained in the same FO function,
interleaving two FI functions contributes to further speeding-up.

As a result, our optimized codes for the full KASUMI and MISTY1 can run at
the speed of 290 cycles/block and 214 cycles/block, respectively. The difference
in performance comes from the fact that the former applies 4× 3× 8 = 96 table
lookups and the latter does 3×3×8 = 72. The key scheduling part of KASUMI,
instead, works of course much faster than that of MISTY1.

3.3 Bitslice Implementation

In this subsection we deal with an implementation of KASUMI and MISTY1 in
the bitslice mode, that is, 128-block parallel encryption, fully utilizing 16 128-bit
XMM registers of the Core2 processor. The performance of bitsliced KASUMI
and MISTY1 is largely determined by the number of instructions of lookup ta-
bles S7 and S9. Below is our (hand-optimized) bit-level logic of S7 and S9 at
the time of writing, where output bits yi are computed sequentially in our code.
Boldface terms, which always appear pairwisely (or more), are stored into reg-
isters in advance in order to reduce the number of instructions.

MISTY S9:

y0 = x0(x4+x5) + x1(x5+x6) + x2(x6+x7) + x3(x7+x8) + x4x8 + 1

y1 = x3(1+x2+x1+x4+x8) + x0(x2+x6+x8) + x5(x4+x8) + x2x6 + x7 + 1

y2 = x4(1+x3+x0+x2+x5) + x1(x0+x3+x7) + x6(x0+x5) + x3x7 + x8

y3 = x5(1+x4+x1+x3+x6) + x2(x1+x4+x8) + x7(x1+x6) + x0 + x4x8

On the Power of Bitslice Implementation 129

y4 = x6(1+x5+x2+x4+x7) + x3(x0+x2+x5) + x8(x2+x7) + x1 + x0x5

y5 = x7(1+x6+x3+x5+x8) + x4(x1+x3+x6) + x0(x3+x8) + x2 + x1x6

y6 = x8(1+x7+x0+x4+x6) + x5(x2+x4+x7) + x1(x0+x4) + x3 + x2x7 + 1

y7 = x1(1+x0+x2+x6+x8) + x7(x0+x4+x6) + x3(x2+x6) + x0x4 + x5 + 1

y8 = x0(1+x1+x5+x7+x8) + x6(x3+x5+x8) + x2(x1+x5) + x4 + x3x8 + 1

MISTY S7:

y0 = x0 + x0x3x4 + x1(x3+x0x6) + x2(x0x5+x6) + x5(x4+x3x6) + x5(x1+x0x6) + 1

y1 = x2(x0+x4x5) + x0x6 + x2x3x6 + x4(x0+x3+x1x6) + x5(x1+x0x6) + 1

y2 = x2(x1+x0x3) + x4 + x0((x1+x5)x4+x5) + x4(x2x6+x1) + x3(x4x5+x6) + x6(x0x3+x4+x1)

y3 = (x0+x1+x0(x1x2+x3)) + x6(x2+x5+x1x3) + x4(x2+x0x6) + x1x4x5 + 1

y4 = x4(x0+x1x3) + x5 + x1x2x5 + x3(x2+x0x5) + x6((x1+x4)x5+x1) + 1

y5 = (x0+x1+x0(x1x2+x3)) + x2 + x1x2x3 + x4(x1+x0x2) + x0(x1x5+x6) + x5(x0+x3+x2x6)

y6 = x0x3 + x2(x3x4+x5) + x1(x0+x3x5) + x1x2x6 + x6(x0x3+x4+x1) + x5(x0+x3+x2x6)

KASUMI S9

y0 = x7(x0+x1+x2+x8) + x5(x2+x6+x8) + x4x8 + x0x2 + x3 + 1

y1 = x1(1+x0+x4+x7) + x5(x0+x3+x8) + x2(x3+x7) + x0x4 + x6 + 1

y2 = x6(x2+x3+x5+x7) + x0(x5+x3+x8) + x7(x4+x5) + x3x4 + x1 + 1

y3 = x0(1+x6+x3+x8) + x1(x2+x6+x8) + x4(x2+x7) + x7x8 + x5

y4 = x0(x1+x5+x7) + x3(x1+x6+x8) + x8(x1+x2) + x6x7 + x4

y5 = x6(x0+x8+x1+x7) + x4(x1+x5+x7) + x7(x3+x8) + x5x8 + x2 + 1

y6 = x5(x1+x4+x2+x6+x8) + x3(x2+x6+x8) + x8(x1+x7) + x4x6 + x0 + x7

y7 = x2(x0+x3+x6+x1+x7) + x3(1+x0+x6) + x5(x4+x7) + x0x1 + x8 + 1

y8 = x1(x0+x2+x5+x6) + x2(1+x5+x8) + x4(x3+x6) + x3x8 + x7

KASUMI S7

y0 = x4(x0x1+x3x5+x2x6) + x2x5 + x6(1+x0+x1+x3+x5(x1+x4)) + x1x3 + x4

y1 = x0(x1+x4+x3x5+x2x6) + x3x6 + x5(1+x1x2) + x4(x2+x5x6) + 1

y2 = x0(x4x3+x1x6) + x6(x2+x4) + x5(x1+x0x2) + x2(x3+x1x4) + x0 + 1

y3 = x5x1x4 + x1x0x5 + x6(x2+x1x3) + x3(x2x5+x4) + x1x0x2 + x1

y4 = x0x3x6 + x0x1x4 + x4x0x5 + x3(1+x1+x2x4) + x5(x6+x1x3) + x0x2 + x1x6 + 1

y5 = x0(x4x2+ x6x3+x5) + x5(x6x2+x4) + x1x2(x3+x6) + x6(x1+x3x4) + x2 + 1

y6 = x6(1+x1(x0+x4)+x2x3+x0x5) + x0(x4+x1x3) + x5(x1+x3) + x1x2

Table 4. The number of instructions of S7 and S9

KASUMI MISTY1

Lookup tables S9 S7 S9 S7

Number of instructions 149 153 148 144

Table 5. Performance of our implementation of KASUMI and MISTY1

Processor Pentium 4 Athlon 64 Core2

Style Bitslice Single Bitslice Single Bitslice Single

KASUMI

Cycles/block 241 300 241 272 74 290
Cycles/byte 30.1 75.0 30.1 34.0 9.25 36.3
Instrs/cycle 0.71 1.69 0.71 1.86 2.31 1.75

Cycles/Keysch 8 104 7 64 2 78

MISTY1

Cycles/block 185 234 195 203 59 214
Cycles/byte 23.1 29.3 24.4 25.4 7.38 26.8
Instrs/cycle 0.72 1.82 0.68 2.10 2.26 1.99

Cycles/Keysch 57 244 57 240 16 178

130 M. Matsui and J. Nakajima

Tables 4 and 5 show our implementation results of KASUMI and MISTY1 on
Pentium 4, Athlon 64 and Core2. Instructions for S7 and S9 occupy 69% and
61% of the entire code of KASUMI and MISTY1, respectively. It is seen that
both ciphers achieve an overwhelming performance; three to four times faster in
the bitslice mode on Core2. Also the key scheduling of KASUMI can be carried
out almost with no cost due to the nature of its structure.

4 AES and Camellia

4.1 Bitslice Implementation

How to implement bitsliced AES [8] and Camellia [3] on x64 platforms was first
reported in [14]. The codes shown in the paper were written not using 128-bit
XMM registers but using 64-bit general registers, because XMM instructions had
poor performance for bitslicing on its target processors (Pentium 4 and Athlon
64). In fact these processors internally treated a 128-bit instruction as two 64-
bit operations. In this subsection, we discuss performance of bitsliced AES and
Camellia fully utilizing 128-bit XMM instructions on the Core2 processor.

The dominant part of these bitsliced ciphers is the lookup table S, which is
linearly equivalent to an inversion function over GF (28). The known smallest
hardware design (i.e. most suitable for the bitslice implementation) of S is to
use a subfield of index two; that is, we represent an inverse of GF (22n) as a
combination of operations on GF (2n) recursively [6][16][19]. The essence of this
technique is to select (1, a) as a basis of GF (22n) over GF (2n) for an a ∈ GF (22n)
such that TrGF (22n)/GF (2n)(a) = 1. Then for any x, y, z, u ∈ GF (2n), we have

(x + ya)(z + ua) = (xz + yuNrGF (22n)/GF (2n)(a)) + ((x + y)(z + u) + xz)a,

which means that a multiplication of GF (22n) can be designed with three mul-
tiplications of GF (2n) like the Karatsuba algorithm.

Using 16 XMM registers, instead of general registers, also reduces “register
pressure”, which results in a smaller number of instructions of S in software. Our
optimized codes for S consist of 201 and 199 instructions for AES and Camellia,
respectively, which are 2% smaller than those shown in [14].

Table 6 shows our implementation results of AES and Camellia with 128-bit
key in bitslice and non-bitslice modes. “Bs128” and “Bs64” denote the bitslice
mode using 128-bit XMM instructions and 64-bit general instructions, respec-
tively. “Single” and “Double” indicate a usual single block encryption and a
double-block parallel encryption by interleaving two blocks, respectively. For
both algorithms, the obtained encryption speed, 9.2 cycles/block and 8.4 cy-
cles/block on Core2, respectively, is the highest speed ever achieved in a PC
platform, where the previous record was 10.6 cycles/block and 10.9 cycles/block
on Athlon 64 as shown in [14]. In addition, to our best knowledge, this is the
first result where performance of AES in the bitslice mode has exceeded that in
an ordinary block-by-block encryption mode.

On the Power of Bitslice Implementation 131

Table 6. Performance of our implementation of AES and Camellia with 128-bit key

Processor Pentium 4 Athlon 64 Core2

AES

Style Bs128 Bs64[14] Single[14] Bs128 Bs64[14] Single[14] Bs128 Bs64 Single

Cycles/block 491 418 256 560 250 170 147 307 232
Cycles/byte 30.7 26.1 16.0 35.0 15.6 10.6 9.19 19.2 14.5
Instrs/cycle 0.80 1.66 1.81 0.70 2.75 2.74 2.66 2.27 2.00

Camellia

Style Bs128 Bs64[14] Double[14] Bs128 Bs64[14] Double[14] Bs128 Bs64 Double

Cycles/block 467 415 457 510 243 175 135 272 208
Cycles/byte 29.2 25.9 28.6 31.9 15.2 10.9 8.44 17.0 13.0
Instrs/cycle 0.72 1.61 0.94 0.65 2.74 2.46 2.47 2.44 2.07

4.2 Format Conversion

The bitsliced cipher uses a non-standard input/output data format. This is not a
problem in a standalone application such as a file encryption utility or a password
recovery program. However a format conversion is required if a file encrypted in
the bitslice mode must be decrypted in an existing parallel mode of operation
such as the CTR mode. This conversion is essentially an entire rearrangement of
bit positions, which is generally costly in software, and its performance overhead
cannot be ignorable.

This paper for the first time discusses a specific implementation algorithm of
data conversion between a bitslice format and an ordinary format. The following
piece of code (Code3) shows our basic step creating a byte sequence formatted
in a bitsliced style pointed by rdx from an ordinary byte sequence pointed by
rcx for a 128-bit block cipher.

1 movaps xmm0, 0[rcx]

2 punpck[l|h]bw xmm0, 16[rcx] ; xxxxxxxx xxxxxx10

3 movaps xmm1, 32[rcx]

4 punpck[l|h]bw xmm1, 48[rcx] ; xxxxxxxx xxxxxx32

5 movaps xmm2, 64[rcx]

6 punpck[l|h]bw xmm2, 80[rcx] ; xxxxxxxx xxxxxx54

.

.

15 movaps xmm7,224[rcx]

16 punpck[l|h]bw xmm7,240[rcx] ; xxxxxxxx xxxxxxFE

17

18 punpck[l|h]wd xmm0,xmm1 ; xxxxxxxx xxxx3210

19 punpck[l|h]wd xmm2,xmm3 ; xxxxxxxx xxxx7654

20 punpck[l|h]wd xmm4,xmm5 ; xxxxxxxx xxxxBA98

21 punpck[l|h]wd xmm6,xmm7 ; xxxxxxxx xxxxFEDC

22

23 punpck[l|h]dq xmm0,xmm2 ; xxxxxxxx 76543210

24 punpck[l|h]dq xmm4,xmm6 ; xxxxxxxx FEDCBA98

25

132 M. Matsui and J. Nakajima

26 punpck[l|h]qdq xmm0,xmm4 ; FEDCBA98 76543210

27

28 pmovmskb eax,xmm0 ; 16 7-th bits of xmm0

29 mov 112[rdx],ax

30 paddb xmm0,xmm0

31 pmovmskb eax,xmm0 ; 16 6-th bits of xmm0

32 mov 96[rdx],ax

33 paddb xmm0,xmm0

34 pmovmskb eax,xmm0 ; 16 5-th bits of xmm0

35 mov 80[rdx],ax

36 paddb xmm0,xmm0

..

..

48 paddb xmm0,xmm0

49 pmovmskb eax,xmm0 ; 16 0-th bits of xmm0

50 mov 0[rdx],ax

Code3: A format conversion code creating 128 converted bits

The first part (lines 1 to 26) creates a 16-byte data on xmm0, whose n-th byte
corresponds to a byte in memory at the addresses 16n + m (n = 0, 1, .., 15).
Also m (m = 0, 1, .., 15) can be controlled by a choice of “unpack” instructions
punpck[l|h]bw, punpck[l|h]wd, punpck[l|h]bdq, punpck[l|h]dqd (low l or
high h); specifically, llll for m = 0, lllh for m = 1 and llhl for m = 2, etc.
The latter part (lines 28 to 50) creates 16-bit data on ax consisting of 16 bits at
bit positions 8i+ j of xmm0 (i = 0, 1, ..., 15) using a special pmovmskb instruction,
and then it is written into memory, which is repeated 8 times (j = 0, 1, .., 7).

Basically the full format conversion of 128 bits × 128 blocks = 2KB data can
be done by repeating Code3 128 times (with changing unpack instructions, rcx
and rdx). However by keeping intermediate values in temporary registers for later
use, the number of memory reads is significantly reduced. Table 7 demonstrates
performance figures of our format conversion code. It is seen that the conversion
works very fast, in less than one byte per cycle, which shows that bitsliced
AES/Camellia runs still faster than non-bitsliced AES/Camellia on Core2 even
if an overhead of data format conversion is included in the bitsliced code.

Table 7. Measured performance of our format conversion code

Processor Pentium 4 Athlon 64 Core2

Cycles/block 41.5 28.1 15.4
Cycles/byte 2.59 1.76 0.96
Instrs/cycle 0.72 1.06 1.96

5 Conclusions

This paper explored the state-of-the-art implementation techniques for speeding
up block ciphers on Intel’s new Core2 microprocessor. We have shown that the

On the Power of Bitslice Implementation 133

bitslicing technique is actually promising on a PC platform from practical points
of view. A bitsliced AES code that is fully compatible with the CTR mode can
be now faster than a non-bitsliced AES code on Core2. Another importance of
the bitslice mode is that a bitsliced code is secure against cache timing attacks
since it does not use any lookup tables whose address is dependent on secret
information. We believe that bitsliced ciphers will be much more widely used in
real applications in very near future.

References

[1] 3GPP TS 35.202 v6.1.0, 3G Security; Specification of the 3GPP Confidentiality
and Integrity Algorithms; Document 2: KASUMI Specification (Release 6), 3rd
Generation Partnership Project (2005)

[2] Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the Advanced
Encryption Standard, Available at
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf

[3] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: The 128-Bit Block Cipher Camellia. IEICE Trans. Fundamentals E85-A(1),
11–24 (2002)

[4] Bhaskar, R., Dubey, P., Kumar, V., Rudra, A.: Efficient galois field arithmetic on
SIMD architectures. In: Proceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, pp. 256–257. ACM Press, New York (2003)

[5] Biham, E.: A Fast New DES Implementation in Software. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

[6] Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

[7] The distributed. net project: Available at
http://www.distributed.net/index.php.en

[8] Federal Information Processing Standards Publication 197, Advanced Encryption
Standard (AES), NIST (2001)

[9] Fog, A.: Software optimization resources, Available at
http://www.agner.org/optimize/

[10] Gladman, B.: Serpent Performance, Available at
http://fp.gladman.plus.com/cryptography technology/serpent/

[11] Granlund, T.: Instruction latencies and throughput for AMD and Intel x86 Pro-
cessors, Available at http://swox.com/doc/x86-timing.pdf

[12] ISO/IEC 18033-3, Information technology - Security techniques - Encryption al-
gorithms - Part3: Block ciphers (2005)

[13] Matsui, M.: New encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

[14] Matsui, M.: How Far Can We Go on the x64 Processors? In: Robshaw, M. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)

[15] Nakajima, J., Matsui, M.: Fast Software Implementations of MISTY1 on Alpha
Processors. IEICE Trans. Fundamentals E82-A(1), 107–116 (1999)

[16] Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation
of Compact Hardware Implementations for the Rijndael S-Box. In: Menezes, A.J.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005)

[17] Osvik, D.A., Shamir, A., Tromer, E.: Full AES key extraction in 65 milliseconds
using cache attacks. In: Crypto 2005 rump session.

http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf
http://www.distributed.net/index.php.en
http://www.agner.org/optimize/
http://fp.gladman.plus.com/cryptography_technology/serpent/
http://swox.com/doc/x86-timing.pdf

134 M. Matsui and J. Nakajima

[18] Rudra, A., Dubey, P., Jutla, C., Kummar, V., Rao, J., Rohatgi, P.: Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184.
Springer, Heidelberg (2001)

[19] Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

[20] Shimoyama, T., Amada, S., Moriai, S.: Improved fast software implementation of
block ciphers. In: Proceedings of the First International Conference on Information
and Communication Security, pp. 269–273. Springer, Heidelberg (1997)

	On the Power of Bitslice Implementation on Intel Core2 Processor
	Introduction
	Core2 Architecture
	KASUMI
	KASUMI and MISTY1
	Single Block Implementation
	Bitslice Implementation

	AES and Camellia
	Bitslice Implementation
	Format Conversion

	Conclusions

