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Abstract— Tree automata have been defined to accept treesleterministic bottom-up tree automata are just as powerful
Different types of acceptance like bottom-up, top-doweg tr from the point of view of language equivalence, as non-
walking have been considered in the literature. In thisdeterministic bottom-up tree automata. Non-deterministi
paper, we consider bottom-up tree automata and discus®p-down tree automata are equivalent to non-deterninisti
the sequential distributed version of this model. Gengrall bottom-up tree automata [1].

this type of distribution is called cooperative distribdte

automata or the blackboard model. We define the traditional In the last few years distributed and parallel comput-
five modes of cooperation, vizzmode,t-mode,= k, > k, ing has played an important role in Computer Science.
< k (k > 1) modes on bottom-up tree automata. We discusModelling these concepts using formal models has given
the accepting power of cooperative distributed tree autiama rise to the concept of grammar systems and distributed
under these modes of cooperation. We find that the automata. Grammar systems can be sequential or parallel. A
mode does not increase the power, whereas the other modes-operating distributed (CD) grammar system is sequientia
increase the power. We discuss a few results comparing thdere, all grammars work on one sentential form. At any in-
acceptance power under different modes of cooperation. stant only one grammar is active. This is called a blackboard
Keywords:Tree Automata, ranked alphabet, distributed nondetermodel. Suppose a problem is to be solved in a class. The
ministic tree automata, modes of cooperation teacher asks one student to start working on the problem on
1] ducti the blackboard. The student writes a few steps, then goes

- Introduction back. Another student comes and continues working on the

Finite tree automata are generalizations of word automatgroblem. On his return, a third student comes and continues.
While a word automaton accepts a word, a tree automafhe process continues till the problem is solved. Now, the
ton accepts a tree . The theory of tree automata arisemiestion arises: at what time does one student return and
as a straight forward extension of the theory of finitethe next one starts? There may be several ways for defining
automata [6]. Tree automata were introduced in [4], [5]this. Correspondingly, in the CD grammar system, there are
and [12] to solve certain decision problems in logic. Sincedifferent modes of co-operation. The student may return
then they were successfully applied to many other decisiowhen he is not able to proceed further (terminating mode);
problems in logic and term rewriting, see e.g. [1]. Evenhe may return at any time«{mode); he may return after
though the two models are used in different settings theoing k-steps £ k-mode); he may return after doirg or
are closely related to each other since a finite automatoless steps <-mode); he may return after doirg or more
can be seen as a special case of a finite tree automatmteps &-mode).

Trees appear in many areas of computer science and engi-

neering and tree automata are used in applications such asIn this paper, we consider bottom-up tree automata and
XML manipulation, natural language processing, and formadiscuss the sequential distributed version of this model.
verification and logic design. We define the traditional five modes of cooperation, viz.

According to the manner in which the automaton runs orx-mode, t-mode, = &k, > k, < k (k > 1) modes on
the input tree, finite tree automata can be either bottomrup dottom-up tree automata. We discuss the accepting power
top-down. A top-down tree automaton starts its computatiof cooperative distributed tree automata under these modes
at the root of the tree and then simultaneously works dowiof cooperation. We find that the-mode does not increase
the paths of the tree level by level. The tree automatomhe power, whereas the other modes increase the power. We
accepts the tree if such a run can be defined. A bottomdiscuss a few results comparing the acceptance power under
up tree automaton starts its computation in the leaves of theifferent modes of cooperation.
input tree and works its way up towards the root.

A finite tree automaton can be either deterministic or non- In the next section we give basic definitions needed for the
deterministic. This is an important issue since deterrtimis paper. Sectior8 contains the definition of cooperative dis-
top-down automata are strictly less expressive than nortributed tree automata and some results about their aogepti
deterministic top-down automata. For the bottom-up casgyower. The paper concludes with a note in section



2. Basic Definitions i.e. Rank(f) =n. We usef(q1,q2," -+ ,qn) — q to denote

Let N be the set of positive integers. Then the set offat (41,42, ,an), f,q) € A.If Rank(f) = 0, ie.
finite strings overN is denoted byV*. The empty string is /. IS @ constant, then we use rules of the fofm— g¢.
denoted bye. A ranked alphabek is a finite set of symbols The epsilon rules are denoted by rulgs of the' form
together with a functionRank : £ — N. For f € &, the @ — d4j- A runof A over a treet € () is a mapping
value Rank(f) is called the rank off. For anyn >0, we " ° dom(t) — @ such that for each nodg € dom(t)
denote bys, the set of all symbols of rank. Elements Whereq = r(p). we have that ifg; = r(pi) for 1 <i <n

of rank0,1,--- ,n are respectively called constants, unary, €N & has the rulet(p)(q1, 2.+~ qn) — q. A set
.., n-ary symbols. B = {q1,q2,- - ,qn} C Q,n > 1 with respect to a tree

A tree t over an alphabets is a partial mapping t E T(; US) ifs said to bedan actived state set if every
t: N* —» ¥ that satisfies the following conditions: ¢; = r(pi),i > 0 for somep € dom(t) andt(p) € . ,
d is a finit fix-closed subset aF* d An instantaneous description(ID)f a NFTA is a pair
» dom(t) Is a finite, pre IX-closed subse » an (B,t), wheret € T(X U Q) and B is a set of active state
» for eachp € dom(t), if Rank(t(p)) = n > 0, then ;
i € dom(f)} — {19 set with respect ta.
lilpi € dom(t)} __{ 2,0y} For two ID's (B,t),(B',t') we write (B,t) - (B',t)
Eachp € dom(t) is called anode of . The node it there is a rule of the formu(qi, s, ,q,) — ¢ € A
with domain elemente is the root For a nodep , We  gych thatt' is obtained from: by replacing a subtree df
define thei” child of p to be the nodepi, and We f the form alty, ta, - tn) by ¢ (t1,ta,--- ,t,), where
define thei” subtreeof p to be the treet such that ¢ Yn,n > 0,t1,t0, -t € T(Q),r(root(t])) = qu,
t(p)= t(pip) for all p € dom(t). 'A Ieaf of t is & r(root(ty)) = qo, -+, 1(root(ty)) = Gn, @1, q2, - 1dn € B
nodep which does not have any children, i.e. there is Nogng B’ is the set of active state set after performing the
i € N with pi € dom(t). We denote byI'(X) the set of ansition.
all trees over the alphabel. The size of a treet is the The initial 1D is (¢,¢),t € T(X) and the final ID is

number of elements iWom(t). Thg .height of a treet.is ({gs},t) for somegq; € Qf,t' € T(Q).The reflexive and
max{|w| : w € dom(t)}. Given a finite treet, the frontier  ansitive closure of is denoted by-*.

of ¢ is the set{p € dom(t)| for all n € N,pn & dom(t)}. A run represents the effect of a sequence of ID’s from the
A tree with roota and subtrees,, t,,- - ,t, is represented juitial ID to a final ID.
by a(ty,tz, - tr). For a NFTA A, L(A) = {t e T(2)|(¢,t) F* ({qs},t'
) ) ) il - ) q }7t )7
Example l:Let ¥ = {a,b,c,g, f},f € Xa,9 € X1, a5 € anf/ e T(Q)}. !
a,b € ¥o. A tree overX and its diagrammatic representation " A st 1, of tree languages oveE is recognizableif
is shown in Figure 1 L = L(A) for some NFTAA. Two NFTA are said to be

equivalentif they recognize the same tree language.

We give an example to show that certain tree languages
are not recognizable.

Example 2:Let ¥ = {f, g,a}, where Rank(f) = 2,
Rank(g) = 1, Rank(a) = 0. Consider the tree language
L = {f(¢9%(a),g*(a))|i > 0}. Let us suppose thak is
recognizable by an automatot having & states. Consider
€ f\ the treet = f(g*(a), g*(a)). t belongs toL, therefore there

Let ¢ be the treef(g(a)f(bc)).
dom(t) = {e,1,11,2,21, 22}
size(t) = 6.

height(t) = 2.

frontier(t) = {11, 21, 22}.

is a successful run ofi on t. As k is the cardinality of

1 2 the state set, there are two distinct positions along the firs
branch of the tree labeled with the same state. Therefore,
114 21 29 one could cut the first branch between these two positions

leading to a termt’ = f(g7(a), g*(a)) with j < k such that
a successful run oft can be defined o# . This leads to a
contradiction withL(A) = L.

Fig. 1: A tree and its diagrammatic representation

A nondeterministic finite tree automa(dlFTA) over an The proof can be generalized into a theorem, similar
alphabet® is a tupleA = (Q, %, Qy, A) where, to pumping lemma for recognizable string languages, to
« @ is a finite set of states, recognizable tree languages [1].

« Y is a ranked input alphabet, s o
. Q;CQisa set%f ﬁngl States 3. Distributed Nondeterministic Tree Automata

« A is a finite set of transition rules. (DNTA)

Each transition rule is a triple of the form In this section we define distributed nondeterministic
((q1,92,"* ,qn), f,q) Whereqy, g2, ,qn,q € Q, f € X,, tree automata(DNTA), the different modes of acceptance



of DNTA and discuss the power of different modes of L.(D) = {t € TX)|(é,ti) +Fi {arht,9),

acceptance. t eT(U, K;), for someq; € F,1<1,j <n}.
Definition 1: A DNTA is a 4-tuple D = (K, %, F,A) We now give an example of a distributed bottom up tree
where, automata working irt-mode.

Example 3:Consider the language
Ly = {a(bd(¢g’d)' (f), ce(h*e) (f)),i,j, k,1 > 1,
|i—1] <1} overX ={a,b,c,d,e, f,g,h},a € Xa,b,¢,d, e,
g, he X fe.

We define a distributed tree automaton

« K is ann-tuple (K, K»,---, K, ) where eachk; is a
set of states of thé/” component;

« X is a finite set of ranked alphabet;

o F C Y, K; is the set of final states;

e A is a n-tuple (§1,602,---,d,) of state transistion L

function Whe?e e;cﬁi is a set o)f transition rules of the Dy = (K,%,{¢.},A) Workm_g in ¢-mode as follows.
i component having the forgfi(qr, g, - - ,qn) — 4, The components are defined as follows
fE€Xn,q1,q2,  ,qn € K q € U; K Or ¢ — g5 » Componentl

In the case of DNTA, we can consider many modes of - K1 ={4r,99, 01, 22},

acceptance depending upon the number of steps the system  ~ 01 = {d(ar) = 49,9(a9) = a1, 9(@1) = a1,

has to go through in each of thecomponents. The different a2 = qr}

modes of acceptance aremode, t-mode, < k-mode, > » Component

k-mode, and= k-mode, wherek is a positive integer. — K> = {4y, 4e, 91,42},

Description of each of the above modes of acceptance is  — 92 = {e(qr) = ¢e, h(ge) = g2, h(g2) = a2,

as follows: @ — a5}

t-mode acceptanceAn automaton that has a leaf transition « Component3

rule begins processing the input tree. Suppose that therayst - K3 =1{4f,9a @ 9c> 94> Ge> 415 G2 }»

starts from the component The control stays in component - 03 ={f = qr,b(qy) = qv,c(qe) = qe,

i as long as it can follow the transition rules in component a(qy, qc) = qa}

Otherwise, it transfers the control to some other component The processing starts in component 3 , with the two leaves
j, 7 # i which has the transition function to proceed. If using the rulef — q;. As further processing is not possible
more than one component succeeds, then the selection iBf component3, processing continues with or 1. Then it
j is done nondeterministically. The process is repeated ar@lternates betweeh and2 processingl’s, g's, e's and f’s.
we accept the tree if the system reaches any one of the finkinally when the labels areandc, processing takes the tree
states. It does not matter which component the system is ii® ¢, andg. and in componens stateq, is reached by the
while accepting. root.

Definition 2: The instantaneous description(ID) of a Theorem 1:There exists a language accepted by a DNTA
DNTA D = (K, %, F, A) working in ¢-mode is given by a working in t—mod(_a which is not recognizable.
triple (B, t,i) where B C | J, K; and it denotes the current Proof: Consider the tree languada . Let us suppose
active state set of the whole systetg T'(X U J, K;) and that L, is recognizable by an automatehhaving & states.

i,1 < i < n the index of the component in which the systemConsider the tree = a(bd(gd)"(f), ce(he)*(f)),k > 0.
is currently in. t belongs toL,, therefore there is a successful run &f

on t. As k is the cardinality of the state set, there are
. . PR . two distinct positions along the first branch of the tree
) (B,ti) e (B,t,q) if there is a rule of the | pai04 with the same state. Therefore, one could cut the
form a(g1,2,-+,gn) — g € &; such thatt is g pyranch between these two positions leading to a term
obtained fromt¢ by replacing a /subtree of of ¢ = a(bd(gd)(f),ce(he)k(f)) with j < k such that a
the form a(ti 2, tn) by ¢ (t1,t2,-- 1), guccessful run ofd can be defined on’ . This leads to
where a € Xp,n 20,1ty 1, € T(U; Ka), a contradiction withZ.(A) = L;. So L, is not recognizable.
r(root(t1)) = q1,r(root(tz)) = qa, -+ , , -
r(root(tn)) = gn, ¢1,42,--,¢n € B and B x-mode acceptanceAn automaton that has a leaf transi-
is the set of active state set after performing th&jon ryle begins processing the input tree. Suppose that the
__ transition. . , system starts from the componentUnlike the termination
ii) (B,t,i) ¢ (B,t,]) iff componenti does not have a e the automaton can transfer the control to any of the
transition to proceed and compongras a transition components at any time i.e., if there is sofig # i such
to proceed. that the next move is possible then the system can transfer
The reflexive and transitive closure bf is denoted by the control to the component The selection ofj is done
Fr. nondeterministically if there is more than ope
Definition 3: The language accepted by a DNTA The ID and the language accepted by the systemritode,
D = (K, X%, F,A) working in t-mode is defined as follows: L.(D) is defined as follows.

The transition between the ID’s is defined as follows:



Definition 4: The instantaneous description(ID) of a components have statds,, Ko, --- , K,. Define a NFTA
DNTA D = (K, X, F,A) working in x-mode is given by a N = (K/,E,F',é) where,
triple (B, t,:) where B C |J, K; and it denotes the current ,
active state set of the whole systets T'(X U J, K;) and K ={lg,illg € UKi,l <i<n}
1,1 < i < nthe index of the component in which the system i
is currently in.
The transition between the ID’s is defined as follows:

) (B,t,i) F, (B',t,i) if there is a rule of the ¢ contains the following transitions

form a(qi, ¢, - ,qn) — ¢ € &; such thatt' is  for eacha(qi,qo, - ,q) = ¢ € 8i,7 > 0,q1,G2, - - ,
obtained fromt¢ by replacing a subtree of of ¢ € K;,1<¢<n,ac,

the form a(tlat27 ce ,tn) by q/(tlyt% cet ;tn)1 {a([(hvil]’ [QQaiQ]v T ’[Q7'7i7‘]) — [QJ]} € 67

where QGEWJTLZO,tl,tQ,”',tnET(UiKi), 1§j§n,q€Kj,1§i1,i2,"',Z'Tgn.

r(root(t1)) = qu,r(root(t2)) = qa2, - -, If gs — ¢, is a rule in thei’® component and, € K;, then

r(root(tn)) = qn: 1,42, sqn € B and B’ is  add[gs,i] = [@, 4,1 <j<ntoé.
the set of active state set after performing thelf a treet is accepted by a DNTA, then there is a sequence

transition. of ID’s (¢,t) F (B1,t1) F--- = ({¢r}, t,) leading to accep-
i) (B,t,i) k. (B,t,j) iff component; has a transition tance. The corresponding sequence of ID’s for the NFTA is
to proceed. as follows: (¢, t,40) F (B1,t1,41) F - F ({gr}. tryir),
The reflexive and transitive closure bf is denoted by 1 < i; < n. Similarly, if there is a sequence of ID's
* leading to acceptance in NFTA, then there is a corresponding

*beﬁnition 5: The language accepted by a DNTA sequence of ID's leading to acceptance in the DNTA. This
D = (K, ¥, F,A) working in x-mode is defined as follows: construction of NFTA shows that. (D) = L(N) and so

L.(D) = {t e T®ti) F: ({ar}.t.j), L«(D)Is recognizable.
t € T(U, K;), for someq; € F,1 <4,j <n} n
We give an example of a distributed bottom up tree = k-mode & k-mode> k-mode )acceptance An
automata working in-mode. automaton that has a leaf transition rule begins processing
Example 4:Consider the language the input tree. Suppose that the system starts from the
Ly = {a(bi(d), ¢ (d)),i,j > 1} overX = {a, b, c,d}, component. The automaton transfers the control to another
a €Yy, bceX,d € % We define a distributed tree componentj,j # i only after the completion of exactly
automatonD, = (K, ¥, {qs},A) as follows. k(k (k <k),(k > k)) number of steps in the component
The components are defined as follows i. The selection ofj is done nondeterministically if there is

more than ong.

Definition 6: The instantaneous description(ID) of a
DNTA D = (K,X,F,A) working in = k-mode, < k-
mode, > k-mode is given by al-tuple (B, t,i,j) where
B C |, K; and it denotes the current active state set of

« Componentl

- K1 = {q,q4}

— 01 = {b(ga) = av,b(ap) = v}
« Component

- K> ={qa,q.} the whole systemt € T'(X U |J,; K;), ¢ the index of the
— 02 = {c(qa) = Ge, c(ge) = qc} component in which the system is currently in< i < n,
« Component3 j > 0 denotes the number of steps for which the system has
— K3 = {q5, b, qc> qa} been in thei'” component.
— 03 ={d = qa,alqp,qc) = q5} The system accepts the tree only if the DNTA is in the

Processing starts in component 3, with the two leaves usinfjnal state in some componeuntafter processing the tree

the ruled — q4. As further processing is not possible in and provided it has completédsteps in the componeitn
component 3, processing continues with components 1 or 2he case of= k-mode of acceptance (it has completed some
Then it alternates between components 1 and 2 processifig(k < k) steps in the componeritin the case of< k-

b's and ¢’'s. When all theb's and ¢'s are exhausted the mode acceptance or it has completed sdnié > k) steps
automaton moves to component 3 and reaches the final statethe component in the case of> k-mode of acceptance.

by using rulea(qs,q.) — g¢y. The processing of any tree The language accepted by the respective modes are denoted
in Ly uses component 3 two times, in the first and the las@s L—, L<y, L>.

step. We give an example of a distributed bottom-up tree
Theorem 2:For any DNTAD working inx-mode,L.(D)  automata working in= 2-mode.
is recognizable. Example 5:Consider the language

Proof: Let D = (K,%,F,A) be a DNTA work- Ly = {b(a(b*(d),c*(d)),i,j > 1,i=j0ri=j+1or
ing in x-mode where,A = (01,d2,---,d,) and the j =i+ 1} overX ={a,b,¢,d},a € Xg,b,c € 3q,d € Xy.



We define a distributed tree automaton
D, = (K,%,{qs},A) working in = 2-mode as follows.
The components are defined as follows
« Componentl
- K1 ={®,qa},
— 01 = {b(qa) = qv,b(an) — av}
« Component
- K> ={q4,9},
— 0y = {C(Qd) — qc; C(QC) — QC}
« Component3
- K3 = {qf> das9b,4c, qd}'
— 03 ={d — qa,a(qb, qc) — ¢a;0(qa) = qr}

Component 3 starts the processing, active for the first twg
steps, then the system switches between component 1 a
2 and ends the processing with component 3 for the last
steps. Using the technique used in example 2 we can show

that L4 is not recognizable.
Similarly we can find languages fef k-mode fork > 3.

Theorem 3:There exists a language accepted by a DNTA

working in = k-mode,k > 1 which is not recognizable.
Proof:

k > 2 consider the language

Ls = {ax_1ap_2 - ar1aog(b* (e*=2(d)), ¥ (g)),i,j > 1,

k>2i=jori=j+4+1orj=1i+1} over

Y ={b,c,d,e,g,a9,a1,a1,a2, - ,ak—1},a0 € X2, b, c, e,

a1, ,a—1 € 21,d,g € Xg.

Constructing a DNTA forl5 is similar to the construction in

example 5. It is not difficult to see thdt; can be accepted

by a DNTA working in = k-mode with 3 components.

For k = 2, example 5 prove the result. For

- K = {Q11,Q12,QQ1,Q22,Q23},

— 01 = {alqi1) = @12, a(q12) = q12,€ = qu1,
9(q12,921) = a5, 9(q12, 422) — qy,
9(q12,G23) = qr}

« Component2

- Ky = {Q117QQ17(1227(]237}1
— 02 ={e = qu1,b(q11) = 21,921 — 22,
Q22 — 23,423 — q11}
Using the technique used in example 2 we can show that
L~ is not recognizable. [ ]
Theorem 6:For any recognizable languade there is a
DNTA D working in = 1-mode with two components.
Proof: Let A = (Q,%,Qf,A) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
Zﬁ: (K,%,Qy,A") working in = 1-mode as follows.
The components are defined as follows
« Componentl
- Ky =0,
- =A
« Component2
- Ky =0,
-6 =A
The construction shows that any recognizable language
can recognized by by a DNTA working ig 1-mode with
two components. [ |
Theorem 7:For any recognizable languadg there is a
DNTA D working in t-mode with two components.
Proof: Let A = (Q,%,Qs,A) be a NFTA rec-
ognizing L. We construct a distributed tree automaton

Using the technique used in example 2 we can show that) _ (K,%,Q; A') working in t-mode as follows.

Ls is not recognizable. [ ]

Theorem 4:There exists a language accepted by a DNTA

working in > k-mode,k > 1 which is not recognizable.
Proof: Consider the language

Le = {fMax—1ax_2 - - arao(b¥(e*2(d)), M (9)), i, j,

n>1,k>2i=jori=j+1orj =14+ 1} over

Y ={b,c,de, f,9,a0,a1,a2, -+ ,ax_1},a0 € Xa,b,c, e,

f,a1,~~- ,Qk—1 € El,d,g € Eo.

Constructing a DNTA forlg is similar to the construction
in example 5. It is not difficult to see thét can be accepted
by a DNTA working in> k-mode with3 components. Using
the technique used in example 2 we can show thatis

The components are defined as follows
« Componentl

- K1 =QU{q g€ Q}

— §; contains the following transitions
for eacha(gi,q2, - ,qn) > ¢ € A;n >0,
Q1,92 yqn € Kl,a/e ZU{G}
a(q, g2, ,qn) — q € 01,9 € K.

« Component2

- K2 =QU{q g€ Q}

— J9 contains the following transitions
Vq/ € Kg,q' — q € 0a,q € Ks.

not recognizable. Fok = 2, example similar to 5 can be The construction shows that any recognizable language can

provided. ]

recognized by by a DNTA working irt-mode with two

Theorem 5:There exists a language accepted by a DNTAcomponents. ™

working in < k-mode, which is not recognizable.
Proof: Consider the language
L7 = {g(a™(e),b"(e)),m > Sva% =n
Y ={g,a,b,e},g € a,a,b € Xy,e € Xy.
We define a distributed tree automaton
D7 = (K, %, {qs},A) working in < 2-mode as follows.
The components are defined as follows
« Componentl

< £33 over

Theorem 8:For any DNTA working inx-mode, there is
a DNTA working in = 1-mode with two components.
Proof: From theorem 2 we know that any DNTA

working in x-mode is recognizable. The theorem follows

from the result of theorem 6. [ |
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