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EPFL, Switzerland

aleksandar.dragojevic@epfl.ch

Maurice Herlihy
Brown University

mph@cs.brown.edu
Yossi Lev
Oracle Labs

yossi.lev@oracle.com

Mark Moir
Oracle Labs

mark.moir@oracle.com

ABSTRACT
Dynamic memory management is a significant source of complex-
ity in the design and implementation of practical concurrent data
structures. We study how hardware transactional memory (HTM)
can be used to simplify and streamline memory reclamation for
such data structures. We propose and evaluate several new HTM-
based algorithms for the “Dynamic Collect” problem that lies at
the heart of many modern memory management algorithms. We
demonstrate that HTM enables simpler and faster solutions, with
better memory reclamation properties, than prior approaches. De-
spite recent theoretical arguments that HTM provides no worst-case
advantages, our results support the claim that HTM can provide
significantly better common-case performance, as well as reduced
conceptual complexity.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming

General Terms
Algorithms,Design,Performance

Keywords
Transactional Memory, Synchronization, Hardware, Memory Man-
agement

1. INTRODUCTION
The Java(tm) concurrency libraries [13] provide a number of

lock-free data structures that have no counterparts in C++. A key
obstacle to porting them to C++ is that Java is garbage-collected,
while C++ requires explicit memory management, which can be
very difficult. In this paper, we explore our belief that hardware
transactional memory (HTM) [12] can significantly simplify the
design and implementation of common concurrent data structures
and algorithms, particularly with respect to dynamic memory man-
agement.
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We begin with some anecdotal evidence showing that, by using
HTM, we can build a lock-free FIFO queue that is superior to the
state-of-the-art implementation in terms of algorithmic complexity,
performance, and space requirements. This dramatic example mo-
tivates us to explore whether HTM is fundamentally more powerful
than traditional hardware synchronization primitives for building
dynamic-sized concurrent data structures. We argue that the Dy-
namic Collect problem [11] is an appropriate problem to study in
exploring this question, and most of this paper focuses on that prob-
lem.

In Section 2, we precisely specify the Dynamic Collect variant
on which we have focused for this work. In Section 3, we outline
a variety of HTM-based Dynamic Collect algorithms that explore
various tradeoffs; we present one algorithm in detail in Section 4.
In Section 5, we present performance results illustrating the im-
pact of these tradeoffs on different HTM-based implementations, as
well as comparing to some implementations that do not use HTM.
Broadly, our results show that with HTM it is significantly easier
to design correct implementations, and that non-HTM algorithms
tend to perform worse, require significantly more space, or both.
We discuss how various aspects of HTM designs relate to our algo-
rithms in Section 6, and conclude in Section 7.

1.1 Lock-free FIFO queues
The Michael-Scott queue [15] is one of the best-known and most

widely used lock-free data structures. The queue is represented as
a linked list of entries that are allocated dynamically as values are
enqueued. Any practical implementation of this algorithm must
address the question of how the memory for these entries can be
reused. This is challenging because the algorithm allows a queue
node to be accessed by ongoing operations even after the node has
been removed from the queue.

The most straightforward approach is to have each thread keep
a thread-local pool of unused entries. When a thread enqueues an
item, it allocates an entry from its local pool whenever possible,
and when a thread dequeues a value, it returns the dequeued en-
try to its own pool. Using this approach, once an entry has been
allocated, that memory cannot be used for any purpose other than
as a queue entry. Therefore, even in a quiescent state, when no
method calls are in progress, the memory used for the queue is at
least proportional to the historical maximal queue size, which is a
significant disadvantage.

An alternative is to use a technique such as the “Repeat Offender
Problem” ROP [10] or Hazard Pointers [14] to enable the Michael-
Scott algorithm to reclaim memory, but this entails significant ad-
ditional overhead and complexity, as discussed further below.

We have implemented a concurrent FIFO queue by enclosing
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Figure 1: Queue performance

simple sequential code in hardware transactions. A successful de-
queue operation frees the dequeued entry’s memory to the oper-
ating system. No transaction serialized after the dequeue will see
a reference to that entry, so the only danger is that a concurrent
transaction may try to use it. However, if it does, it is guaran-
teed to abort.1 Moreover, the HTM-based algorithm is signifi-
cantly simpler than the Michael-Scott algorithm, which must deal
with certain race conditions that cannot occur when operations are
executed within hardware transactions, as well as with the ABA
problem [15] that arises due to recycling queue nodes. To roughly
quantify the difference in complexity between these algorithms, the
HTM-based one would be a reasonable homework exercise for an
undergraduate student, while the Michael-Scott algorithm yielded
a PODC publication!

Figure 1 compares the throughput of the simple HTM-based
queue and the Michael-Scott queue (with and without ROP) when a
mix of enqueue and dequeue operations is performed on the queue.
The experiment was performed on a 16 core Rock CPU [8]. The
HTM-based algorithm can reclaim unused entries and is nonethe-
less up to 25% faster than the Michael-Scott queue due to its sim-
pler code. The overheads of using ROP for reclaiming memory are
significant—between 35% and 75%. This matches our intuition
that HTM can enable algorithms that are better in terms of speed,
simplicity and memory reuse.

1.2 Dynamic Collect problem
Techniques such as Hazard Pointers [14] or the “Repeat Offender

Problem” (ROP) [10] can be used to enable concurrent data struc-
tures such as the Michael-Scott queue to return memory to the sys-
tem when it is no longer needed. These techniques require a thread
to “announce” its intention to use a reference before using it. Be-
fore a thread can free a block of memory, it must check that no
other thread has announced an intention to access that block. This
check amounts to performing a collect [2, 3, 16] over an array of
announced references to ensure that the block to be freed is not
potentially in use.

While Hazard Pointers and ROP can enable memory reuse, they
have memory requirements of their own. In particular, each active
thread requires a separate location in which to announce a pointer

1We assume “sandboxed” HTM such as in Sun’s prototype multi-
core chip code named Rock [8], in which a transaction that deref-
erences an illegal reference aborts, but does not otherwise disrupt
the thread (say, by causing a segmentation fault).

it intends to access. Unless these locations themselves can be re-
claimed and recycled, algorithms that use these techniques inherit
another form of historical space requirement: even in a quiescent
state, the memory consumption of the data structure is at least pro-
portional to its current size plus the historical maximum number
of active threads. To overcome this limitation, Michael [14] and
Herlihy et al. [10] propose dynamic versions of their techniques
that allow locations used for announcements to be released and
recycled. As a result, these memory management techniques en-
compass Dynamic Collect [11] algorithms: a thread announces its
intention to dereference a pointer by using the Register and/or
Update operations, and scans for other threads’ announcements
using the Collect operation. Any fundamental limitation of Dy-
namic Collect algorithms is inherited by any data structure that uses
these approaches to manage memory. We therefore believe that
studying the impact of synchronization support on Dynamic Col-
lect algorithms provides useful insight into the inherent limitations
of the ability of non-HTM systems to support dynamic concurrent
data structures.

2. DYNAMIC COLLECT

2.1 Data types and operations
A Collect object uses two data types, handle and value, and sup-

ports the following operations:

• h = Register(v): binds the value v to an unused handle h,
which is returned to the caller.

• Update(h, v): binds value v to handle h.

• DeRegister(h): removes the current binding to handle h.

• Collect(): returns a set of (handle,value) pairs.

2.2 Well-formedness
We say that a handle h is registered to a thread t when it is re-

turned by an invocation by t of Register(v) for some v, and that
it is deregistered when DeRegister(h) is invoked. A thread may
invoke Update and DeRegister only with a handle that has previ-
ously been registered to it, and which it has not since deregistered.
Any thread may invoke Collect at any time if it is not currently
performing another operation on the dynamic collect object.

2.3 Requirements
Following standard definitions, there is a natural partial order

on operations: if the invocation event of an operation op0 occurs
after the return event of another operation op1, then op0 follows
op1 and op1 precedes op0. Otherwise, the operations are said to be
concurrent.

A call to Register by thread t must return a handle that is not
registered to any other thread. Together with the well-formedness
requirements stated above, this implies that Register and Update

operations for a given handle h are totally ordered by the pre-
cedes relation. Thus, if any such operations precede an opera-
tion op, then there is a unique “last” one of them. If this opera-
tion exists and there is no DeRegister(h) operation that follows
it and precedes op, then we denote it as lastbind(h, op); otherwise
lastbind(h, op) is not defined.

Informally, a handle-value pair (h, v) may “flicker” during a
h = Register(v) or Update(h, v) call: a concurrent Collect
call may or may not return it. However, if such an operation com-
pletes before the invocation of a Collect operation, and the han-
dle is not subsequently deregistered, then the Collect operation
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must return a value for that handle (either v or another value v′ if
there is a subsequent Update(h, v′) operation). More precisely, a
Collect operation cop returns a set S of handle-value pairs such
that the following conditions hold, for every handle h and value v:

• If (h, v) ∈ S, then either

– lastbind(h, cop) is defined and is a h = Register(v)
or Update(h, v) operation, or

– a h = Register(v) or Update(h, v) call was concur-
rent with cop.

• If lastbind(h, cop) is defined and there is no
DeRegister(h) operation that is concurrent with cop,
then (h, v′) ∈ S, for some value v′.

Note that this specification is non-deterministic: there may be mul-
tiple sets of handle-value pairs that can legitimately be returned by
a Collect call. Furthermore, it does not preclude a Collect op-
eration returning multiple pairs for the same handle h. Clients can
filter out duplicates if necessary by choosing any one of the pairs
for each handle in the returned set.

There are many possible small variations on this specification.
For example, an alternative Register might return a handle with-
out binding it to a value, or Collect might omit the handles and
simply return a multiset of values. Nonetheless, the above speci-
fication is suitable for a variety of use cases, including for use in
memory management mechanisms as discussed in Section 1. To
our knowledge, these possible minor variations in the specification
do not have a significant impact on our findings.

3. ALGORITHMS
Our primary goal has been to explore how the availability of

HTM in general impacts the ease of dynamic memory manage-
ment. However, we wanted to be able to implement and experiment
with the algorithms using real HTM-enabled hardware, namely
Sun’s Rock prototype. Thus, we could not ignore certain limita-
tions [8, 9] of Rock’s HTM, such as the requirement that transac-
tions do not perform more stores than are accommodated by the
store buffer.

Despite these constraints, we have found that the availability of
HTM allows us to explore many algorithmic approaches, tradeoffs
and optimizations. In contrast, without HTM, it is significantly
more difficult to come up with any correct algorithm, and there is
less flexibility for variants and optimizations. In this section, to
illustrate the flexibility HTM enables, we give high-level descrip-
tions of some of the algorithmic techniques we have explored; in
the next section, we describe one algorithm in more detail.

3.1 List-based Algorithms
We have developed two kinds of list-based algorithms:

hand-over-hand reference counting (HOHRC) and fast collect
(FastCollect); each uses a doubly-linked list with one value per
node.

3.1.1 HOHRC

This algorithm uses a per-node reference count to “pin” a node
(prevent it from being deallocated) while a Collect is accessing
its value. Collect traverses the list, using short transactions to
increment the reference count of a node n while atomically con-
firming that n’s predecessor still points to it. As the predecessor
has previously been pinned, this ensures that node n is still part
of the Collect object. After incrementing n’s reference count,
Collect reads n’s value non-transactionally and copies it to the

result set. It then unpins n’s predecessor, using a transaction to
decrement its reference count, and, if it becomes zero and the pre-
decessor’s “delete marker” has been set, unlinks it from of the list
and deallocates it.
Register allocates a new node, uses a transaction to insert it

at the beginning of the list, and returns its address. Update non-
transactionally stores the new value into the node. DeRegister ex-
ecutes a short transaction to set the delete marker of the node to be
deregistered. If this transaction observes that the node’s reference
count is zero, it unlinks the node from the list and deallocates it
after the transaction commits. Otherwise, some ongoing Collect

has pinned the node. The last Collect that unpins the node will
unlink it and deallocate it. Note that a given node may be continu-
ally pinned and thus never reclaimed. However, each Collect pins
at most two nodes at a time, so the shared memory used is propor-
tional to the number of active handles plus the number of ongoing
Collects.

This description assumes that values stored by Update opera-
tions fit into a word that can be written and read by a native ma-
chine instruction, a significant advantage when Update operations
are frequent. This advantage stems from the fact that the storage
for a given handle does not move during the lifetime of the handle.
The array-based algorithms described below depend on the ability
to move the storage for a handle, thus requiring Update operations
to use transactions to confirm the location of the storage.

The main disadvantage of the HOHRC algorithm is the expensive
Collect operation, which updates each list node twice, increasing
the cost of Collect, causing significant memory coherence traffic,
and causing transactions used by Collect operations to conflict
with each other. Telescoping (Section 3.4) reduces these effects,
but cannot fully eliminate them.

3.1.2 FastCollect

This algorithm aims to improve Collect performance when
DeRegister operations are infrequent. It uses the same Register
and Update operations as HOHRC. However, it avoids HOHRC’s
main disadvantage by dispensing with the reference counts:
DeRegister uses a transaction to atomically unlink a node n and
increment a shared deregister counter dc, and deallocates n imme-
diately afterwards. Collect traverses the list using transactions to
atomically read the current value of dc and the next node in the list.
If dc has changed since the start of the Collect, the Collect is
restarted from the beginning.

The main disadvantage of FastCollect is that Collects can be
prevented from making any progress by concurrent DeRegisters.
A variety of practical approaches can be used to address this prob-
lem, such as adding a mode in which DeRegister operations add
nodes to a to-be-freed list that is freed by a Collect operation af-
ter it completes. Again, HTM makes it straightforward to integrate
such variants.

3.2 Array-based Algorithms
Our array-based algorithms can be categorized based on how

they: (1) manage memory, (2) register new handles, and (3) com-
pact (move elements inside) the array.

3.2.1 Managing memory
Our array-based algorithms are either static or dynamic. The

static ones do not solve the Dynamic Collect problem: they assume
a known bound on the number of handles to be registered, and do
not attempt to deallocate unused space. We use these algorithms as
a stepping stone towards truly dynamic ones, and to isolate the al-
gorithmic and performance issues related to registering and dereg-
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istering handles, collecting only from registered handles, etc., from
the issues related to reclaiming unused memory.

The dynamic array-based algorithms can replace the current ar-
ray with a new one of a different size, employing a level of indi-
rection to identify the current array. We double the array when it is
full, that is, when every slot (array entry) is in use for a registered
handle; and halve it when it is 25% full. This way we avoid exces-
sive resizing while keeping space usage proportional to the number
of registered handles.

To resize the array, the algorithms allocate a new one, and in-
stall it as the “new” array. The values are then copied from the
current array to the new, and the new array is made current. These
steps may be performed in cooperation with other threads. While
there are small differences in how our algorithms achieve this, the
detailed description in the next section is representative.

3.2.2 Registering
The Register operation can either search for an empty slot or

append a new element after the last used slot in the array (for ex-
ample, using the count variable in the next section).

3.2.3 Compacting
To reduce or avoid fragmentation, the array can be “compacted”

by moving elements within it. Our algorithms either perform no
compaction, or do so on each resize or each DeRegister.

Compacting requires slots to be moved by threads other than
their owners. This creates a race between one thread moving a
slot and another performing a Update to it, requiring synchroniza-
tion between these threads. This is explained in detail in the next
section.

Algorithms that compact on resize move slots only when the ar-
ray is resized. Elements are copied into consecutive locations in
the new array.

Algorithms that perform compaction with every DeRegister

operation use a transaction to move the last used slot into the space
used by the slot being deregistered, atomically updating other data
such as a count of the number of registered slots, and data used to
associate the handle of the moved slot with the memory location in
which it is stored. Collect operations must access the elements
in the array from the last towards the first to avoid missing an el-
ement that is moved by a concurrent DeRegister. This may lead
to multiple values being returned by the same Collect operation
for the same handle, which is allowed by the specification, whereas
missing a handle is not.

3.2.4 Algorithms
Many combinations of these design choices yield meaningful

algorithms. We have implemented some of the most interesting
choices, naming the algorithms according to the choices for mem-
ory management, registering, and compacting, yielding the follow-
ing algorithms: ArrayStatSearchNo, ArrayStatAppendDereg,
ArrayDynSearchResize, and ArrayDynAppendDereg.

3.3 Baseline algorithms
We have also implemented two non-HTM-based Collect algo-

rithms for comparison. The Static baseline algorithm uses a fixed-
sized array, with threads mapped statically to slots in it (Register
and DeRegister are no-ops). Update operations by a thread write
directly to the thread’s slot, and Collect simply scans the entire
array and returns the set of non-null values seen. Recall that such
static algorithms do not solve the Dynamic Collect problem: we
use them merely to put the performance of dynamic algorithms in
context.

The Dynamic baseline (Algorithm 2 from [11]) uses a doubly
linked list of nodes whose forward pointers are augmented with
reference counts for the pointed-to node. Register searches for
a free node, incrementing forward pointer counters on the way. If
none is found, a new one is added to the end of the list. The ad-
dress of the node that is found or added is returned as the handle.
Update uses the handle to store the value directly into the regis-
tered node. DeRegister of node n decrements forward pointer
counters in all nodes preceding n. If any of the counters reaches
zero, the node pointed to by the associated forward pointer is un-
linked and deallocated. Collect traverses the list, incrementing
the forward pointer counters. After reaching the end of the list, it
goes back in the opposite direction decreasing the counters, unlink-
ing and deallocating nodes pointed to by forward pointers with zero
reference counts.

3.4 Telescoping
The HOHRC algorithm can be improved by observing that the net

effect of several traversal steps executed in sequence (without ac-
tivity by other threads) is to increment the reference count of the
last node accessed and decrement that of the first because the ref-
erence count of each of the intermediate nodes is incremented and
subsequently decremented. By combining these steps into a single
transaction, we not only amortize the cost of starting and commit-
ting a transaction over multiple steps down the list, but we also
avoid modifying the intermediate nodes, thereby improving cache
behavior. This is safe because the intermediate nodes are accessed
inside a transaction that ensures not only that the first node accessed
in a transaction is still in the list, but also that the pointers between
this node and subsequent ones are intact. We call this technique
telescoping and the number of nodes accessed in each transaction
the step size.

The telescoping technique is also applicable to other algorithms.
For example, in the FastCollect algorithm, each transaction
could read dc once, and then access a number of list nodes, thereby
amortizing the cost of starting and committing a transaction and of
reading dc.

The best choice of step size depends on several factors. Larger
step sizes allow fixed transaction costs to be amortized over more
steps, but make transactions more vulnerable to abort, depending
on the algorithm and limitations of the HTM. In our experiments,
we were could not use step sizes greater than 32, which is the size of
Rock’s store buffer, because each step performs at least one store
(to record a value in the result set). Because different step sizes
perform best at different contention levels, we developed a simple
mechanism for adapting the step size based on the abort rate. This
mechanism bases its decisions on the success or failure of the most
recent 8 transactions. However, in order to avoid excessive resizing,
only transaction attempts since the last resize are relevant to the
decision.

Our mechanism maintains a counter that records the difference
between the number of commits and the number of aborts amongst
the relevant transactions. The counter is maintained by using an 8-
bit vector to record the results of the recent transactions, allowing
us to “age out” the contribution of the oldest transaction and update
the difference counter accordingly. If the value of the counter is
higher than 6 after a commit, we double the step size. If it is below
-2 after an abort, we halve the step size. These thresholds were
determined experimentally.

4. THE ArrayDynAppendDereg ALGORITHM
In this section, we present the ArrayDynAppendDereg algo-

rithm in more detail. Figure 2 gives pseudocode for the algorithm,
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1 public struct slot_t {
2 val_t val;
3 slot_t **slot_ref;
4 }
5
6 # shared data
7 slot_t array[] = new slot_t[MIN_SIZE];
8 int capacity = MIN_SIZE; // MIN_SIZE >= 1
9 int count = 0;
10 slot_t array_new[] = NULL;
11 int capacity_new;
12 int copied;
13
14 bool copying() {
15 return array_new != NULL;
16 }
17
18 public slot_t **Register(val_t val) {
19 slot_t **slot_ref = new (slot_t *);
20 action_t action = NOTHING;
21 while(action != DONE) {
22 atomic {
23 if(!copying()) {
24 if(count < capacity) {
25 append(slot_ref, val);
26 action = DONE;
27 } else {
28 count_l = count;
29 action = GROW;
30 }
31 } else {
32 if(count < capacity && count <

capacity_new) {
33 append(slot_ref, val);
34 action = DONE;
35 } else
36 action = HELP;
37 }
38 }
39 if(action == GROW) attempt_resize(count_l,

count_l);
40 else if(action == HELP) help_copy();
41 }
42 return slot_ref;
43 }
44
45 public void Deregister(slot_t **slot_ref) {
46 action_t action = HELP;
47 while(action != DONE) {
48 atomic {
49 count_l = count;
50 capacity_l = capacity;
51 if (count_l*4 == capacity_l && count_l*2

>= MIN_SIZE)
52 action = SHRINK;
53 else if(!copying()) {
54 count = count_l-1;
55 **slot_ref = array[count];
56 *(array[count].slot_ref) = *slot_ref;
57 action = DONE;
58 }
59 }
60 if(action == SHRINK) {
61 attempt_resize(count_l, capacity_l);
62 action = HELP;
63 } else if(action == HELP) help_copy();
64 }
65 delete slot_ref;
66 }
67

68 void append(slot_t **slot_ref, val_t val) {
69 array[count] = slot_t(val, slot_ref);
70 *slot_ref = &(array[count]);
71 count = count + 1;
72 }
73
74 public void Update(slot_t **slot_ref, val_t

val) {
75 atomic {
76 (*slot_ref)->val = val;
77 }
78 }
79
80 public void Collect(vector_t ret) {
81 help_copy();
82 int i = count - 1;
83 while(i >= 0) {
84 atomic {
85 if(i >= count)
86 i = count - 1;
87 if(i >= 0) {
88 ret.add(array[i].val);
89 i = i - 1;
90 }
91 }
92 }
93 }
94
95 void attempt_resize(int count_l, int

capacity_l) {
96 slot_t array_tmp[] = new slot_t[count_l*2];
97 bool free_tmp = true;
98 atomic {
99 if(!copying() && count == count_l &&

capacity == capacity_l) {
100 array_new = array_tmp;
101 capacity_new = count_l*2;
102 copied = 0;
103 free_tmp = false;
104 }
105 }
106 if(free_tmp) delete[] array_tmp;
107 help_copy();
108 }
109
110 void help_copy() {
111 while(copying()) help_copy_one();
112 }
113
114 void help_copy_one() {
115 slot_t array_to_free[] = NULL;
116 atomic {
117 if(copying()) {
118 if(copied < count) {
119 array_new[copied] = array[copied];
120 *(array_new[copied].slot_ref) = &

array_new[copied];
121 copied = copied + 1;
122 } else {
123 array_to_free = array;
124 array = array_new;
125 capacity = capacity_new;
126 array_new = NULL;
127 }
128 }
129 }
130 if(array_to_free != NULL) delete[]

array_to_free;
131 }

Figure 2: Pseudocode for the ArrayDynAppendDereg algorithm.
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using C++-like notation: we use * for declaring and dereferencing
pointers, -> for accessing a field of a structure through a pointer,
and & for taking the address of a variable. We use public to de-
note all functions and types that are parts of the object interface.

4.1 Dynamic array and resizing mechanism
ArrayDynAppendDereg uses a dynamic array of “slots”; each

slot can store one value that has been associated with one handle
The current array and the number of slots in it are identified by
array and capacity, respectively. To resize the array, a thread
allocates a new array (line 96), then atomically stores a pointer to
it in array_new and its size (in slots) in capacity_new, and sets
copied to zero to indicate that no slots have yet been copied from
the old array to the new (lines 100-102). The thread then calls
help_copy, which copies slots individually from the old array to
the new (lines 119–121), and finally makes the new array current
and sets array_new back to null to facilitate subsequent resizing
(lines 124–126). Other threads calling help_copy may also partic-
ipate; the one that makes the new array current deallocates the old
array (line 130).

The value associated with a handle can be moved, either during
resizing or if it is the last value in the current array and is moved
to replace a slot being deregistered. To facilitate moving of values,
each handle has an associated “slot reference”, which points to its
associated slot, and the slot has a pointer back to this slot reference.
This way, when a value is moved, the slot’s pointer to the slot ref-
erence can be used to update the slot reference so that it points to
the new slot (lines 56 and 120), thus allowing subsequent Update
operations for that handle to determine its new location.

An interesting observation is that HTM makes it trivial to imple-
ment a minor variant on this algorithm that is optimized for Update
performance at the cost of higher overhead for Collect operations.
The idea is to store the value associated with a handle together with
the slot reference for that handle, rather than in the array slot to
which it points. This way, slot references do not move, even if
their associated array slots are compacted. Therefore, a Update

operation can store its value directly and without using a transac-
tion (at least for some common cases; see Section 5.1), rather than
through a level of indirection using a transaction. The downside of
this choice is that Collect operations must now use a transaction
to dereference the pointer in each array slot in order to access the
associated value. Depending on anticipated workload, this may be
an appropriate choice. We have not implemented this variant.

4.2 Operations
Register is very simple in the common case: it allocates a new

slot reference (line 19) and calls append to store the new value
and a pointer to the new slot reference in the first unused slot, up-
dates the slot reference to point to the new slot, and increments
count so that a subsequent Register operation will use the next
slot (lines 69–71). The DeRegister operation is also straightfor-
ward in the common case: it copies the last used slot to the slot
being deregistered, updates the slot reference for the moved slot to
point to its new location (line 56), decrements count to make the
last used slot available again (line 54), and frees the slot reference
associated with the deregistered handle (line 65).

The more complicated cases for the Register and DeRegister

operations arise because of resizing the array. First, if a new
array is being installed (lines 23 and 53), these operations call
help_copy to ensure that the new array become current before
trying again. (There is one exception in Register that we dis-
cuss later.) Furthermore, these operations perform additional steps
in order to keep the space used by the array proportional to the

number of registered slots (while ensuring a non-zero minimum
number of slots). Specifically, we maintain the following invari-
ant: max (count,MIN _SIZE) ≤ capacity ≤ 4 ∗ count.
Register checks if there is still room in the current array (line 24),
and if not initiates an attempt to grow the array (line 39). Simi-
larly, DeRegister checks if decrementing the number of slots used
would violate the invariant, and if so initiates an attempt to shrink
the array (line 61). Both procedures pass the values of count and
capacity seen in the transaction to the attempt_resize proce-
dure. The resize attempt is abandoned if either of these variables
differs from the previously observed value (line 99), as this indi-
cates that either there is no longer any risk of violating the above
invariant, or the array has already been resized. Furthermore, if
copying is already in progress, the resize attempt is abandoned,
and the thread helps to complete the current resizing if necessary
(lines 99 and 107).

The new array size chosen when resizing—whether shrinking or
growing—is twice the value of count; this way, after a successful
resize, count is in the middle of the range of values that satisfy
the above invariant, so further resizing will occur only when the
number of registered handles either halves or doubles.

Interestingly, a Register operation can complete even while re-
sizing is in progress, provided there is enough space for the newly
registered element in both the old and new arrays (line 32). This is
because the same transaction that determines that the last element
has been copied (line 118) also installs the new array. Thus, if a
Register operation succeeds in claiming a slot in the current ar-
ray during resizing, it is guaranteed that the slot will be copied to
the new array before the new array becomes current.

It remains to describe the Collect operation. It would be trivial
to satisfy the requirements of the Collect by reading values from
all registered slots in one hardware transaction. However, this is
not practical: existing HTM implementations do not support trans-
actions of unbounded size, and even if they did, we would be at-
tempting to read many locations in a transaction that would conflict
with any concurrent Update operation, causing excessive aborts.
Therefore, the algorithm presented in Figure 2 reads only a single
slot in each hardware transaction. As discussed in Section 3.4, the
Collect could copy more than one slot per transaction to reduce
the overheads of starting and committing the transactions. That
is, lines 87–90 can be executed multiple times in the same transac-
tion; we experiment with different “step sizes” (number of elements
copied within each transaction) in the next section.

Even using multiple transactions, Collect is quite simple, but
there are some subtle issues. First, for the reason explained in Sec-
tion 3.2, Collect reads slots in reverse order.

Second, a Collect operation can proceed despite concurrent re-
sizing and compacting. This is because any slot that is continu-
ally registered during the Collect either stays at the same index
in the current array, or moves to a lower one due to a concurrent
DeRegister operation. Thus, because Collect reads from the
slot of the current array for each index below the value of count
observed at the beginning of the Collect in reverse order, a slot
will not be missed even if it is moved to a new array during the
Collect.

However, there is one exception. If a resize were in progress
when a Collect operation began, then the Collect could copy
a value from a slot that had already been copied to the new ar-
ray. An Update operation could have updated such a slot in the
new array before the Collect operation began, but the Collect

would fail to return the new value, which would be incorrect. To
eliminate this possibility, a Collect operation begins by calling
help_copy, which ensures that there is no copy in progress be-
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fore it returns. While Collect may still miss Updates performed
during subsequent resizes, these Updates are concurrent with the
Collect operation, and therefore the specification allows them to
be missed.

Finally, we note that Collect checks that the index from which
it is about to read is still valid (lines 85), “advancing” the index
down to count-1 if not, to avoid reading deregistered slots.

4.3 Impact of HTM on algorithm complexity
Transactions make it easy to maintain simple invariants. For ex-

ample, capacity always contains the size of array, and similarly
for capacity_new and array_new. Access-after-free errors are
easily avoided as we only deallocate arrays that are not referenced
by either array or array_new, and accesses to slots in arrays are
always performed inside transactions that confirm that the array is
identified by either of these variables. Similarly, ensuring that a
handle’s slot reference always points to its slot makes it easy to
move slot data without the risk of an Update operation accessing
the old location. Without hardware transactions, these simple rela-
tionships cannot be maintained, as variables involved in them must
be updated individually, which significantly complicates the algo-
rithm.

We included the optimization of allowing a Register operation
to complete despite ongoing resizing in order to illustrate the power
of HTM to facilitate such changes. In our experience, nonblock-
ing algorithms designed using only traditional hardware support
for synchronization are delicate and inflexible, making such opti-
mizations infeasible or too complicated. For the sake of simplicity,
we have foregone a number of other optimizations that would be
similarly straightforward.

5. EXPERIMENTAL RESULTS
In this section, we present results of experiments performed on

a 16-core Rock system [8]. We used the libumem malloc im-
plementation. Each graph point represents the average of 10 runs.
Unless stated otherwise, we show the results for the best telescop-
ing step size and indicate it in the graphs. We used several micro-
benchmarks to evaluate different aspects of the algorithms.

5.1 Update latency
We measured the latency of Update operations

at about 215ns for the ArrayStatAppendDereg,
ArrayDynSearchResize, and ArrayDynAppendDereg al-
gorithms, and about 135ns for the remaining algorithms. This is
explained by the fact that the remaining algorithms all perform
Update operations directly to an address determined by the
handle, whereas the algorithms named above all require a level of
indirection through the handle to determine the address to write.

Although this seems like a significant difference, we believe that
in many workloads of interest, Update operations will account for
a small fraction of application runtime. Furthermore, the ability
of some of the algorithms to perform Update operations using
naked store instructions depends on the values being stored fitting
within a single machine word, as in our experiments. For larger val-
ues, synchronization (HTM-based or not) would be needed to pre-
vent Collect from returning partial values, which would largely
close the gap in Update performance. Also, as discussed later,
it is straightforward to reduce the frequency of DeRegister and
Register operations in workloads in which they are invoked fre-
quently enough to dominate performance. Therefore, the rest of
our evaluation concentrates on Collect performance.
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Figure 3: Collect-dominated

5.2 Collect-dominated benchmark
In this benchmark, threads randomly perform operations, with

the following distribution: Collect 90%, Update 8%, Register
1%, DeRegister 1%. Each thread t maintains a queue of at most
nt slots, where the n’s are chosen to spread a total of 64 evenly
amongst the threads used. Before measurement begins, the threads
register a total of 32 slots, spread evenly between them.

A thread ignores Register operations when its queue is full
and ignores DeRegister and Update operations when the queue
is empty. Otherwise, for a Register operation, a thread registers
a new slot and adds it to its queue; for a DeRegister operation, it
removes a slot from its queue and deregisters it; and for an Update

operation, the thread stores to the least recently used slot in the
thread’s queue.

As shown in Figure 3, the Dynamic baseline and HOHRC per-
formed significantly worse than all other algorithms due to poor
cache performance caused by modifying each node in the list while
traversing it. These two algorithms were similarly outperformed
by large margins in all experiments involving Collect operations
and are therefore omitted from the rest of our results to allow easier
comparison of the remaining algorithms.
ArrayDynAppendDereg and ArrayStatAppendDereg per-

form best up to 8 threads. They outperform even the Static baseline
because its Collect traverses the entire array, which is on average
only half full, whereas the Append algorithms scan only registered
slots.

With higher thread counts, the Collect transactions restart more
often due to higher contention, and the Append-Dereg algorithms
become slower than ArrayStatSearchNo with 16 threads (recall
that this algorithm does not solve the Dynamic Collect problem).
Even so, both algorithms are consistently among the best. The two
Append-Dereg algorithms have roughly the same performance up
to 4 threads, but diverge slightly thereafter. Upon further investiga-
tion, we determined that this difference is caused by idiosyncrasies
of Rock’s microTLB, not algorithmic differences. Similar experi-
ences were reported in [9].

5.3 Collect-Update benchmark
This benchmark evaluates Collect performance under con-

tention from concurrent Updates. One thread performs Collects
while 15 others execute Updates (Figure 4). Update threads per-
form Update operations no more often than the update period,
which we vary in order to control contention. Before measurement
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begins, the Update threads register a total of 64 handles. Each
Update thread uses the same one of its handles for all operations;
the rest of the handles are unused; we register them only to keep
the total number of registered slots in this experiment independent
of the number of threads.

The performance of Static baseline and ArrayStatSearchNo—
whose Collect operations do not use transactions—are affected
only slightly by more frequent Updates, due to an increase in cache
misses. For the other algorithms, performance degrades more sig-
nificantly because the Collect transactions abort more often with
higher contention. The two Append-Dereg variants perform best
for all update periods except 400 cycles. Even at this point, the
Append-Dereg algorithms perform only slightly worse than Static
baseline and ArrayStatSearchNo, which do not solve the Dy-
namic Collect problem, and easily outperform all algorithms that
do. Thus, the Append-Dereg algorithms are the clear winners for
this benchmark.

Figure 5 examines the need for and effectiveness of an adaptive
step size using ArrayDynAppendDereg. The tradeoff discussed in
Section 3.4 is apparent: larger step sizes result in lower overhead
for successful transactions, but larger transactions are more likely
to abort as contention increases. Collect operations that use step
size of 32 do not complete for update periods less than 2000 cycles.

Each point on the “Best (adapt cost)” curve shows the through-
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put for the best-performing step size for that threading level with
the collection (but not use) of data to enable adaptive step size.
It shows overhead of between 20% and 30% for collecting this
data. These overheads could be reduced or eliminated with simple
hardware support to track recent transaction attempts. The adap-
tive algorithm performs close to “Best (adapt cost)” for all update
periods, showing that it chooses the step size effectively and that
most of its overhead stems from collecting the additional data. In
some cases, the adaptive algorithm even performs better than “Best
(adapt cost)”, because it manages to commit a fraction of trans-
actions with larger step size. Figure 6 shows the fraction of slots
collected using common step sizes, and confirms that the adaptive
algorithm is effective in finding the best step size to use.

5.4 Collect-(De)Register
Next, we evaluate the performance of Collect under contention

from concurrent Registers and DeRegisters (Figure 7). One
thread executes Collects, while 15 others execute Register-
DeRegister pairs with delays between them. We call the delay
between the start of a DeRegister and the start of the following
Register operation the register period, and the delay between the
start of the Register and the start of the following DeRegister

operation the deregister period. We fix the register period to 20,000
cycles and vary the deregister period. Initially, the total number of
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Figure 8: Collect performance with varying number of regis-
tered slots

registered slots is 64, evenly spread across the register/deregister
threads. The threads start the experiment by first deregistering a
slot, so the total number of registered slots is always at most 64.

With long deregister periods, algorithms in which Collect tra-
verses only the registered slots perform best. The others per-
form worse because they either traverse all slots (Static baseline)
or frequently traverse more slots than are registered due to infre-
quent compaction (ArrayDynSearchResize) or no compaction
(ArrayStatSearchNo).

As the deregister period decreases, the algorithms that perform
best with large deregister periods begin to degrade due to increased
abort rates because of more frequent Register and DeRegister

operations. The performance of ArrayStatAppendDereg and
ArrayDynAppendDereg degrade significantly due to higher abort
rates. FastCollect also degrades significantly, due to increased
DeRegister frequency resulting in increased contention on the
deregister count, causing Collect operations to start over from
the beginning.

Interestingly, several of the algorithms exhibit noticeable perfor-
mance gains at the shortest deregister periods. This is because a
shorter deregister period results in fewer handles being registered
at a time, so Collect operations are both shorter and less likely to
conflict with a concurrent DeRegister operation.

For applications that perform frequent Register and
DeRegister operations, it may make sense to defer dereg-
istering handles, allowing them to be reused by subsequent
Register operations. This could improve performance of many
of the algorithms for such workloads, particularly FastCollect,
because Collects conflicts on the deregister count would be less
frequent and thus cause fewer aborts.

5.5 Varying the number of registered slots
Finally, we examine Collect performance as the number of reg-

istered slots varies. One thread performs Collects, while 15 oth-
ers perform Updates with update period of 20,000 cycles. Initially,
the number of registered slots is 16. The experiment proceeds in
phases, with the Update threads alternately increasing and decreas-
ing the number of registered handles every 500ms.

Figure 8 shows the throughput of the Collect operations for
3 seconds. As expected, the performance of Collect opera-
tions for Static Baseline is not significantly affected by the num-
ber of registered slots. The throughput varies slightly because the
Collect copies less data when there are fewer registered slots.

ArrayStatSearchNo initially performs significantly better than
the Static baseline. However, when the number of registered slots
increases (at 500ms, for example), its performance degrades signif-
icantly and becomes similar to that of Static baseline. Furthermore,
it does not improve when the number of registered slots decreases
at 1s because Collect traverses the maximum historical number
of registered slots. The performance of Append-Dereg algorithms
and FastCollect is also reduced at 500ms because the number
of registered slots increases. However, when it decreases again at
1s, the performance of both algorithms becomes as good as it was
initially. This clearly shows the benefit of algorithms that adapt to
the number of registered slots. The best performing algorithms in
this experiment are, again, the two Append-Dereg variants.

6. DISCUSSION
In this section, we discuss how various details about the HTM

implementation affect our algorithms. A similar discussion appears
in [7], so here we only briefly mention specific issues that are rele-
vant to the algorithms in this paper. First, as noted in Section 1, our
algorithms rely on sandboxing [7].

Rock’s memory consistency model is like TSO [17], with trans-
actions being treated as both loads and stores, similarly to the way
atomic instructions such as CAS are treated. This model is suffi-
cient to support our algorithms without additional memory barri-
ers. Depending on the memory consistency model implemented by
other (future) architectures that support HTM, additional memory
barriers may be required.

Some of our algorithms depend on the ability to eventually com-
mit at least some small transactions, which Rock does not guar-
antee. We hope that future HTMs will make such guarantees (see
[1], for example). It is not difficult to modify our algorithms so
that they do not need this guarantee, at the cost of making the al-
gorithms block occasionally, by using the TLE technique [6]. The
key idea is to make all transactions read a lock variable and con-
firm that it is not held before proceeding. This way, if a transaction
fails repeatedly, its effects can be applied nontransactionally while
holding the lock. Note that, in the absence of any guarantees for
completion of transactions, the lock would have to be acquired us-
ing nontransactional synchronization, for example using compare-
and-swap (CAS).

Some of our algorithms perform concurrent transactional and
nontransactional accesses to the same variable. That is, they rely
on strong atomicity [5]. This dependence could be avoided, at the
cost of some additional overhead and code complexity, by replac-
ing such nontransactional accesses with short transactions.

The observations of the two previous paragraphs together imply
that, in order to support our algorithms, HTM must provide either
strong atomicity or guarantees that certain “small” transactions will
eventually commit (at least in the absence of contention). The best
algorithms can be built with HTMs that provide both features.

Some of our algorithms, including the one presented in detail
in Section 4, have been complicated somewhat by our efforts to
avoid memory allocation within transactions. Because we have
used standard malloc implementations that use instructions such
as CAS, which are not supported in transactions on Rock, mod-
ifications that naturally belong in one transaction had to be split
into multiple transactions; this complicates control flow as well as
synchronization. We emphasize that this complication is due to
a combination of idiosyncrasies of Rock’s HTM and not using a
TM-aware allocator. It is not a fundamental limitation of HTM
in general. Nonetheless, future HTMs could simplify software by
allowing the use of instructions such as CAS in transactions.

As discussed in Section 4, Rock’s bounded transactions did not
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impose much complexity on our algorithms, because we would
want to avoid large transactions even if unbounded transactions
were supported. However, in some cases we believe we could
have achieved better performance if we could use larger transac-
tions. In other cases, feedback about transaction failure reasons
appeared to indicate a store buffer overflow, but it was difficult to
understand why, even examining assembly code in detail. This ex-
perience suggests that support for larger or unbounded transactions
may still make programming easier. Relatedly, the ability to cap-
ture more detailed information about a transaction and the reason it
failed would be helpful too.

7. CONCLUDING REMARKS
We have shown that hardware transactional memory (HTM) can

facilitate dynamic sized concurrent data structures that are superior
in terms of simplicity, flexibility, performance, and space usage,
compared to those that do not use HTM. Our results add to a grow-
ing body of practical evidence that HTM has the potential to make
effective concurrent programming significantly easier [7, 8].

Known limitations of Rock have complicated our algorithms to
some extent. We expect future HTM implementations to have fewer
limitations, making it even easier to achieve similar results.

Some have argued that HTM provides little or no inherent bene-
fits for concurrent data structures. However, the theoretical results
on which these arguments rest focus on issues of secondary practi-
cal importance: strong progress properties such as wait-freedom,
worst-case time complexity under extreme contention, and fully
asynchronous models that preclude common practical techniques
such as back-off.

In particular, Attiya and Hendler [4] have used such results to
argue that HTM does not help to solve the “adaptive collect” prob-
lem. Despite the similarity in names, this problem is fundamentally
different from the Dynamic Collect problem, and seems to have lit-
tle bearing on practical issues of dynamic memory management.
Specifically, because it does not allow threads to dynamically allo-
cate and release handles, the problem specification implies knowl-
edge of the number of threads in the system, and time and space
complexity that depend on this number. We therefore believe that
studying (variants of) our Dynamic Collect problem is more likely
to provide useful insight into the impact of HTM on practical con-
current programming, especially with respect to dynamic memory
management. Finally, Attiya and Hendler acknowledge that their
results have no bearing on the critical issue of programming com-
plexity, whereas our results demonstrate that HTM indeed facili-
tates simpler and more flexible algorithm designs.
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