
On The Power Of Distributed Bottom-up Tree Automata

Kamala Krithivasan 1 and Ajeesh Ramanujan1
1Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai - 36

kamala@iitm.ac.in, ajeeshramanujan@yahoo.com

Abstract— Tree automata have been defined to accept trees.
Different types of acceptance like bottom-up, top-down, tree
walking have been considered in the literature. In this
paper, we consider bottom-up tree automata and discuss
the sequential distributed version of this model. Generally,
this type of distribution is called cooperative distributed
automata or the blackboard model. We define the traditional
five modes of cooperation, viz.∗-mode,t-mode,= k, ≥ k,
≤ k (k ≥ 1) modes on bottom-up tree automata. We discuss
the accepting power of cooperative distributed tree automata
under these modes of cooperation. We find that the∗-
mode does not increase the power, whereas the other modes
increase the power. We discuss a few results comparing the
acceptance power under different modes of cooperation.
Keywords:Tree Automata, ranked alphabet, distributed nondeter-
ministic tree automata, modes of cooperation

1. Introduction
Finite tree automata are generalizations of word automata.

While a word automaton accepts a word, a tree automa-
ton accepts a tree . The theory of tree automata arises
as a straight forward extension of the theory of finite
automata [6]. Tree automata were introduced in [4], [5]
and [12] to solve certain decision problems in logic. Since
then they were successfully applied to many other decision
problems in logic and term rewriting, see e.g. [1]. Even
though the two models are used in different settings they
are closely related to each other since a finite automaton
can be seen as a special case of a finite tree automaton.
Trees appear in many areas of computer science and engi-
neering and tree automata are used in applications such as
XML manipulation, natural language processing, and formal
verification and logic design.

According to the manner in which the automaton runs on
the input tree, finite tree automata can be either bottom-up or
top-down. A top-down tree automaton starts its computation
at the root of the tree and then simultaneously works down
the paths of the tree level by level. The tree automaton
accepts the tree if such a run can be defined. A bottom-
up tree automaton starts its computation in the leaves of the
input tree and works its way up towards the root.

A finite tree automaton can be either deterministic or non-
deterministic. This is an important issue since deterministic
top-down automata are strictly less expressive than non-
deterministic top-down automata. For the bottom-up case,

deterministic bottom-up tree automata are just as powerful,
from the point of view of language equivalence, as non-
deterministic bottom-up tree automata. Non-deterministic
top-down tree automata are equivalent to non-deterministic
bottom-up tree automata [1].

In the last few years distributed and parallel comput-
ing has played an important role in Computer Science.
Modelling these concepts using formal models has given
rise to the concept of grammar systems and distributed
automata. Grammar systems can be sequential or parallel. A
co-operating distributed (CD) grammar system is sequential.
Here, all grammars work on one sentential form. At any in-
stant only one grammar is active. This is called a blackboard
model. Suppose a problem is to be solved in a class. The
teacher asks one student to start working on the problem on
the blackboard. The student writes a few steps, then goes
back. Another student comes and continues working on the
problem. On his return, a third student comes and continues.
The process continues till the problem is solved. Now, the
question arises: at what time does one student return and
the next one starts? There may be several ways for defining
this. Correspondingly, in the CD grammar system, there are
different modes of co-operation. The student may return
when he is not able to proceed further (terminating mode);
he may return at any time (∗-mode); he may return after
doing k-steps (= k-mode); he may return after doingk or
less steps (≤-mode); he may return after doingk or more
steps (≥-mode).

In this paper, we consider bottom-up tree automata and
discuss the sequential distributed version of this model.
We define the traditional five modes of cooperation, viz.
∗-mode, t-mode, = k, ≥ k, ≤ k (k ≥ 1) modes on
bottom-up tree automata. We discuss the accepting power
of cooperative distributed tree automata under these modes
of cooperation. We find that the∗-mode does not increase
the power, whereas the other modes increase the power. We
discuss a few results comparing the acceptance power under
different modes of cooperation.

In the next section we give basic definitions needed for the
paper. Section3 contains the definition of cooperative dis-
tributed tree automata and some results about their accepting
power. The paper concludes with a note in section4.

2. Basic Definitions
Let N be the set of positive integers. Then the set of

finite strings overN is denoted byN∗. The empty string is
denoted byǫ. A ranked alphabetΣ is a finite set of symbols
together with a functionRank : Σ → N . For f ∈ Σ, the
valueRank(f) is called the rank off . For anyn ≥ 0, we
denote byΣn the set of all symbols of rankn. Elements
of rank 0, 1, · · · , n are respectively called constants, unary,
· · · , n-ary symbols.

A tree t over an alphabetΣ is a partial mapping
t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite, prefix-closed subset ofN∗, and
• for eachp ∈ dom(t), if Rank(t(p)) = n > 0, then

{i|pi ∈ dom(t)} = {1, 2, · · · , n}.

Each p ∈ dom(t) is called a node of t. The node
with domain elementǫ is the root. For a nodep , we
define the i th child of p to be the nodepi, and we
define the i th subtree of p to be the treet

′

such that
t
′

(p
′

) = t(pip
′

) for all p
′

∈ dom(t
′

). A leaf of t is a
node p which does not have any children, i.e. there is no
i ∈ N with pi ∈ dom(t). We denote byT (Σ) the set of
all trees over the alphabetΣ. The size of a tree t is the
number of elements indom(t). The height of a tree t is
max{|w| : w ∈ dom(t)}. Given a finite treet, the frontier
of t is the set{p ∈ dom(t)| for all n ∈ N,pn 6∈ dom(t)}.
A tree with roota and subtreest1, t2, · · · , tr is represented
by a(t1, t2, · · · , tr).

Example 1:Let Σ = {a, b, c, g, f},f ∈ Σ2,g ∈ Σ1,

a, b ∈ Σ0. A tree overΣ and its diagrammatic representation
is shown in Figure 1

Let t be the treef(g(a)f(bc)).
dom(t) = {ǫ, 1, 11, 2, 21, 22}.
size(t) = 6.
height(t) = 2.
frontier(t) = {11, 21, 22}.

fǫ

g1

a11

f 2

b21 c 22

Fig. 1: A tree and its diagrammatic representation

A nondeterministic finite tree automata(NFTA) over an
alphabetΣ is a tupleA = (Q,Σ, Qf ,∆) where,

• Q is a finite set of states,
• Σ is a ranked input alphabet,
• Qf ⊆ Q is a set of final states,
• ∆ is a finite set of transition rules.

Each transition rule is a triple of the form
((q1, q2, · · · , qn), f, q) whereq1, q2, · · · , qn, q ∈ Q, f ∈ Σn,

i.e. Rank(f) = n. We usef(q1, q2, · · · , qn) → q to denote
that ((q1, q2, · · · , qn), f, q) ∈ ∆. If Rank(f) = 0, i.e.
f is a constant, then we use rules of the formf → q.
The epsilon rules are denoted by rules of the form
qi → qj . A run of A over a treet ∈ T (Σ) is a mapping
r : dom(t) → Q such that for each nodep ∈ dom(t)
whereq = r(p), we have that ifqi = r(pi) for 1 ≤ i ≤ n

then ∆ has the rulet(p)(q1, q2, · · · , qn) → q. A set
B = {q1, q2, · · · , qn} ⊆ Q,n ≥ 1 with respect to a tree
t
′

∈ T (Σ ∪ Q) is said to be an active state set if every
qi = r(pi), i ≥ 0 for somep ∈ dom(t) and t(p) ∈ Σ.

An instantaneous description(ID)of a NFTA is a pair
(B, t), wheret ∈ T (Σ ∪ Q) andB is a set of active state
set with respect tot.

For two ID’s (B, t), (B
′

, t
′

) we write (B, t) ⊢ (B
′

, t
′

)
if there is a rule of the forma(q1, q2, · · · , qn) → q

′

∈ ∆
such thatt

′

is obtained fromt by replacing a subtree oft
of the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn), where
a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (Q),r(root(t1)) = q1,

r(root(t2)) = q2, · · · , r(root(tn)) = qn, q1, q2, · · · , qn ∈ B

and B
′

is the set of active state set after performing the
transition.

The initial ID is (φ, t), t ∈ T (Σ) and the final ID is
({qf}, t

′

) for someqf ∈ Qf , t
′

∈ T (Q).The reflexive and
transitive closure of⊢ is denoted by⊢∗.

A run represents the effect of a sequence of ID’s from the
initial ID to a final ID.

For a NFTA A, L(A) = {t ∈ T (Σ)|(φ, t) ⊢∗ ({qf}, t
′

),
qf ∈ Qf , t

′

∈ T (Q)}.
A set L of tree languages overΣ is recognizable if

L = L(A) for some NFTAA. Two NFTA are said to be
equivalentif they recognize the same tree language.

We give an example to show that certain tree languages
are not recognizable.

Example 2:Let Σ = {f, g, a}, whereRank(f) = 2,
Rank(g) = 1, Rank(a) = 0. Consider the tree language
L = {f(gi(a), gi(a))|i > 0}. Let us suppose thatL is
recognizable by an automatonA having k states. Consider
the treet = f(gk(a), gk(a)). t belongs toL, therefore there
is a successful run ofA on t. As k is the cardinality of
the state set, there are two distinct positions along the first
branch of the tree labeled with the same state. Therefore,
one could cut the first branch between these two positions
leading to a termt′ = f(gj(a), gk(a)) with j < k such that
a successful run ofA can be defined ont′ . This leads to a
contradiction withL(A) = L.

The proof can be generalized into a theorem, similar
to pumping lemma for recognizable string languages, to
recognizable tree languages [1].

3. Distributed Nondeterministic Tree Automata
(DNTA)

In this section we define distributed nondeterministic
tree automata(DNTA), the different modes of acceptance

of DNTA and discuss the power of different modes of
acceptance.

Definition 1: A DNTA is a 4-tuple D = (K,Σ, F,∆)
where,

• K is ann-tuple (K1,K2, · · · ,Kn) where eachKi is a
set of states of theith component;

• Σ is a finite set of ranked alphabet;
• F ⊆

⋃
i Ki is the set of final states;

• ∆ is a n-tuple (δ1, δ2, · · · , δn) of state transistion
function where eachδi is a set of transition rules of the
ith component having the formf(q1, q2, · · · , qn) → q,

f ∈ Σn, q1, q2, · · · , qn ∈ Ki, q ∈
⋃

i Ki or qi → qj .

In the case of DNTA, we can consider many modes of
acceptance depending upon the number of steps the system
has to go through in each of then components. The different
modes of acceptance are∗-mode, t-mode,≤ k-mode,≥
k-mode, and= k-mode, wherek is a positive integer.
Description of each of the above modes of acceptance is
as follows:
t-mode acceptance :An automaton that has a leaf transition
rule begins processing the input tree. Suppose that the system
starts from the componenti. The control stays in component
i as long as it can follow the transition rules in componenti.
Otherwise, it transfers the control to some other component
j, j 6= i which has the transition function to proceed. If
more than one component succeeds, then the selection of
j is done nondeterministically. The process is repeated and
we accept the tree if the system reaches any one of the final
states. It does not matter which component the system is in
while accepting.

Definition 2: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in t-mode is given by a
triple (B, t, i) whereB ⊆

⋃
i Ki and it denotes the current

active state set of the whole system,t ∈ T (Σ ∪
⋃

i Ki) and
i, 1 ≤ i ≤ n the index of the component in which the system
is currently in.

The transition between the ID’s is defined as follows:

i) (B, t, i) ⊢t (B
′

, t
′

, i) if there is a rule of the
form a(q1, q2, · · · , qn) → q

′

∈ δi such thatt
′

is
obtained from t by replacing a subtree oft of
the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn),
where a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (

⋃
i Ki),

r(root(t1)) = q1, r(root(t2)) = q2, · · · ,
r(root(tn)) = qn, q1, q2, · · · , qn ∈ B and B

′

is the set of active state set after performing the
transition.

ii) (B, t, i) ⊢t (B, t, j) iff componenti does not have a
transition to proceed and componentj has a transition
to proceed.

The reflexive and transitive closure of⊢t is denoted by
⊢∗
t .
Definition 3: The language accepted by a DNTA

D = (K,Σ, F,∆) working in t-mode is defined as follows:

Lt(D) = {t ∈ T (Σ)|(φ, t, i) ⊢∗
t ({qf}, t

′

, j),
t
′

∈ T (
⋃

i Ki), for someqf ∈ F, 1 ≤ i, j ≤ n}.
We now give an example of a distributed bottom up tree

automata working int-mode.
Example 3:Consider the language

L1 = {a(bd(gjd)i(f), ce(hke)l(f)), i, j, k, l ≥ 1,
|i− l| ≤ 1} overΣ = {a, b, c, d, e, f, g, h}, a ∈ Σ2,b, c, d, e,

g, h ∈ Σ1,f ∈ Σ0.

We define a distributed tree automaton
D1 = (K,Σ, {qa},∆) working in t-mode as follows.

The components are defined as follows
• Component1

– K1 = {qf , qg, q1, q2},
– δ1 = {d(qf) → qg, g(qg) → q1, g(q1) → q1,

q2 → qf}

• Component2
– K2 = {qf , qe, q1, q2},
– δ2 = {e(qf) → qe, h(qe) → q2, h(q2) → q2,

q1 → qf}

• Component3
– K3 = {qf , qa, qb, qc, qd, qe, q1, q2},
– δ3 = {f → qf , b(qg) → qb, c(qe) → qc,

a(qb, qc) → qa}
The processing starts in component 3 , with the two leaves

using the rulef → qf . As further processing is not possible
in component3, processing continues with2 or 1. Then it
alternates between1 and2 processingd’s, g’s, e’s andf ’s.
Finally when the labels areb andc, processing takes the tree
to qb andqc and in component3 stateqa is reached by the
root.

Theorem 1:There exists a language accepted by a DNTA
working in t-mode which is not recognizable.

Proof: Consider the tree languageL1. Let us suppose
thatL1 is recognizable by an automatonA havingk states.
Consider the treet = a(bd(gd)k(f), ce(he)k(f)), k > 0.
t belongs toL1, therefore there is a successful run ofA

on t. As k is the cardinality of the state set, there are
two distinct positions along the first branch of the tree
labeled with the same state. Therefore, one could cut the
first branch between these two positions leading to a term
t′ = a(bd(gd)j(f), ce(he)k(f)) with j < k such that a
successful run ofA can be defined ont′ . This leads to
a contradiction withL(A) = L1. SoL1 is not recognizable.

∗-mode acceptance :An automaton that has a leaf transi-
tion rule begins processing the input tree. Suppose that the
system starts from the componenti. Unlike the termination
mode, the automaton can transfer the control to any of the
components at any time i.e., if there is somej, j 6= i such
that the next move is possible then the system can transfer
the control to the componentj. The selection ofj is done
nondeterministically if there is more than onej.
The ID and the language accepted by the system in∗ mode,
L∗(D) is defined as follows.

Definition 4: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in ∗-mode is given by a
triple (B, t, i) whereB ⊆

⋃
i Ki and it denotes the current

active state set of the whole system,t ∈ T (Σ ∪
⋃

i Ki) and
i, 1 ≤ i ≤ n the index of the component in which the system
is currently in.
The transition between the ID’s is defined as follows:

i) (B, t, i) ⊢∗ (B
′

, t
′

, i) if there is a rule of the
form a(q1, q2, · · · , qn) → q

′

∈ δi such thatt
′

is
obtained from t by replacing a subtree oft of
the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn),
where a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (

⋃
i Ki),

r(root(t1)) = q1, r(root(t2)) = q2, · · · ,
r(root(tn)) = qn, q1, q2, · · · , qn ∈ B and B

′

is
the set of active state set after performing the
transition.

ii) (B, t, i) ⊢∗ (B, t, j) iff componentj has a transition
to proceed.

The reflexive and transitive closure of⊢∗ is denoted by
⊢∗
∗.
Definition 5: The language accepted by a DNTA

D = (K,Σ, F,∆) working in ∗-mode is defined as follows:
L∗(D) = {t ∈ T (Σ)|(φ, t, i) ⊢∗

∗ ({qf}, t
′

, j),
t
′

∈ T (
⋃

i Ki), for someqf ∈ F, 1 ≤ i, j ≤ n}
We give an example of a distributed bottom up tree

automata working in∗-mode.
Example 4:Consider the language

L2 = {a(bi(d), cj(d)), i, j ≥ 1} overΣ = {a, b, c, d},
a ∈ Σ2, b, c ∈ Σ1,d ∈ Σ0. We define a distributed tree
automatonD2 = (K,Σ, {qf},∆) as follows.

The components are defined as follows
• Component1

– K1 = {qb, qd}
– δ1 = {b(qd) → qb, b(qb) → qb}

• Component2
– K2 = {qd, qc}
– δ2 = {c(qd) → qc, c(qc) → qc}

• Component3
– K3 = {qf , qb, qc, qd}
– δ3 = {d → qd, a(qb, qc) → qf}

Processing starts in component 3, with the two leaves using
the rule d → qd. As further processing is not possible in
component 3, processing continues with components 1 or 2.
Then it alternates between components 1 and 2 processing
b’s and c’s. When all theb’s and c’s are exhausted the
automaton moves to component 3 and reaches the final state
by using rulea(qb, qc) → qf . The processing of any tree
in L2 uses component 3 two times, in the first and the last
step.

Theorem 2:For any DNTAD working in∗-mode,L∗(D)
is recognizable.

Proof: Let D = (K,Σ, F,∆) be a DNTA work-
ing in ∗-mode where,∆ = (δ1, δ2, · · · , δn) and the

components have statesK1,K2, · · · ,Kn. Define a NFTA
N = (K

′

,Σ, F
′

, δ) where,

K
′

= {[q, i]|q ∈
⋃

i

Ki, 1 ≤ i ≤ n}

F
′

= {[qf , i]|qf ∈ F, 1 ≤ i ≤ n}

δ contains the following transitions
for eacha(q1, q2, · · · , qr) → q ∈ δi, r ≥ 0, q1, q2, · · · ,
qr ∈ Ki, 1 ≤ i ≤ n, a ∈ Σ,
{a([q1, i1], [q2, i2], · · · , [qr, ir]) → [q, j]} ∈ δ,

1 ≤ j ≤ n, q ∈ Kj , 1 ≤ i1, i2, · · · , ir ≤ n.
If qs → qt is a rule in theith component andqt ∈ Ki, then
add [qs, i] → [qt, j], 1 ≤ j ≤ n to δ.
If a tree t is accepted by a DNTA, then there is a sequence
of ID’s (φ, t) ⊢ (B1, t1) ⊢ · · · ⊢ ({qf}, tr) leading to accep-
tance. The corresponding sequence of ID’s for the NFTA is
as follows:(φ, t, i0) ⊢ (B1, t1, i1) ⊢ · · · ⊢ ({qf}, tr, ir),
1 ≤ ij ≤ n. Similarly, if there is a sequence of ID’s
leading to acceptance in NFTA, then there is a corresponding
sequence of ID’s leading to acceptance in the DNTA. This
construction of NFTA shows thatL∗(D) = L(N) and so
L∗(D) is recognizable.

= k-mode (≤ k-mode,≥ k-mode)acceptance :An
automaton that has a leaf transition rule begins processing
the input tree. Suppose that the system starts from the
componenti. The automaton transfers the control to another
componentj, j 6= i only after the completion of exactly
k(k

′

(k
′

≤ k), (k
′

≥ k)) number of steps in the component
i. The selection ofj is done nondeterministically if there is
more than onej.

Definition 6: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in = k-mode, ≤ k-
mode,≥ k-mode is given by a4-tuple (B, t, i, j) where
B ⊆

⋃
i Ki and it denotes the current active state set of

the whole system,t ∈ T (Σ ∪
⋃

i Ki), i the index of the
component in which the system is currently in,1 ≤ i ≤ n,
j ≥ 0 denotes the number of steps for which the system has
been in theith component.
The system accepts the tree only if the DNTA is in the
final state in some componenti after processing the tree
and provided it has completedk-steps in the componenti in
the case of= k-mode of acceptance (it has completed some
k

′

(k
′

≤ k) steps in the componenti in the case of≤ k-
mode acceptance or it has completed somek

′

(k
′

≥ k) steps
in the componenti in the case of≥ k-mode of acceptance.
The language accepted by the respective modes are denoted
asL=k, L≤k, L≥k.

We give an example of a distributed bottom-up tree
automata working in= 2-mode.

Example 5:Consider the language
L4 = {b(a(b2i(d), c2j(d)), i, j ≥ 1, i = j or i = j + 1 or
j = i+ 1} overΣ = {a, b, c, d}, a ∈ Σ2, b, c ∈ Σ1, d ∈ Σ0.

We define a distributed tree automaton
D4 = (K,Σ, {qf},∆) working in = 2-mode as follows.

The components are defined as follows

• Component1

– K1 = {qb, qd},
– δ1 = {b(qd) → qb, b(qb) → qb}

• Component2

– K2 = {qd, qc},
– δ2 = {c(qd) → qc, c(qc) → qc}

• Component3

– K3 = {qf , qa, qb, qc, qd},
– δ3 = {d → qd, a(qb, qc) → qa, b(qa) → qf}

Component 3 starts the processing, active for the first two
steps, then the system switches between component 1 and
2 and ends the processing with component 3 for the last 2
steps. Using the technique used in example 2 we can show
thatL4 is not recognizable.

Similarly we can find languages for= k-mode fork ≥ 3.
Theorem 3:There exists a language accepted by a DNTA

working in = k-mode,k ≥ 1 which is not recognizable.
Proof: For k = 2, example 5 prove the result. For

k > 2 consider the language
L5 = {ak−1ak−2 · · · a1a0(b

ki(ek−2(d)), ckj(g)),i, j ≥ 1,
k > 2, i = j or i = j + 1 or j = i+ 1} over
Σ = {b, c, d, e, g, a0, a1, a1, a2, · · · , ak−1}, a0 ∈ Σ2, b, c, e,

a1, · · · , ak−1 ∈ Σ1, d, g ∈ Σ0.
Constructing a DNTA forL5 is similar to the construction in
example 5. It is not difficult to see thatL5 can be accepted
by a DNTA working in = k-mode with 3 components.
Using the technique used in example 2 we can show that
L5 is not recognizable.

Theorem 4:There exists a language accepted by a DNTA
working in ≥ k-mode,k ≥ 1 which is not recognizable.

Proof: Consider the language
L6 = {fnak−1ak−2 · · · a1a0(b

ki(ek−2(d)), ckj(g)), i, j,
n ≥ 1, k > 2, i = j or i = j + 1 or j = i + 1} over
Σ = {b, c, d, e, f, g, a0, a1, a2, · · · , ak−1}, a0 ∈ Σ2, b, c, e,

f, a1, · · · , ak−1 ∈ Σ1, d, g ∈ Σ0.
Constructing a DNTA forL6 is similar to the construction

in example 5. It is not difficult to see thatL6 can be accepted
by a DNTA working in≥ k-mode with3 components. Using
the technique used in example 2 we can show thatL6 is
not recognizable. Fork = 2, example similar to 5 can be
provided.

Theorem 5:There exists a language accepted by a DNTA
working in ≤ k-mode, which is not recognizable.

Proof: Consider the language
L7 = {g(am(e), bn(e)),m ≥ 3, m+5

8
≤ n ≤ m+3

2
} over

Σ = {g, a, b, e}, g ∈ Σ2, a, b ∈ Σ1, e ∈ Σ0.
We define a distributed tree automaton
D7 = (K,Σ, {qf},∆) working in ≤ 2-mode as follows.

The components are defined as follows

• Component1

– K1 = {q11, q12, q21, q22, q23},
– δ1 = {a(q11) → q12, a(q12) → q12, e → q11,

g(q12, q21) → qf , g(q12, q22) → qf ,

g(q12, q23) → qf}

• Component2

– K2 = {q11, q21, q22, q23, },
– δ2 = {e → q11, b(q11) → q21, q21 → q22,

q22 → q23, q23 → q11}

Using the technique used in example 2 we can show that
L7 is not recognizable.

Theorem 6:For any recognizable languageL, there is a
DNTA D working in = 1-mode with two components.

Proof: Let A = (Q,Σ, Qf ,∆) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
D = (K,Σ, Qf ,∆

′

) working in = 1-mode as follows.
The components are defined as follows

• Component1

– K1 = Q,
– δ1 = ∆

• Component2

– K2 = Q,
– δ2 = ∆

The construction shows that any recognizable language
can recognized by by a DNTA working in= 1-mode with
two components.

Theorem 7:For any recognizable languageL, there is a
DNTA D working in t-mode with two components.

Proof: Let A = (Q,Σ, Qf ,∆) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
D = (K,Σ, Qf ,∆

′

) working in t-mode as follows.
The components are defined as follows

• Component1

– K1 = Q ∪ {q
′

|q ∈ Q}
– δ1 contains the following transitions

for eacha(q1, q2, · · · , qn) → q ∈ ∆, n ≥ 0,
q1, q2, · · · , qn ∈ K1, a ∈ Σ ∪ {ǫ}
a(q1, q2, · · · , qn) → q

′

∈ δ1, q
′

∈ K1.

• Component2

– K2 = Q ∪ {q
′

|q ∈ Q}
– δ2 contains the following transitions

∀q
′

∈ K2, q
′

→ q ∈ δ2, q ∈ K2.

The construction shows that any recognizable language can
recognized by by a DNTA working int-mode with two
components.

Theorem 8:For any DNTA working in∗-mode, there is
a DNTA working in= 1-mode with two components.

Proof: From theorem 2 we know that any DNTA
working in ∗-mode is recognizable. The theorem follows
from the result of theorem 6.

We conjecture the following.
Conjecture 1:Any DNTA D working in = k mode with

2 components is recognizable.
Conjecture 2:For any DNTA working in = k-mode,

there is a DNTA working in= 1-mode.

4. Conclusion
In this paper we have defined cooperative dis-

tributed tree automata and the languages accepted under
∗, t,= k,≤ k,≥ k (wherek is an integer≥ 1) modes. We
showed that the power of tree automata is not increased
by the ∗ mode of cooperation, whereas under the other
modes, the power is increased. We have proved some results
comparing their acceptance power. Other comparisons and
decidability issues are being pursued. We are also looking
into other application areas like representation of XML
schemas and in syntactic pattern recognition.

The application of variable arity trees in representing
XML schemas is considered in Murata [9]. The inference
of such tree grammars is considered in [10]. Whether
distributed tree automata (may be for variable arity trees)
will be a better model for representing of XML schemas in
an application which can be explored. Distributed version
of automata for variable arity trees and other models of
tree automata like top-down acceptance and tree walking
automata may be more helpful in the above process.

References
[1] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,

S. Tison, and M. Tommasi. Tree automata techniques and applica-
tions. Draft book; available electronically on http://www.grappa.univ-
lille3.fr/tata, 2008.

[2] E. Csuha j-Varju, J.Dassow, J.Kleeman and Gh. Paun. Grammar
Systems: A Grammatical Approach to Distribution and cooperation.
Gordon and Breach, London, 1994.

[3] J. Dassow, G. Paun and G. Rozenberg, Grammar Systems chapterin
Handbook of Formal Languages Vol2. edited by G. Rozenberg and
A. Salomaa., Springer, 1997.

[4] J. E. Doner. Decidability of the week-second order theory of two
successors.Notices of the American Mathematical Society, 12:365-
468, 1965.

[5] J. E. Doner. Tree acceptors and some of their applications. J. Comput.
Syst. Sci., 4(5):406-451,1970.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[7] K. Krithivasan, M.Sakthi Balan and P.Harsha. Distributed Processing
in Automata, International Journal of Foundations of Computer
Science, 10(4): 443-464, 1999.

[8] K. Krithivasan and R. Rama. Introduction to Formal Languages,
Automata Theory and Computation. Pearson, 2009.

[9] M. Murata, D. Lee, M. Mani and K. Kawaguchi. Taxonomy of XML
Schema Languages using Formal Language Theory,ACM Trans. Inter.
Tech., 5(4):660-704, 2005.

[10] Neetha Sebastian and K. Krithivasan. Learning Algorithms for Gram-
mars of Variable Arity Trees,International Conference of Machine
Learning and Applications, 98-103, 2007.

[11] G. Paun. Grammar Systems: A Grammatical Approach to Distribution
and Computation,Lecture Notes in Computer Science, 944:429-443,
1995.

[12] J. W. Thatcher and J. B. Wright. Generalized finite automata theory
with an application to a decision problem of second-order logic,
Mathematical Systems Theory, 2:57-82, 1968.

