ON THE POWER OF CERTAIN TESTS FOR INDEPENDENCE IN
BIVARIATE POPULATIONS!

By H. S. Kovun
University of California, Berkeley

Summary. Let Fio denote the joint distribution of two independent random
variables Yo and Zyo . The paper investigates properties of the joint distribu-
tion F of the linearly transformed random variables Y3 and Z, . Let 3 be the
Spearman rank correlation test, 3, the difference sign correlation test, 3, the
unbiased grade correlation test (which is asymptotically equivalent to o), Js
the medial correlation test, and ® the ordinary (parametric) correlation test.
(Whenever discussing ® we assume existence of fourth moments.) Properties
of the power of these tests are found for alternatives of the above-mentioned
form, particularly for alternatives ‘“close’” to the hypothesis of independence
and for large samples.

Against these alternatives the efficiency of 33 is found to depend strongly on
local properties of the densities of Yo and Zye , which should invite caution; and
the efficiency of 3; with respect to J is often unity.

Incidentally, Pitman’s result on efficiency is extended in several directions.

1.1. Introduction. In the investigation, for a class of problems, of operating
characteristics of tests of statistical hypotheses, the crucial point is the specifica-
tion of a class of alternatives which is (1) sufficiently wide to include some ap-
proximation to any situation that may arise in this class of problems, and (ii)
is manageable mathematically.

.For testing the hypothesis that two samples are from the same population, this
point has been dealt with-—with some measure of success—by specifying as
alternatives the cases in which the two populations differ by a location (shift)
parameter but otherwise can have any continuous distribution. This seems a
satisfactory idealization for a class of problems, and is easy to handle mathe-
matically.

The situation cannot be expected to be so simple for testing of the hypothesis
of independence in bivariate populations. As a matter of fact, in many applica-
tions it seems that because of the bewildering variety of possible “modes of
dependence” it is not feasible to provide & reasonable specification of alterna-
tives satisfying (i) and (ii). This paper makes an attempt to open up this topic
by considering a rather narrow class of alternatives for which (ii) is satisfied,
though the extent to which (i) is satisfied is much more doubtful. Another class
is considered in [8].
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The class of alternatives considered is one under which the two random varia-
bles have been obtained by a linear transformation of two independent random
variables. Cases of random variables which could have common but unobservable
components may conform to this situation.

Thus, suppose that the outcome of the application of a battery (@, @z, «--)
of psychological or psychophysical tests to a group of people has been subjected
to a factorial analysis, revealing several independent common factors

Fy,---,F,.

Suppose that the analysis shows that apparently the outcome A; of @, is
practically determined by F; and 4,, of @, by F, . Psychological tests, especially
aptitude tests, are.often designed to achieve such “factorial purity” [4]. It may
then be reasonable and desirable to identify F; operationally with 4;, and F,
with 4, . Before doing this, one should make sure that 4, and 4, are independ-
ent random variables. If ¢ > 2, let us assume that for @;, and @;, we can ignore
Fy, .-, F., or that those among the latter set which affect 4;, do not affect
A, and vice versa. Then the above description implies that there exist two in-
dependent random variables ¥ and Z and numbers A;, A;, As, As, such that

4; = MY + N2,

Ay = MY + N2,
and the hypothesis to be tested can be written
A2 = A3 = 0.

The relative asymptotic efficiencies of the Spearman and medial correlation
tests with respect to the ordinary correlation test have been previously con-
sidered heuristically by Hotelling and Pabst [6] and Blomqvist [1], respectively,
for normal alternatives; as far as is known to the author, no other investigations
of the relative efficiencies of the tests discussed here have been published for
bivariate distributions which stay constant during the sampling process.

The present paper also contains an extension of Pitman’s result on local asymp-
totic efficiency, which is believed to be of interest in itself.

The author wants to express gratitude to Professor E. L. Lehmann for posing
the problem and for numerous suggestions.

1.2. Local asymptotic efficiency according to Pitman and an extension. Any
statistical hypothesis and its alternatives can be described by two classes of
probability distributions, F and %, , respectively.

We are interested in cases in which there is some natural way of generating
the elements of &, from those of %, in such a way that each F & &, is obtained
as a limit of a sequence of elements of the corresponding subset of &, . This can
be formalized as follows:
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Let ¥y and F, have the property that there is a set @ of transformations A4
from one to the other such that (1)

Fo U Fo = Ures,Q[F],

where G[F] = U,..AF and where F ¢ &, implies F ¢ @[F]; (2) there exists a
K-dimensional metric space T of points vy = (y1, - -- , vx), which (a) contains
a point 4° and (b) for each F ¢ %, has a subset T'(F) (containing v’ as a limit
point) whose elements are in one-to-one correspondence with those of Q[F],
with F corresponding to v’.

DrermnrrIoN. Given two nonnegative numbers o, o” for which0 < o' + o” <
1,let 3 = {3.} be a sequence of tests of the hypothesis ¥y = 9°, that is, of F,, =
F . o(=F). Let 3 be such that for n observations, 3, rejects the hypothesis if and
only if the statistic 7', does not exceed a maximal constant (or random variable)
& or does not fall below a minimal constant (or random variable) ¢, for which

onr = P{Tn S tar|F}, amp = P{T. = tur|F}

do not exceed o’ and o”, respectively, and converge to these numbers. We then
say that 3 is an (o, o” )-level test (sequence)

For tests based on ranks, anz , anr , tnr , and &y are 1ndependent of F when F
is continuous and hence are “distribution free.”

In the following let F ¢ & and «’ and a” be fixed. To obtain at least a certain
fixed power 8 > o + o for the test sequence 3 under the alternative v, we have
to choose the number 7 of observations so large that the probability 8. of reject-
ing the hypothesis with test 3, undery is at least 8 (and shall otherwise choose n
as small as possible). For reaching the same power 8 with the test sequence 3* un-
der the same alternative, we have to choose the minimum number n* of ob-
servations sufficiently large for 8%., the probability of rejecting the hypothesis
with test 3%. under v, to be at least 8. Now for a fixed 8, if we wish to let n in-
crease indefinitely, we have to allow v to vary with n:

v = v(n).

In particular, if 3 and 3* are consistent (o/, a”)-level tests, the sequence {y(n)}
of alternatives must converge to v°. Then, when lim,., n/n* exists, it is reason-
able to call it the local asymptotic efficiency of 3* with respect to J against a
sequence {y(n)} of alternatives with elements in I' — 4°. We shall now enumerate
some conditions which suffice for its existence and allow us to calculate it. These
slightly generalize those first given by Pitman (see [11]), who examined only
cases with o’ or a” equal to 0 and K = 1, and possessing certain other simple
features.

DEerinITION. Suppose there exist A > 0 and functions ¥ and x» over T such
that for any k < K

¢
@) limne P{Tn — ¢2()/xx(2") S 2|4} = 20)7* f,,, e da;
(i) Yuly) = 3Wnly)/d vx exists in a neighborhood of v°;
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({il) 7 m(y")/xx(¥") converges to a constant d ;
(iv) the alternatives y(n) are such that ~vi(n) = vi + n ™" ¢ + o(n™)
(which defines neighborhoods of 7°);

(V) xa(y(n))/xx(x") converges to 1;
(vi) for 4'(n) on the ray from v° to y(n), Yu(y’ () it (v") converges to 1;

(¥i) litnren PUTs = bulr @)} salr@) 5 4] 7)) = @0 [ a
Let
A(C) = l; Ci d], .

The class of all (¢/, &”)-level tests, consistent for testingy = v° against v 5 +°
near v° and such that for a given h there exist functions ¢,, and x, over I" satis-
fying these properties, will be called ®%7.+(k, T). The set of vectors ¢ generated
by the set of all values 8 > o’ + o” will be denoted by T.

TreorEM 1.1. Let 3 & @5 ar(h, T), 3* £ @ w(h*) T, and let Alc) or A*(e)
differ from zero. Then for any sequence of alternatives with elements in T —4°
for which ¢ € T the local asymptotic efficiency of 3* with respect to 3 against this
sequence exists and equals 0 if h* < h, © ¢f b* > h, and

{A*@)/a@F"

otherwise.
OUTLINE oF Proor. Write

a(t) = (@n)* f e ds.

We have
i P{[Tn = a0 )/xa(r) S Itn — a6 N/xa(@") |77} = o,
80
limnse [ta — ¥ur")]/xalro) = &,
where &’ = &(<). Similarly, if §” = &™(1 — o”),
limasw [tn ~ ¥n(r")/xar") = 8.
Nowfor0 <9 <1
litpae [tn — Yaly(®))]/xaly(n))

liMaswltn — () /3a(y (@) — lithpoe g.: lex + o()In™
V@) — ¥0)/xnly(n))

= § — Ale),
M wltn — ¥aly(m)]/xaly(®) = &" — A(c).
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But 1 — 8, equals
P{[tn — ¥alym))/xalr(n)) = (T2 — ¢uly()]/xalv(n))
< [ta — et/ xaly(m)) | ¥(0)},
so that
1 =8 = liMuew (1 = Ba) = 2@ — A(c)) — 2 — A(0)) = ¥ur,r(A(0))

(say).
We wish to determine n* as a function of n in such a way that for the same al-
ternative,

v(n) = v*(n*),

both 3 and 3* reach (as closely as possible) the same power 8. Let h* = h (the
other cases are handled similarly). By assumption (iv)

yin) ~+" + 07" ¢,
Y*n*) ~y° 4 07t ek,
SO
¢t~ (n/n¥)™ ¢,

and
A*(c*) ~ (n/n*)™" li exdy = (n/n®A*(c).

In the same manner as above, we obtain for 3*
1 — 8 = litw (1 = Brs) = Tar,w(A%(c¥),
so that, since ¥, . has an inverse,
A*(c*) = Ale).
Consequently,
n/n* ~ (8*(c)/ A}

For sequences {y(n)} for which both A(c) and A*(c) equal zero, Theorem 1.1
yields no result. As noted also in [12], it is desirable to be in a position to expand
¥a(y) about 7°, using terms of order higher than the first. We therefore give the
following definition:

DeriNiTION. Suppose there exist & > 0, a smallest integer p, and functions
¥» and x, over T, such that for any set (k1 , - - -, k;) of p not necessarily different
integers = K

() limoow PITs — 4260/ < 117} = @07 [ as;

(1) Ynry. . k,(7) = a%p,,(y)o/ay,cl...aykp exists in a neighborhood of +°;
(iii) n”"’;/xnkl...kp(yo)/x,.('y) converges to a constant di,...r,;
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(iv) the alternatives y(n) are such that vi(n) = v2 + n "¢ + o(n™) (which
defines neighborhoods of 4°), and if ¢ = (c1, -+ -, ), then
A(C) = (P !)_1 Z Cky°* 'ckpdkl"'kp 7 O;
(kyeeikp)
) xaly(®))/x2(¥") converges to 1;
(vi) for v'(n) on the ray from v° to ¥(n), Yury...k, (¥’ (n)) /¢nk1...kp('y°) converges
to 1;

(vid) lim g P{[T — ¥uly(m)/xa(v(®)) S ¢|¥(m)} = 20)7 [: e da.

The class of all (o, &”)-level tests, consistent for testing y = +’ against v #= 4
near v° and such that for the same A, p there exist functions ¥, and x. over T
satisfying these properties, will be called ®{%.(%, T). The set of vectors ¢ gen-
erated by the set of all values for 8 > o’ + o” will be denoted by T.

TrEOREM 1.2. If 5 £ @8 Wr(h, T) and 5* £ ® %0 (h*, T), then for any sequence
of alternatives for which ¢ € T,

lim n/n*

exists and equals
{A*(c)/A()}™ if p* = p and h* = h,
04f p* = p and h* = h without both being equalities,
o if p* £ p and B* = h without both being equalities.

We then define this as the local asymptotic efficiency e(3*, 3) of 3* with respect
to 3 against a sequence of alternatives with elements in I' — ~° for which ¢ ¢ T

Remarks. (a). When K = 1, A*(e)/A(c) does not involve ¢, so that the effi-
ciency of 3* with respect to 3 does not depend on the particular values taken on
by o/, o” or 8, being the same against all sequences of alternatives with elements
in T — 4° for which ¢ & T. This is not generally so when K > 1. The dependence
on the values of o’ or o is through the sign of A(c), and disappears if either o
or o is zero.

(b) The limiting distribution ® does not have to be normal. It is sufficient if
it is continuous, if # (/) = & and (1 — o”) = §” are uniquely determined,
and if there exists ¢ > 0 such that for z £ (—e¢, ®) or & (— 0, ),

Vo () = B(" — ) — 3@ — 2)

is a monotone function of z, converging to zero as | | — « (the monotonicity
not ceasing to be strict until the function attains the value 0). Note that if either
o/ or o” vanishes, all continuous distribution functions ® which are strictly
increasing for the set of ¢ for which 0 < ®(f) < 1 have this property.

(c) Against a fixed alternativey’ & I near+’, for sufficiently large n, the power
of 3 is approximately

1- ‘I’a’.a"[nhpA('Y’ - 'Yo)]-
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We may call this expression the asympiotic power of v’ (near v°). So if, for v’

(near v%), Aly’ — %) = 0, 3 is consistent at v'; and if {y(n)} is such that, as 8

takes on different values exceeding o/ + o, A{c) differs from 0, 3 is consistent
0

near vy .

1.3. Some tests for independence. Consider a sample X1, --- , Xa (n = 2)
from a bivariate population F, where X, = (Y., Z,), without ties in the ¥,
or in the Z, . Let R be the rank of ¥, , S the rank of Z,, and ¥ and Z
the sample medians of ¥ and Z. Define for «, 3, v ranging over 1, -+ | n

-1 41 1 Z -
(7‘_3)75_:‘_2 Ton = 5 & 8 (Yo — Yp) sgn (Za — Z,)
4 > F1 _rtl
w4 <R(a) - 2 ><S(°‘) - 2 ) ’

1
T = =D éﬁ sgn (Ya — Yp) sgn (Za — Zp);

1 1

=Top = sgn (Y, — Y, Zy—Z,),

: nn — 1)(n — 2) a#f»';éz‘v#a gn ( a)sgn( ")
forn > 2,

= 0 forn = 2;

_W =N+ @ —n")
- (NI + N”) + (n/ ¥ n//) ’
where N’ is the number of & for which sgn(¥, — ¥) sgn(Z. — Z) is positive,
N” the number for which it is negative, and n’[n”] is the number of pairs (¢, 8)
for which @ % 8, Y. = ¥, Zs = Z, and sgn(Ys — ¥) sgn(Z. — Z) is positive
[negative].

Ti. is the difference sign correlation, T, the (Spearman) rank correlation,
T the unbiased grade correlation (introduced by Hoeffding [5]), and T;. the
medial correlation proposed by Sheppard [15] and discussed by Blomqvist

[1]. (The name medial correlation was proposed in [14].)
It may be noted that the formulae for Ty, and T, are obtainable from the

formula for the ordinary correlation coefficient
Ri= 2 (Yo — (Ze— D)/ (2 (Yu— V)2 (Za — 2)}"
(Y =2Y/n, Z= 2 Zn)

T3n

by substituting ranks for observations and, in the case of T, (assuming n even),
interpreting ( ) as the signum of the quantities in parentheses. Applications of
these operations to the alternative form [3]

R, = g (Yo — Yo)(Zo — Z,s)/{aZ; (Yo — Yﬁ)?_;, (Zo — Zp)'}?
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gives T, and T'1. , and to the alternative form
2 (Y- Y(Za — Z)

R” - arfig ypta

{ X Ya=Y)(Va—Yy) 3  (Za— Zp)(Za— Z,)}

afxrra axfx rta

gives To, and Tz .

These statistics are discussed in [5] and [1], where the following properties
are proved for F continuous:

(1) T1, has mean 71 = 7i[F] = E®.p(X., Xs), where X,, X is a random
sample of size 2 and ®p(21, 2) = Dixiean sgn(y: — y;) sgn(e; — z;). Let
Pu(z) = E®u(z, X), then 71 = E®u(X). One finds $u(x) = 4F(y, 2) — 2F (y,
®) — 2F(»,2z) + 1, so that = = 4ff F dF — 1. Ty, has the variance

2 2
MY Fr

which is finite and converges to zero with 1/n. In case of independence 7, = 0,
E®3(X) = %, and we have

2(n — 2){E®1(X) — 73} + 1 — ],

0’2 = 2(2n + 5)
" Onln — 1)

The distribution of (Ty» — 71)/01. converges to the normal distribution with 0
mean and unit variance if B®h(X) = 1. v

(2) T4 has mean Ty = Tz[F] = E@za(Xc , Xg, X.y), where X, , Xg 5 X—y is a
random sample of size 3 and ®u(z1, 22, ) = 3D ieimrmicass SENE: — ¥y)
sgn(z; — zi). Let $0a(21, 25) = E®u(21, 22, X), Sui(x) = Edm(z, X); then 4 =
E®;(X). One finds forn > 2

Poa(t1, 72) = 1 + 2F (1, 2) + 2F (32, 21)
+ {Fyr, ©) — F(y:, »)}{sgn(zs — 22) — 1}
+ {F(,21) — F(», )} {sgn(yn — ) — 1},
Pu(z) = 1 — 4F(y, ©) — 4F(, 2) -+ 4F(y, ©)F(, 2)

+ 4fF(y, 2) dF (e ,2) + 4fF(y, 2) dF(y, =),
so that

T2

12 ff F(y, ©)F(x,2) dF(y,2) — 3

I

12 [[ (PG, ©) — 1}{F(=,2) - 3} dFG, ),
called the “grade correlation.” Lemma 4.1 of [8] proves that this equals

12 ff F(y,2) dF(y, ) dF(w,2) — 3 = 12 ff (F — Fo) dF,.
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Ten has variance (for n > 2)

o= 1‘;(” ) [3 <“ 3 3) (B (X) — 73}

+ 3(n — 3){E®3(Xa, Xp) — 13} + 1 — 72],

where X, and Xj are independent; this is finite and converges to zero with 1/n.
In case of independence . = 0, E®5,(X) = 3, E®3(X ., X5) = 1%, and we have

ol = n—3 .
"7 aln — Din — 2)°

while p(T1n , Ten) — 1, p representing the correlation coefficient so that the asymp-
totic functional relation 37y, = 2T, holds [3]. The latter relation does not hold
in general in the case of dependence. (T3, — 72)/02. converges to the normal
distribution with 0 mean and unit variance if £®3(X) » 75. All future refer-
ences to0 Ty , 72, and o3, will be understood to bear an appropriate qualification
forn = 2.

(3) Assume that the medians of the ¥ and Z populations are unique, and de-
note them by p and v, and let F(y, v) be different from 0 or 1. (The other assump-
tions in [1] can be shown, by use of the Glivenko-Cantelli theorem, to be super-
fluous; but the condition on F(u, »), not given there, is, in fact, essential.) Then
the distribution of Z){(N’ — 2n F(u, v)}[n F(u, v){3 — F(u, »)}]™* converges
to the normal distribution with 0 mean and unit variance; so the same holds for
(T3n - 7'3)/0'37. , where

s = 73[F] = 4[F(u, v) — F(u, ©)F(, v)],

1
T = %?F(#,V){% — F(u,v)} = - (1 — 73),

as Fu, v) = (1 4+ 73). In any case under Fy, continuous, the distribution of
Ty, is symmetric.
4) Ton = [(n — 2) Ton + 3T}/ (n + 1). Moreover,
00V (T, T = 1o gs (0 — ) (EBW(D)E(X) — mir]

+ {E‘I’lz(an 3 Xﬂ)q’zz(Xa ) Xﬁ) - 7'17'2}];
where X, and Xj are independent. In case of independence E ®1,(X) (X)) = 3,
E ‘Iﬁz(Xa s Xﬁ) @zg(Xa, XB) = %, and we get
1
0'(2)n = n—‘:—l, P(Tln, T2n) ~ 1.

The asymptotic distribution follows from this and the remarks under (2).
In case the variances of ¥ and Z are finite and positive, one could compare
these tests with the (parametric) test ® to see whether the correlation coefficient
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p vanishes. (We shall see, however, that in cases of interest in this paper, p = 0
frequently does not imply independence.) According to Cramér ([2], pp. 359
and 366), ER, = p 4+ 0(1/n), and, if the fourth moments are finite,

E(R, — p)* = 1’; + 0@,
with

? (10 | o 22 M3 M3 _ 778
k=%<"é‘+_§'+ >—P<~+°‘ (Moz#m)"l‘ ’
He20 Moz M20 Moz 20 Hoz / He20 Mo2

and the asymptotic distribution of (R, — p)(k/n)™* is normal with zero mean
and unit variance when the fourth moments are finite and positive and % differs
from 0. If ¥ and Z are independent, we get k& = 1; so that (given positive finite
fourth moments of X) with respect to classes of alternatives for which (at least
in the neighborhood of the null hypothesis) & and p differ from 0 and the
fourth moments are finite, and for which the convergence to normality is uni-
form, we have

)
9P .,

A =
(R(C) ve

K
k=1
provided this #£0. As a test for independence against a class of alternatives which
includes a case in which p vanishes, the ®-test is easily seen to be inconsistent.
In any case, when finite positive second moments of ¥ and Z exist, we note that

ER, = 0if Y and Z are independent.

2. General linear transformations. Let X0 = (Y ,Zw0) be a pair of indepen-
dent random variables with (nondegenerate) marginal distributions G and H.
By Fwe shall denote the joint distributions of the pair Xy = (¥, Zy) of linearly
transformed variables

Yy = MYe 4+ AeZio
Zx = )\3Y)‘0 + )\4Zx0

Let A denote the set of those nonsingular linear transformations A, which do
not consist merely of a change of scale or permutation of Yo and Zyo, or the iden-
tity transformation A°. A generates a class € of transformations of distributions
in = {GH |G, H nondegenerate} and a four-dimensional Euclidean space
containing \° = (1, 0, 0, 1).

A transformation X ¢ A — {\°} nearly always makes the resultant Y and
Z dependent:

TaeoreM 2.1. If X ¢ A, F\ s either normal with p = 0,

P2/ (1h) = = (As/A)/ (/M)

or a distribution of dependent random variables.



310 H. 8. KONIIN

Proor. We have to show that if F, is independent, it is normal. In 1948 a
proof, by Lo&ve, of a slight extension of the following proposition was published
in a treatise of Lévy [10]: For a pair U = (U;, U.) of independent random
variables to be normally distributed, it suffices that there exists a nonsingular
linear transformation A such that Vy = MUy 4+ AU, and Ve = MU + MU:
are independently distributed, and that MAAsAs 52 0. Note that the last condi-
tion is implied by the others when A ¢ A — {)°}. The formula for the ratio of
variances follows from this last condition and the vanishing of the correlation
of Yrand Zy .

To arrive at the relative efficiencies, we first derive the following lemmas.

Lemma 2.1. Let G and H possess first moments and densities which together with
their dertvatives are continuous. Let

Lo = f f F\ dF»,

Lo = [[ Faab, ©) dFy(=,2) = [[ B, ©)P(,2) a0, 2),

L) = Fig,»),

where Fy(u, ©) = F\(0o, v) = 3. (We omit &= from the regions of integration.)
Then

aL(\) _ aL(\) _

N O 0,
0
"’I‘;g") = 9BG'(Ys) cov {Zn, H(Zx)} > 0,
2
0
"I;S‘) = 2EH'(Zyo) cov { ¥, G(Ya)} > 0,
3
ALN) _ oL(N) _ o LA) _19L(Y)  8LAY) _ 19L(AV)
N W ’ W 2 g ONs 279N

which expressions are invariant under a change of origin of Yo and Zye.
If, moreover, G and H are symmetric about their means and their densities do not
vanish there,

aL(\°) _ aL(\")

()8 I\ -0
0
aI;)(?\) = G (EY\WE | Z\, — EZw]| > 0,
2
0
aI‘;,)(\)\) = ' (EZ\WE| Yy — EYy| > 0,
3

which expressions are tnvartant under a change of origin of Yo and Z, .
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Proor. Admissibility of differentiation under the integral sign is demon-
strated in the proof of Theorem 2.2. If the ranges of increase of G and H have
finite bounds, the continuity of the densities implies that they vanish at the
bounds, and so the derivatives of these integrals are effectively free of terms
involving the values of the integrands at the ends of their ranges. Therefore,
we may as well suppose doubly infinite ranges of increase.

We note at once that for \; = A3 = 0, and 7 = 1, 2, or 3, I;(0) is independent
of A1 and A4, so that

AW _ fori =1,2,3;5 = 1,4,
ON; =0

i = o [ [ () e (252)
s [MT — NoZ —MF -+ Mz o
ffG< e ) ( v )dydz]dydz.

- - [¢"wew &y [ H@HE a2

alL(\)
Mo

A=A0
- f G'WYE @) dy f H'(2) f "3H'(3) d2 de.
Integration by parts gives

[ wew a = awew [ - [¢wew 4 = B,

f H'G) f () dz dz = H() [ Ca(3) dz:lio - f H()2H'(2) de
= EZn — EZa, H(Z»).

Consequently,

oI, (\)

} = EQ' (Y 0)EZwH(Zyo) — EG'(Yr0){EZro — EZ\H(Z0)}
6)\2 A=20

= — EG'(Y)EZy + 2EQ (Yr0)EZrH(Z )
= 2EG’(Y)0) cov {Z)\O, Y(Z)‘O)}
If Gy and H, are the distributions of Yio = Yo — EYy and Zao = Zyo — EZ)o,

f H'(2) f ") di de = f Hi(z — EZ) f "HHY(z — EZ) d7 de

- f Hi) f SHU(Z) dz dz + B2,
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which by nondegeneracy of Hj is less than £EZy. Since
EZoHo(Zxo) = EZnH(Zyo) — 1EZy,  EGy(Yxo) = EG'(Yyo),
it follows that EZxoHe(Zxe) > 0 and that

af,’f” - = 2BG(Yi0)EZ Ho(Z3o) = 2EG(Yo) cov {Zio, Ho(Z0)} > 0

2 A= M

Similarly,

Mz o (Zo) cov {Yo,G(Yao)} = o(Zo) cov { Yo, Go(Yro)} >0

-3 s (MY — N2 ’ ’—)\3y+)\12_'> ’
L) = [det | ff[{f(’< ot >H<“—daﬁ- de
o )\4y'—->\2z> ,(—-xgy'+>\1z> \
fG ( din )2 dr )Y
r [(MT — ’ —Ng + M2 = -:I
ffG< det A >H< det \ >dydz dy dz,

- - f @ ()G ) dy f JH'() de! f H'QH ) de

oI, (\)
Iz

A==A0

- [ewew) a [ @ @) ay [ ' @HE) &

~ [emew o [m6 [ ") d de
—3EGQ (Y \)EZyo — EGQ' (Y ){EZyo — EZxH(Zo)}

1350
2 9\,

=)0 ’
and similarly,

al:(\)
O3

_laf 1(N)
=20 2 OAg

.
Aa=)0

Suppose that, moreover, G and H are symmetric about p’ and »’, respectively,
and that G'(¢’) and H'(y') are different from zero.

v opn
v o —~1 s (MY — a2 y (—Xsy -+ >\12>
Loy = jdetr™ [ [ @ <————de“ >H Myt Nz gy g
Note that u = A/ + M, » = M’ + N, [ G(y) dy = 3, L) = &

0{;}\(?) - f G (y) dyf 2H'(2) dz + v'G'(ﬂ')f H'(z) dz

A=A 0
N f H'G) de + WG W) = @) f O — DH'() dz
= 3@ WE | Zy — v'| = 3G (EY \)E | Zro — EZx0| > 0,
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since
0> f G — VH'(D) dz = f H'() dz — 3.

If Yao = Yao — ¢’ and Zyxo = Zyo — ¥ have the distribution Go and Hy, this
gives

0
LM | _ o) [ #Hi) & = 16O E | Z3o| > o;
Oz [a=r0
gimilarly,
A o w0 [ o6,
DO~ ) [ @ - 9@ dy = ~HO [ 166 dy > 0.
3 A==A0

We now obtain the following general theorem (for notations, see Section 1.2):

TueoreM 2.2. Let A’ denole a set of nonsingular linear transformaiions of
Yo and Zyo which do not consist merely of a change of scale or permutation of Yo
and Zyo or the identity transformation \°.

I(a). Let G and H have first moments and continuously differentiable densities,
or be limits of such distributions and possess densities. For sequences {A(n)} of
elements of A’ — {\°} converging to \° for which for each B > o + " the numbers

lim /7 A(n) = ¢, im /7 As(n) = ¢

exist and satisfy’
EG (Yo) cov{Zyo, H(Z\0)} + c:EH'(Zyo) cov{Yro, G(Yyo)} # 0
we have’, for i = 0, 1, 2,
3, , applied as an (o, o )-level test, is in @ (3, A),
Ailc) = 126EG' (Vo) cov{Zno, H(Zy)} + 12cEH'(Zyo) cov{Yre, G(Y1r0)},

which expression ts independent of the means of Yo and Zyo.

(b). Let G and H be symmetric about their means, have first moments and con-
tinuously differentiable densities which do not vanish at the means, or be limits of
such distributions and possess denstties. For sequences {A(n)} of elements of

A = A%
converging to \° for which for each 8 > o' + «" the numbers

lim '\/7_1, Ae(n) = ¢, lim ‘\/’714 )\3(77/) = C3

n->0

2 If the (continuous) G and H are defined as the pointwise limits of distributions G,
H® with continuously differentiable densities, interpret the functionals of G and H in the
text as limits with respect to « of the corresponding functionals of G*9 and H(9,
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exist and satisfy’
C2GI(EY)‘0) E ] Z)‘O fand EZ)‘ol + CgH’(EZ)‘O) EI Y)‘o - EY)‘O‘ # O,

we have’
3; , applied as an (¢, o”)-level test, is in @ (&, A,
As(c) = 266/ (EYro) E | Zno — EZyo | + 2cH'(EZxo) E | Yao — EY o |,
which expression is independent of the means of Yo and Zy.
(c). Let G, H possess fourth moments and let o(Zn0)/ O'(Y)\o)

For sequences {\(n)} of elements A’ — A"} converging to \° for 'whzch for each
B8 > o + o the numbers

lim V7 A(n) = ¢, lim /7 Ms(n) = ¢

n—->0

exist and satisfy

bCz"i"%Ca?éO,

we have

®, applied as an (¢!, o’')-level test, is tn @5 ar(3, A'),
1
A(R(c) = bey 4+ Bca

with the latter expression depending on G and H only through b.

II(a). Let G, H be as in I(a), and suppose that no sequence exists as there de-
scribed. Let there exist, however, sequences {N(n)} of elements of A’ — { A’} converg-
ing to \° for which there is a smallest integer p > 1 with

ar

‘ a?
a)\kl . a>\k’ ff Fl dF)‘; a>\k1 . a)\k’f Fx dF)\(y) °°) de(OO Z)

continuous near N = \°, with

lim 7t {(A\(n) — 2\°} = ¢
existing for each 8 > o + o, and with
(hafrokp) Gy =" Crp O, 6)\1;, f FydF,

or

Z; ) Cry t e ck,m;f Fy dF\(y, ©) dFy\(, 2)
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different from zero. Then,

5, , applied as an (o, ") -level test, is in @5 (2—1{) , A’> ,

6 o
Ale) = — i, — f

0 = 21 2, e, J) PP
or

% and 3z, applied as (o, ) -level tests, are in @5 yr (lp ) A’) ,

Ag(e) = Bale)
12 or
== 2 R T fodFa(y, ©) dF\(, 2).

(b). Let G, H be as in 1(b), and suppose that no sequence exists as there de-
scribed. Let there exist sequences {N(n)} of elements of A’ — {\*} converging to
A’ for which there is a smallest integer p > 1 with

a7
— F)()\lEY)‘O + >\2EZ)‘0 N )\3EY)‘0 + MEZ)\O)
)V RERN:) VS

continuous near A = X', with

lim n"{A(n) — A%} =¢

n->0

existing for each B > o + o, and with

ar
(yeeokp) Chy *° " Crp Ny +++ O, F\MEYro + MEZy, s EY v + MEZy0)

different from zero. Then

35 applied as an (o, o”)-level test, is in @5 <2lp , A ) ,

2 e
p! (kye+kp) Ckl ckp a>\k1 PP axkp

'F)\()\1EY)\0 + >\2EZ)\0, A?,EY)‘O + >\4EZ)‘0)

As(c) =

(c) Against sequences {\(n)} of elements of A’ — {N\°} converging to \° for
which

. —Mm) / N(n) = p?
n-»00 )\2(%) /)\3(71) ’

® s not consisteﬁt.
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Proor. First we prove (a) and (b), letting G and H satisfy the conditions of
Lemma 2.1. Let R(yo, 20) = {{(#,2):¥ < 20,2 < 20}, and

— -1 » ( Ny — A2z 2 { —NsY - >\1Z>
J |det )\‘ f-/;e(yo,zo)G ( det A > H < det 3 dy dz

= [ CwHE 4
B\ (Wo,20)

where R)(yo, 20) is the corresponding continuous transform of R(ye, 20). Since
[* Y G" (y)H'(2) dy dz exists for all y, 2, including «, thereexisty” < ¢, 2" < 2/
such that

f / @ (WH (2) dy dz
R(yo.2"YURW" 20)

is arbitrarily small. Let R(y, 2) = R(y, 2) — R(y, 2”) u R(y”, 2), R\(y, 2) =
Ry, 2) — R(y, 2”) u Ry, z). Since, moreover, for A close to A’ there ex-
isty = yo, 2 = 2 close to yo and 2o such that

R\(yo, %) C R(Y, ),

convergence of J at infinity is uniform in X near \’. Since the integrand is also
continuous uniformly in X over R(y/, 2/) — R(y”, "), the integral over

R, 7) — Ra(wo, %)

can be made arbitrarily small, and so also the absolute continuity of J is uni-
form in A near \°. For the other integrals arising in the partial derivatives of
I, I, and I;, we also get these uniform properties, so that the generalized
Lebesgue convergence theorem is applicable, and the partial derivatives are
continuous functions of A near A" and can be obtained by differentiation under
the integral sign. The continuity in A of Iy, I», and I3, and of E®% (X)) and
E®3(X,) in which occur expressions such as

[[7:, =), 2 [P0, 2 aPs@, =) aPsta, 2,

follows likewise. The continuity of E®}(x)) and Edi(x,) implies (utilizing the
results quoted in Section 1.3) that

o) ~ {E¢3)2(XJ\) — 71\ }e1a (%)
and

o2a(N) ~ (BBX(Xn) — r(\)}02a(\")
are positive in the neighborhood of A = \°, so that the asymptotic distribution of
(T:in — 7i)/0: is normal with zero mean and unit variance in that neighborhood

for7 = 0, 1, 2. For 7 = 3, this follows at once from the easily verified fact that
Fy(u, v) is different from both 0 and % when X\ is near A,
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The approach to normality of T, is uniform. Forz = 1, 2 (and so for ¢ = 0)
this follows from the method of proof of the approach to normality, which uses
the central limit theorem for the identically distributed random variables
3P (Xra) — 7:(A\)(a = 1, -++, n), and the fact that the asymptotic distribu-
tions of two random variables Vy = n™2( + 1) .®% (Xh..) and

Vi = vV {TulXy) — (V)

are the same when the expectation of the squared difference converges to zero,
by noting the above continuity property. In fact, E(V, — V) converges to
zero uniformly and EVy® is continuous in A. For ¢ = 3, the continuity in A of
F\ and its first partial and cross derivatives at (g, ») is also sufficient for the uni-
form approach to normality. This is so because the asymptotic normality proof
involves the Glivenko-Cantelli theorem, which holds uniformly when the dis-
tribution functions are continuous uniformly with respect to the parameter
(see [13]), and an argument analogous to that of the de Moivre-Laplace theorem
for binomial random variables with constants equal to the first partial and
cross derivatives of Fy at (u, »).

Tt remains to consider continuous distribution functions ¢ = ¢, H = H®
which are limits of distribution functions G*°, H'?, as mentioned in the theorem.
Since by Pdélya’s theorem the convergence is uniform, given any n > 0 there
exists ¢ > 0 such that for e < & there is a sphere of FX?-measure bigger than
1 — 5 with the property that on its complement C we have (if F© = p9 _ O

[, 210w, 9 < [ [ ari, 2,

L[1F0G, =10, aFw,2) < [[ arw,2,

which is less than 7, giving the convergence of I..(A\) to Lo(A\) for 2 = 1, 2 (de-
fined in an obvious way) by the Helly-Bray theorem; we easily obtain it for 7 = 3
as well. Since I;(\) and I4(\) are continuous in A, this convergence holds uni-
formly in a neighborhood of A’ by a slight extension of the reasoning in [7].
Similarly we get uniform convergence of EVi. and EVx: to EVio and EVig
and of E(Vye — Vxo)® to E(Vao — Vo)’ so that the limits are continuous in
A near \’. Let A® coincide with A’ except at the kth coordinate, where it equals
M. . By the uniformity in A of the convergence of I..(A) as ¢ — 0, we have, for
A near )\°,

lim 87;:(\")/N;, = lim lim [T.QA%®) — L")/ — AD)

>0 >0 Ap>Ai0

= lim lim [L:0%) — L.")]/(v — M)

0
A>Ap e>0

= lim [Zo(?) = Lo/ — A\ = 9Ta(A")/0Ns .

A k»k?‘
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Fma.lly we have to show that the partial derivative I;0(A\) is continuous near
A’ for X approaching A\° along any ray: Letting

A =N+ =A%, AP@) = AP 40 — D),
8Lo(\)/6N = lim OI(\)/8hs = lim lim lim 4.(e

>0 >0 )q;—»)\;

= lim lim lim A,(¢ = lim lim 4,(0)

t>0 Ag>hp €0 t»0 Agshg

= 1in01 alo(\(®)) /0N,
te»

where
Ade) = [LAP(@®) — LM/ e — M).

Now we prove (c). It is easy to see that if the fourth moments of Yo and Zyo
are finite, and if

_ M@/ @)
Aa(n)/Ns(n) ~ o*(Y)
for all sufficiently large n, the parametric test ®, involving the ordinary correla-

tion coefficient R, , can be compared with the above tests. It has (see last part
of Section 1.3)

a(Z)\o) a'(Y)\O)
T 2 T o) ©

whatever be G and H. In fact, one finds k ~ 1 near A = A°, and on the subset
8. of the sample space on which the sample moments mvolved in the definition
of R, differ from the corresponding population moments by less than ¢ > 0,
Tchebycheff inequalities on Py(8S,) are satisfied uniformly when the fourth mo-
ments of Y)‘o and Zyo are finite, so that (compare [2], p. 366) we can approximate
uniformly n"*(R, — p) by a linear function of the differences. Moreover, by the
continuity in A of EY3Zi, the distribution of these differences is seen to be
uniformly asymptotically normal. This concludes the proof of the theorem.

Since the efficiency of 3; depends so strongly on local properties of the density,
we must conclude that this test is not to be recommended generally.

In the case of most interest where, except for a change of scale, and/or origin,
Yo and Zxo have the same distribution, the condition on the sequences {\(n)}
does not explicitly depend on the form of this distribution. It is therefore worth-
while to particularize our result to that case.

TurEOREM 2.3. Let A’ denote a set of nonsingular linear transformations of
Yao and Zxo which do not consist merely of a change of scale or permutation of
Yo and Zyo or of the identity transformation N°. Let there exist a and b such that

P{Z = t} = G{(t — a)/b}.

A, (C) =
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1(a). Let G have a first moment and a continuously differentiable density or be
the limit of a sequence of such distributions and possess a density.

For sequences {\(n)} of elements of A’ — {\°} converging to N’ for which for
each 8 > o + & the numbers

lim /7 Aa(n) = ¢, lim V7 As(n) = ¢

n->0 n-»%

exist and satisfy’
bes + 1 e = 0,

we have,’ fori = 0, 1, 2

3;, applied as an (o, " )-level test is in @Y (3, A,
Ade) = 12 (ch + %c3> EG' (V) cov {Tho, G(Yra)},

which is independent of the mean of Yyo.

(b). Let G be symmetric about its mean, have a first moment and a continuously
differentiable density which does not vanish at the mean, or be the limit of such dis-
tributions and possess a denstty.

For sequences {\(n)} of elements of A' — {A°} converging to A° for which for each
B8 > o + o the numbers

lim V7 A(n) = ¢z, lim V7 As(n) = ¢

n->x0

exist and satisfy’

b62+%03 #0,

we have®

33 , applied as an (¢, " )-level test, is in e (3, A,
Agle) = 2 (bc2 + %c3>G'(EYm)E|YM — EY»l,

which is independent of the mean of Yxo.

(¢) Let G possess a fourth moment and let o(Zxo)/a(Yro) = b.

For sequences {\(n)} of elements of A’ — {\°} converging to \° for which for each
8 > o + o the numbers
lim \/ﬁ (n) = ¢, lim v/7 As(n) = ¢

n-»0

3 If the (continuous) G is defined as the pointwise limit of distributions G*© with a con-
tinuously differentiable density, interpret the functionals of @ in the text as limits with
respect to e of the corresponding functionals of Q9.
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exist and satisfy

. 1

be, + 3 c3 # 0,

we have

®, applied as an (o', «”)-level test, is in @S (3, A'),
1
Axle) = be + 5 s,

whatever be G,
II. For sequences {\(n)} for which

. —>\1(n)/>\4(n) .12
bW yi v Sl

such as occurs in sequences of rotations (discussed below), there may still exist p > 1
for which Ay(c) is well defined for i = 0, 1, 2, or 3 following Theorem 2.211. (See
Lemmas 2.2, 2.3, and 2.4, below, which also deal with other cases where sequences
as in I do not exist.) For such sequences R is not consistent; and for G possessing a
symmetric density and b = 1, the tests 3; (¢ = 0, 1, 2, 3) are not consistent.

Proor. We only need to prove the absence of consistency of the 3;, and
therefore the vanishing of the 7;, under the conditions mentioned. For this pur-
pose the location of the center of symmetry is immaterial, and we shall suppose
it and a to be zero. Let f be the joint density of ¥\ and Z», and for simplicity
suppose that

Mn) = Mn) =M, M) = —N7n) =N
exactly. Then, since @’(t) = G'(—1),

M2 ot [ MY —'7\22> , )\2y+7\12>

Y22 — M’y) @ (xlz + Ay

DY TG+ x%)*) =Je -9,

which identity is easily seen to imply r; = O.for ¢ = 0, 1, 2, 3. (In the case of
rotations one can prove this result even for the case where no densities exist,
using Theorem 4.1 of [9].)

ReMARk. It may be noted that under the assumptions made on @ in the pre-
ceding theorem under I(b),

0 < cov{Yys, G(Yro)} < 3E | Yao — EVro| < 3o(To),

while, of course,

= O\l + )Y (

cov { Vo, G(Ya0)} < 30(¥n0)/V/3

(¢(Yo) need not be finite).
Exampres. The following are some numerical examples of the application of
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I of Theorem 2.3. Here be, + (1/b)cs % 0 and A’ = A(c)[be, + (1/b)es]™". Thus
the asymptotic power of any of these tests against A’ (near A°) is
§7-A (N —A0)n1/2

1 — 2n)" f ¢ da,

AN =20)al/2

with the A corresponding to that test. The relative efficiency of two tests is
found by squaring the quotient of the entries in the corresponding columns:

G Ag, A1, As As An
normal ’ 3/7 2/x 1
uniform 1 1/2 1
parabolic 162/175 9/16 1
Laplace 36/32 1 1

The above theorem depends on development in a Taylor series expansion up
to the first term of I;(A) about A’ for ¢ = 1, 2, 3. In case G and H are the
same distribution except for a scale or location factor, but be, + (1/b)es = 0,
this term vanishes, and we have to obtain second- or higher-order terms. This
is done in the following three lemmas, the calculations for which are interesting
but exceedingly laborious. They were carried out by Mr. Arnold Kaplan under
the author’s general direction; his contribution is here gratefully acknowledged.
In the derivations, conditions allowing differentiations under the sign of integra-
tion were freely assumed, and in Lemma 2.2 (2.3, 2.4) the existence and con-
tinuity of the second (third, fourth) derivative of the density of ¥»e and the ex-
istence of its moments up to the same order was assumed (although this may not
be necessary).

LemMA 2.2. Suppose there exist numbers b > 0 and a such that

HG) = G<t“b“>, b>\2+%>\3=0.

1
Fori=0,1, 2,3, let A; equal the coefficient of (bex =+ I;cs) in the expression for

Ai(c) in Theorem 2.31, and let 1/q = bex(es — c1). With the notations and condi-
tions of the previous lemma and further conditions on G implied by the remarks
tmmediately above, we obtain, neglecting third-order terms,

L) — LY = 2b A — M)EG' (Vo) cov{ Vao, G(Yro)},
L) — LAY = b2\ — M)EG' (Vo) cov{ Vo, G(Yro)}
— Wslcov{ Yo, G'(Y20)}T,
L) — L% = 3 — M)G(EYr0)E| Yao — EY |,
p(\) — p(") = Bl — N),

so that qAi(c), gqAs(c), and gAgz(c) are the same as A1, Ay and AL respectively,
while gAs(c) = qAo(c) is generally different from Ay = Ag if G 1s asymmetric.
If the distribution of Yo is symmetric about its mean, the covariance Yo and
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G’(Yy0) vanishes, and the development of I;(A) and of 2I;(\) coincide. If Ay =
A1, the first and third expressions vanish, and p(A\) = 0. Moreover, if the distribu-
tion of Yo is symmetrie about its mean, the second expression vanishes as well.
We therefore investigate third-order terms in

Lemma 2.3. With the notations and conditions of the previous lemma, we obtain,
neglecting fourth-order terms, when Ay = A :

L) — LAY = -8 — 1){EYWG'(Y“)}{EYNG’(Y“) + %EG"(YW)},

L) — LAY = 032\ — 3)[cov{ Yo, @(Yao)} T,
L) — L) = 3230 — 1),

If the distribution of Yyo is symmetric about zero, the first two expressions
vanish, Further development shows, however, that (with A; 5 1) I;(\) — I,(\%
does not vanish identically in that case:

Lemma 2.4. With the notations and conditions of the previous lemma, and sym-
metry of the distribution of Yo about zero, we have, neglecting fifth-order terms,

LO) = LY = = 20w = D [ (@"@)) i3rEYE + o'} + B0. — 1Y,

where the first expression on the right-hand side vanishes for @ = 0.
3. Rotations. As a special case of linear transformations, we consider the class
of rotations. For | 8| £ n/4, write Fy for the distribution obtained from Fo by

a rotation
)\1=>\4=0030, Ag = —)\3=Sin0.

An immediate application of Theorem 2.2 yields:

TuroreM 3.1. Let G, H have first moments and continuously differentiable denst-
ties, or be limits of such distributions and possess densities; and consider null se-
quences {0(n)} of nonzero angles of rotation for which for each 8 > o -+ o

lim v/7 sin 6(n) = ¢

exists and differs from 0.
(a). If
EGQ'(Yy) cov{Zy, H(Zy)} # EH'(Zy) cov{Y,, G(Yo)}, .
then,t fori = 0, 1, 2,
3¢, applied as an (o, o )-level test, is in @57 o (%, ©),
Aie) = 12¢[EG'(Yy) cov{Zy, H(Zy)} — EH'(Zo) cov{Y,, G(¥Yo)}].
(b). Let G and H also have nonvanishing denstties at the means and be symm-ric
about the means.
I
G'(EY)E | Zy — EZy| ¢ H(EZo)E | Yo — EY,|,
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then i
33 , applied as an (o', o )-level test, is in @52 o (3, ©),
As(c) = 2¢[G'(EYo)E | Zo — EZy| — H'(EZW)E | Yo — EY, |].

(c). If EYy < « and EZs < » and o¢(Zo)/o(Ys) = b = 1, but otherwise G
and H are arbitrary,

®, applied as an (o, o )-level test, is in ®%?.(%, ©),

As(0) = c{b —%}

If (a) EG@'(Yy) cov{Zy, H(Zo)} = EH'(Z,) cov{Y,, G(Yo)}
or (b) G'(EY())E | Zy — EZol = H’(EZo)EI Yo - EYol

(due, for example, to G = H), one applies II of Theorems 2.2 or 23 In general
this proves to be laborious. For sufficiently smooth distribution functions one
may expect to find p for which A;(c) # 0, since, generally, Fy depends on 6.
However, the remark below Lemma 2.2 implies that ® is not consistent when
b=1.

Further properties of the rotations have been studied in [9].
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