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On the Power of Labels in Transition Systems⋆

Jǐŕı Srba⋆⋆

BRICS⋆ ⋆ ⋆

Department of Computer Science
University of Aarhus

Denmark
srba@brics.dk

Abstract. In this paper we discuss the role of labels in transition sys-
tems with regard to bisimilarity and model checking problems. We sug-
gest a general reduction from labelled transition systems to unlabelled
ones, preserving bisimilarity and satisfiability of µ-calculus formulas.
We apply the reduction to the class of transition systems generated
by Petri nets and pushdown automata, and obtain several decidabil-
ity/complexity corollaries for unlabelled systems. Probably the most
interesting result is undecidability of strong bisimilarity for unlabelled
Petri nets.

1 Introduction

Formal methods for verification of infinite-state systems have been an
active area of research with a number of positive decidability results.
In particular, verification techniques for concurrent systems defined by
process algebras like CCS [Mil89], ACP [BW90] or CSP [Hoa85], push-
down systems, Petri nets, process rewrite systems [May00b] and others
have attracted a lot of attention. There are two central questions about
decidability (complexity) of equivalence and model checking problems:

– Equivalence checking (see [Mol96]):
Given two (infinite-state) systems, are they equal with regard to some
equivalence notion?

– Model checking (see [BE97]):
Given an (infinite-state) transition system and a formula φ of some
suitable logic, does the system satisfy the property described by φ?

⋆ Full and extended version of [Srb01].
⋆⋆ The author is supported in part by the GACR, grant No. 201/00/0400.

⋆ ⋆ ⋆ Basic Research in Computer Science,
Centre of the Danish National Research Foundation.



Both these problems have an interesting and unifying aspect in common.
They can be defined independently on the computational model by means
of labelled transition systems. All the models mentioned above give rise to
a certain type of (infinite) labelled transition system and this is considered
to be their desired semantics. Equivalence and model checking problems
can be defined purely in terms of these transition systems.

In the first part of the paper we discuss the role of labels of such
transition systems. There are two aspects of the branching structure de-
scribed by a labelled transition system T . First, given a state of T , there
can be several outgoing edges with different labels. Second, given a state
of T and a label a, there can be several outgoing edges under the same
label a. We claim that for our purposes only the second property is the
essential one. In other words, given a labelled transition system, we can
construct another transition system where all edges are labelled by the
same label, i.e., the labels are in fact completely irrelevant. We call such
systems unlabelled transition systems. What is important is the fact that
our construction preserves the answers to both the questions we are inter-
ested in — equivalence checking (and we have chosen strong bisimilarity
as the notion of equivalence) and model checking with action-based modal
µ-calculus as the chosen logic for expressing properties of labelled transi-
tion systems.

In the second part we focus on two specific classes of infinite-state sys-
tems, namely Petri nets and pushdown systems. Petri nets are a typical
example of fully parallel models of computation, whereas pushdown sys-
tems can model sequential stack-like process behaviours. Both Petri nets
and pushdown systems generate (in general infinite) labelled transition
systems. The question is whether the transformed unlabelled transition
systems (given by the construction mentioned in the previous paragraph)
are still definable by the chosen formalism of Petri nets resp. pushdown
automata. The answer is shown to be positive for both our models — there
are even polynomial time transformations. This implies several decidabil-
ity/complexity results about bisimilarity and model checking problems
for unlabelled Petri nets and pushdown systems.

Probably the most interesting corollary is the application of the trans-
formation to Petri nets. We prove that strong bisimilarity for unlabelled
Petri nets (where the set of labels is a singleton set) is undecidable. This is
stronger result than undecidability of strong bisimilarity for labelled Petri
nets given by Jancar [Jan95]. The undecidability for unlabelled Petri nets
contrasts to a positive decidability result for the subclass of Petri nets
which are deterministic [Jan95,Vog92], i.e., for any marking M and a la-



bel a there is at most one outgoing transition from M labelled by a. This
again demonstrates that the role of labels is not important for decidabil-
ity questions and what is crucial is the branching structure induced by
transitions with the same label.

In the end we briefly discuss other popular process algebras — BPA
(Basic Process Algebra) [BK85] and BPP (Basic Parallel Process) [Chr93].
BPA is a strict subclass of pushdown systems and BPP is a strict subclass
of Petri nets (also called communication-free Petri nets). Unfortunately,
it is sketched that these models — unlike pushdown systems and Petri
nets — are not strong enough to express deadlock behaviour which is
essential for the transformation. In other words, the corresponding unla-
belled transition system of a given BPA (BPP) transition graph is not
necessarily definable in the BPA (BPP) syntax.

2 Basic definitions

First, we define labelled transition systems [Plo81,Mol96].

Definition 1 (Labelled transition system). A labelled transition sys-
tem is a triple T = (S,Act,−→) where

– S is a set of states (or processes)

– Act is a set of labels (or actions) such that S ∩Act = ∅ and

– −→⊆ S × Act × S is a transition relation, written α
a

−→ β for
(α, a, β) ∈−→.

In what follows we assume that Act is a finite set. As usual we extend
the transition relation to the elements of Act∗ (α

ǫ
−→ α and inductively

α
aw
−→ β iff ∃γ : α

a
−→ γ and γ

w
−→ β where α, β, γ ∈ S, a ∈ Act and

w ∈ Act∗). We also write α −→∗ β iff ∃w ∈ Act∗ such that α
w

−→ β. A
state β is reachable from a state α, iff α −→∗ β. Moreover, we write α 6−→
for α ∈ S iff there is no β ∈ S and a ∈ Act such that α

a
−→ β.

We call a labelled transition system T normed iff ∀s ∈ S. ∃s′ ∈ S such
that s −→∗ s′ 6−→.

Definition 2. Let T = (S,Act,−→) be a labelled transition system and
s ∈ S. By Ts we denote a labelled transition system restricted to states
of T reachable from s. More precisely, Ts = (Ss,Act,−→s) where Ss =
{s′ ∈ S | s −→∗ s′} and s1

a
−→s s2 iff s1

a
−→ s2 and s1, s2 ∈ Ss.

Now, we introduce the notion of (strong) bisimilarity [Par81,Mil89].



Definition 3 (Bisimulation). Let T = (S,Act,−→) be a labelled tran-
sition system. A binary relation R ⊆ S × S is a relation of bisimulation
iff whenever (α, β) ∈ R then for each a ∈ Act:

– if α
a

−→ α′ then β
a

−→ β′ for some β′ such that (α′, β′) ∈ R

– if β
a

−→ β′ then α
a

−→ α′ for some α′ such that (α′, β′) ∈ R.

Two states α, β ∈ S are bisimilar in T , written α ∼T β, iff there is a
bisimulation R such that (α, β) ∈ R.

Bisimilarity has also an elegant characterisation in terms of bisimulation
games [Tho93,Sti95]. A bisimulation game on a pair of states α, β ∈ S is a
two-player game of an “attacker” and a “defender”. The attacker chooses
one of the states and makes an

a
−→-move for some a ∈ Act. The defender

must respond by making an
a

−→-move from the other state under the
same label a. Now the game repeats, starting from the new processes. If
one player cannot move, the other player wins. If the game is infinite, the
defender wins. States α and β are bisimilar iff the defender has a winning
strategy (and non-bisimilar iff the attacker has a winning strategy).

We introduce unlabelled transition systems in the following definition.

Definition 4 (Unlabelled transition system). Let T = (S,Act,−→)
be a labelled transition system. We call T unlabelled transition system
whenever Act is a singleton set, i.e., |Act| = 1.

Remark 1. If it is the case that |Act| = 1 then (for our purposes) we sim-
ply write −→ instead of

a
−→. We also forget about the second component

in the definition of a labelled transition system, i.e., we can denote an
unlabelled transition system by T = (S,−→) where −→⊆ S × S.

Now, we define a powerful logic for labelled transition systems — modal
µ-calculus [Koz83,Pra82].

Definition 5 (Syntax of modal µ-calculus). Let Var be a set of vari-
ables and Act a set of action labels such that Var ∩ Act = ∅. The syntax
of modal µ-calculus is defined as follows:

φ ::= tt | X | φ1 ∧ φ2 | ¬φ | 〈a〉φ | µX.φ

where tt stands for “true”, X ranges over Var and a over Act. There is
a standard restriction on the formulas: we consider only formulas where
each occurrence of a variable X is within a scope of an even number of
negation symbols.



Given a labelled transition system T = (S,Act,−→), we interpret a for-
mula φ as follows. Assume a valuation Val : Var → 2S .

[[tt]]Val,T = S
[[X]]Val,T = Val(X)

[[φ1 ∧ φ2]]Val,T = [[φ1]]Val,T ∩ [[φ2]]Val,T
[[¬φ]]Val,T = S r [[φ]]Val,T

[[〈a〉φ]]Val,T = {s | ∃s′. (s
a

−→ s′ ∧ s′ ∈ [[φ]]Val,T )}
[[µX.φ]]Val,T =

⋂
{S′ ⊆ S | [[φ]]Val[S′/X],T ⊆ S′}

Here Val[S′/X] stands for a valuation function such that Val[S′/X](X) =
S′ and Val[S′/X](Y ) = Val(Y ) for X 6= Y . We say that a formula φ is
satisfied in a state s of T , and we write T, s |= φ, if for all valuations Val
we have s ∈ [[φ]]Val,T .

Remark 2. The logic defined above without the fixed-point operator µX.φ
is called Hennessy-Milner logic [HM85].

3 From labelled to unlabelled transition systems

In this section we present a transformation from labelled transition sys-
tems to unlabelled ones, preserving bisimilarity and satisfiability of µ-
calculus formulas.

Let T = (S,Act,−→) be a labelled transition system. We define a
transformed unlabelled transition system T̂ = (Ŝ,−→). We reuse the re-
lation symbol −→ without causing confusion, since in the system T it is a
ternary relation and in T̂ it is a binary relation. Without loss of generality
we assume that Act = {1, 2, . . . , n} for some n > 0. We define the system
T̂ = (Ŝ,−→) as follows:

Ŝ = S ∪ {rk(s,a,s′) | 0 ≤ k ≤ a ∧ s
a

−→ s′} ∪

{dks | s ∈ S ∧ 0 ≤ k ≤ n}

−→ = {(s, r0(s,a,s′)), (r0(s,a,s′), s
′) | s

a
−→ s′} ∪

{(rk(s,a,s′), r
k+1
(s,a,s′)) | s

a
−→ s′ ∧ 0 ≤ k < a} ∪

{(s, d0
s) | s ∈ S} ∪

{(dks , d
k+1
s ) | s ∈ S ∧ 0 ≤ k < n}.

For a better understanding of the transformation take a look at Figure 1
where a way how to transform a transition s

a
−→ s′ is drawn. The idea

consists in splitting each transition s
a

−→ s′ labelled by a ∈ N0 with an
intermediate state (the r0(s,a,s′) state) out of which goes a newly added



/. -,() *+s
a ///. -,() *+s′

⇓

/. -,() *+dn
s

. . .oo /. -,() *+d0
s

oo /. -,() *+d0
s′

// . . . ///. -,() *+dn
s′

/. -,() *+s

OO

///. -,() *+r0
(s,a,s′)

//

��

/. -,() *+s′

OO

/. -,() *+r1
(s,a,s′)

///. -,() *+r2
(s,a,s′)

// . . . . . . ///. -,() *+ra
(s,a,s′)

Fig. 1. Transformation of a transition s
a

−→ s′

linear path of length a. The ds states add a linear path of length n + 1
to each state from S and serve for distinguishing the r-states from the
original ones.

Notice that if T is a finite-state system then the size of T̂ is polyno-
mially bounded by the size of T . In fact, we could add only one linear
path of length n+ 1 with appropriate links into the path starting in the
states from S and in the r0-states. However, for technical convenience in
Section 4, we use the previously described construction.

Remark 3. It is an easy observation that T̂ is a normed transition system.

3.1 Bisimilarity

Let T = (S,Act,−→) be a labelled transition system and let s ∈ S. We
define a set of finite norms of s by

N (s) = {|w| | ∃s′ ∈ S : s
w

−→ s′ 6−→}

where |w| is the length of w. The following proposition is a standard one.

Proposition 1. Let T = (S,Act,−→) be a labelled transition system and
s1, s2 ∈ S. Then s1 ∼T s2 implies that N (s1) = N (s2).

Our aim is to show that for a pair of states s1 and s2 of a labelled
transition system T holds that s1 ∼T s2 if and only if s1 ∼

T̂
s2.

Lemma 1. Let T = (S,Act,−→) be a labelled transition system and
s1, s2 ∈ S be a pair of states. If s1 ∼T s2 then s1 ∼

T̂
s2.



Proof. Suppose that the defender has a winning strategy in T starting
from the pair s1 and s2. We show that the defender in T̂ has also a
winning strategy starting from the pair s1 and s2. Any attacker’s move in
T̂ of the form si −→ d0

si
(for i ∈ {1, 2}) can be matched by a defender’s

move s3−i −→ d0
s3−i

. The states d0
s1 and d0

s2 are trivially bisimilar. Let

the attacker’s move in T̂ be si −→ r0(si,a,s′i)
for i ∈ {1, 2}. Of course, the

following attacker’s move is possible in T as well: si
a

−→ s′i. We assume

defender’s answer in T by performing s3−i
a

−→ s′3−i such that

s′1 ∼T s
′
2. (1)

The defender’s response in T̂ is then s3−i −→ r0(s3−i,a,s′3−i)
. Now the game

in T̂ continues from the states r0(s1,a,s′1)
and r0(s2,a,s′2)

. Given i ∈ {1, 2},

only two transitions are possible from r0(si,a,s′i)
. Either the attacker can

choose r0(si,a,s′i)
−→ s′i or r0(si,a,s′i)

−→ r1(si,a,s′i)
. If he chooses the second

option then he looses since the defender answers with r0(s3−i,a,s′3−i)
−→

r1(s3−i,a,s′3−i)
and these reached states are easily seen to be bisimilar. Should

the attacker’s choice be r0(si,a,s′i)
−→ s′i then the defender’s answer is

r0(s3−i,a,s′3−i)
−→ s′3−i. Since s′1, s

′
2 ∈ S and the defender in T has a winning

strategy from these states because of (1), we have established a winning
strategy for the defender in T̂ . ⊓⊔

Before showing the other implication, we prove the following property.

Property 1. The attacker in T̂ has a winning strategy from any pair of
states s1, s2 ∈ Ŝ such that s1 6∈ S and s2 ∈ S, or s1 ∈ S and s2 6∈ S.

Proof. Assume w.l.o.g. that s1 6∈ S and s2 ∈ S. The other case is sym-
metric. There are three possibilities if s1 6∈ S.

– Let s1 = dks for some s ∈ S and 0 ≤ k ≤ n, or s1 = rk(s,a,s′) for some

s, s′ ∈ S, a ∈ Act and 0 < k ≤ a. In both these cases n + 1 6∈ N (s1)
and n+ 1 ∈ N (s2). Because of Proposition 1 we get s1 6∼T̂ s2 and the

attacker in T̂ has a winning strategy.
– Let s1 = r0(s,a,s′) for some s, s′ ∈ S and a ∈ Act. Now the attacker

has the following winning strategy in T̂ . He makes a move r0(s,a,s′) −→

r1(s,a,s′). Assume a defender’s answer s2 −→ s′2 for an arbitrary s′2 ∈ Ŝ.

Obviously either n ∈ N (s′2) or n+ 2 ∈ N (s′2) and max [N (r1(s,a,s′))] <
n. Again, using Proposition 1, the attacker has a winning strategy. ⊓⊔



Lemma 2. Let T = (S,Act,−→) be a labelled transition system and
s1, s2 ∈ S be a pair of states. If s1 ∼T̂ s2 then s1 ∼T s2.

Proof. Knowing that the defender has a winning strategy in T̂ from s1
and s2, we establish a winning strategy for the defender in T from s1 and
s2. Suppose that the attacker’s move in T is si

a
−→ s′i for i ∈ {1, 2}. Then

it is possible to perform a series of two moves si −→ r0(si,a,s′i)
−→ s′i in T̂ .

Because of Property 1, the defender in T̂ has a response to this series of
moves only by performing s3−i −→ r0(s3−i,b,s′3−i)

−→ s′3−i for some b ∈ Act

and s′3−i ∈ S where
s′1 ∼T̂ s

′
2. (2)

Notice that a = b, otherwise the attacker has a winning strategy in T̂ from
r0(si,a,s′i)

and r0(s3−i,b,s′3−i)
by performing a move r0(si,a,s′i)

−→ r1(si,a,s′i)
. Using

Property 1, the defender must answer with r0(s3−i,b,s′3−i)
−→ r1(s3−i,b,s′3−i)

.

However, the attacker has a winning strategy now since a−1 ∈ N (r1(si,a,s′i)
)

and a−1 6∈ N (r1(s3−i,b,s′3−i)
) whenever a 6= b — Proposition 1. This implies

that the defender in T can perform s3−i
a

−→ s′3−i and because of (2), the
defender in T has a winning strategy from s′1 and s′2. Thus s1 ∼T s2. ⊓⊔

From Lemma 1 and Lemma 2 we can conclude with the following theorem.

Theorem 1. Let T = (S,Act,−→) be a labelled transition system and
s1, s2 ∈ S be a pair of states. Let T̂ be the corresponding unlabelled tran-
sition system. Then

s1 ∼T s2 if and only if s1 ∼
T̂
s2.

3.2 Model checking

We turn our attention to the model checking problem now. We show that
there is a polynomial time transformation of any µ-calculus formula φ
into φ̂ such that T, s |= φ iff T̂ , s |= φ̂. When interpreting a µ-calculus
formula on an unlabelled transition system T̂ , we write ♦ instead of 〈a〉,
since a ∈ Act is the only label and hence it is irrelevant. We also define a
dual operator � as �φ ≡ ¬♦¬φ and ff as ff ≡ ¬tt.

Let T = (S,Act,−→) be a labelled transition system such that Act =
{1, 2, . . . , n} and let T̂ = (Ŝ,−→) be the corresponding unlabelled system.
First of all, we write a formula L(a) such that

[[L(a)]]
Val′,T̂

= {r0(s,a,s′) | ∃s, s
′ ∈ S : s

a
−→ s′} (3)



for any valuation Val′ : Var → 2Ŝ . We define

L(a) ≡ ♦n+1
tt ∧ ♦(�a

ff ∧ ♦a−1
tt)

where ♦0φ ≡ φ and ♦k+1φ ≡ ♦(♦kφ), and similarly �0φ ≡ φ and
�k+1φ ≡ �(�kφ).

Let T̂ , s1 |= L(a). The left subformula in L(a), namely ♦n+1
tt, ensures

that the state s1 is not of the form rk(s,b,s′) for k > 0, nor of the form dks
for k ≥ 0. The second subformula in the conjunction says that there
is a one step transition from s1, reaching a state s′1 of the form r1(s,b,s′)
— should s′1 ∈ S, or s′1 be of the form r0(s,b,s′), or s′1 be of the form

d0
s, then the formula �a

ff can never be satisfied. Moreover, the formula
�a

ff guarantees that there are at most a− 1 transitions from r1(s,b,s′) and

the formula ♦a−1
tt finally ensures that at least a − 1 transitions can be

performed from r1(s,b,s′). Hence a = b and (3) is established.
Let us consider another formula called State and defined by

State ≡ ♦tt ∧ �♦ntt.

Obviously, [[State]]
Val′,T̂ = S for any valuation Val′ : Var → 2Ŝ . We are

now ready to define φ̂ for a given µ-calculus formula φ. The definition
follows:

t̂t = tt ∧ State

X̂ = X ∧ State

φ̂1 ∧ φ2 = φ̂1 ∧ φ̂2 ∧ State

¬̂φ = ¬φ̂ ∧ State

µ̂X.φ = (µX.φ̂) ∧ State

〈̂a〉φ = ♦
(
L(a) ∧ ♦φ̂

)
∧ State.

Theorem 2. Let T = (S,Act,−→) be a labelled transition system and
s ∈ S. Let φ be a µ-calculus formula. Then

T, s |= φ if and only if T̂ , s |= φ̂.

Proof. By structural induction on φ we prove that

[[φ]]Val,T = [[φ̂]]
Val′,T̂

(4)

for arbitrary valuations Val : Var → 2S and Val′ : Var → 2Ŝ such that
Val(X) = Val′(X) ∩ S for all X ∈ Var.

Base case:



– Case tt. Obviously, [[tt]]Val,T = S = [[tt]]
Val′,T̂

∩ S = [[tt ∧ State]]
Val′,T̂

.

– CaseX. Because of our assumptions on Val and Val′ we get [[X]]Val,T =
Val(X) = Val′(X) ∩ S = [[X ∧ State]]

Val′,T̂
.

Inductive step:

– Case φ1 ∧ φ2. By definition [[φ1 ∧ φ2]]Val,T = [[φ1]]Val,T ∩ [[φ2]]Val,T .

Using induction hypothesis this equals to [[φ̂1]]Val′,T̂ ∩ [[φ̂2]]Val′,T̂ which

gives again by definition [[φ̂1 ∧ φ̂2]]Val′,T̂ . Since [[φ1 ∧ φ2]]Val,T = [[φ̂1 ∧

φ̂2]]Val′,T̂ ⊆ S, we get [[φ̂1 ∧ φ̂2]]Val′,T̂ = [[φ̂1 ∧ φ̂2 ∧ State]]
Val′,T̂

which

equals to [[φ̂1 ∧ φ2]]Val′,T̂ .

– Case ¬φ. By definition [[¬φ]]Val,T = S r [[φ]]Val,T . Using induction

hypothesis this equals to S r [[φ̂]]
Val′,T̂ which is the same as (Ŝ r

[[φ̂]]
Val′,T̂

) ∩ S = [[¬φ̂]]
Val′,T̂

∩ S = [[¬φ̂ ∧ State]]
Val′,T̂

. This is by defi-

nition [[¬̂φ]]
Val′,T̂

.

– Case µX.φ. By definition we know that [[µX.φ]]Val,T =
⋂
{S′ ⊆ S |

[[φ]]Val[S′/X],T ⊆ S′} and this equals by induction hypothesis to
⋂
{S′ ⊆

S | [[φ̂]]
Val′[S′/X],T̂

⊆ S′}. Notice that [[φ̂]]
Val′[S′/X],T̂

= [[φ̂]]
Val′[S′′/X],T̂

⊆

S for any S′ ⊆ S and S′′ ⊆ Ŝ such that S′ = S′′ ∩ S. Thus
⋂
{S′ ⊆

S | [[φ̂]]
Val′[S′/X],T̂ ⊆ S′} =

⋂
{S′′ ⊆ Ŝ | [[φ̂]]

Val′[S′′/X],T̂ ⊆ S′′} ∩ S.

This is the same as [[(µX.φ̂)∧State]]
Val′,T̂ and equals by definition to

[[µ̂X.φ]]
Val′,T̂ .

– Case 〈a〉φ. First, we show that [[〈a〉φ]]Val,T ⊆ [[〈̂a〉φ]]
Val′,T̂

. Let s ∈

[[〈a〉φ]]Val,T which means that there is some s′ ∈ S such that s
a

−→

s′ and s′ ∈ [[φ]]Val,T . By induction hypothesis s′ ∈ [[φ̂]]
Val′,T̂ . We

show that s ∈ [[〈̂a〉φ]]
Val′,T̂ . However, r0(s,a,s′) ∈ [[♦φ̂]]

Val′,T̂ . Moreover,

r0(s,a,s′) ∈ [[L(a)]]
Val′,T̂ using (3) and of course s ∈ [[State]]

Val′,T̂ . This

implies that s ∈ [[♦
(
L(a) ∧ ♦φ̂

)
∧ State]]

Val′,T̂
= [[〈̂a〉φ]]

Val′,T̂
. Sec-

ond, we show that [[〈̂a〉φ]]
Val′,T̂ ⊆ [[〈a〉φ]]Val,T . Let s ∈ [[〈̂a〉φ]]

Val′,T̂ =

[[♦
(
L(a)∧♦φ̂

)
∧State]]

Val′,T̂
which means that s ∈ S and s −→ s′′ such

that s′′ ∈ [[L(a)∧♦φ̂]]
Val′,T̂ . Because of (3) we know that s′′ = r0(s,a,s′)

for some s′ ∈ S. We remind that r0(s,a,s′) −→ s′. Since [[φ̂]]
Val′,T̂ ⊆ S

and r1(s,a,s′) 6∈ S, we get that s′ ∈ [[φ̂]]
Val′,T̂

. This implies by induc-

tion hypothesis that s′ ∈ [[φ]]Val,T and moreover s
a

−→ s′. Hence
s ∈ [[〈a〉φ]]Val,T .



Thus we have established (4) and proved the theorem. ⊓⊔

Remark 4. Let us consider temporal operators EFφ and EGφ defined by
EFφ ≡ µX.φ ∨ 〈−〉X and EGφ ≡ ¬µX.¬φ ∨

(
¬〈−〉¬X ∧ 〈−〉tt

)
where

〈−〉φ ≡
∨
a∈Act 〈a〉φ. We define the transformed formulas ÊFφ (using

only EF operator) and ÊGφ (using only EG operator) as follows:

ÊFφ = EFφ̂ ∧ State

ÊGφ = EG
((

State ∨
∨
a∈Act L(a)

)
∧ State =⇒ φ̂

)
∧ State.

Note that still [[φ̂]]
Val′,T̂ ⊆ S for any formula φ and any valuation Val′ :

Var → 2Ŝ . Let s ∈ S. Then T, s |= EFφ iff T̂ , s |= ÊFφ. If moreover Ts
satisfies condition

∀s′ ∈ Ss. ∃s
′′ ∈ Ss. ∃a ∈ Act : s′

a
−→ s′′ (5)

then T, s |= EGφ iff T̂ , s |= ÊGφ. This enables to transform formulas of
even weaker logics than modal µ-calculus (such as Hennessy-Milner logic,
possibly equipped with the operator EF , respectively EG) into unlabelled
formulas of the same logic. Hennessy-Milner logic with the operators EF
and EG is called unified system of branching-time logic (UB) [BAMP83]
and the fragments of UB containing only the operator EFφ (EGφ) are
referred to as EF -logic (EG-logic).

Similarly, the until operators E [φUψ] and A [φUψ] of CTL [CE81]
— defined by E [φUψ] ≡ µX.ψ∨ (φ∧〈−〉X) and A [φUψ] ≡ µX.ψ∨

(
φ∧

〈−〉tt ∧ ¬〈−〉¬X
)

— can be transformed:

̂E [φUψ] = E [(State =⇒ φ̂) U ψ̂] ∧ State
̂A [φUψ] = χ̂AU where χAU = ¬

(
E [¬ψ U (¬φ ∧ ¬ψ)] ∨ EG(¬ψ)

)
.

In the case of A [φUψ] we use the equivalence A [φUψ] ⇐⇒ χAU

from [CES86]. Again, for any s ∈ S it holds that T, s |= E [φUψ] iff

T̂ , s |= ̂E [φUψ]. Moreover T, s |= A [φUψ] iff T̂ , s |= ̂A [φUψ] under
the assumption of condition (5). This enables to transform also the logic
CTL.

4 Applications

In this section we show how the previous results can be applied to equiva-
lence/model checking of infinite-state systems. We focus in particular on



a typical representative of parallel models — Petri nets (see e.g. [Pet81])
— and sequential processes — pushdown systems (see e.g. [Mol96]). We
have to show that the class of transition systems generated by these mod-
els is closed under the transformation from labelled to unlabelled systems
as presented in the previous section.

Let us now define bisimilarity and model checking problems.

Problem: Bisimilarity checking problem

Instance: Labelled transition system T = (S,Act,−→) and
s1, s2 ∈ S.

Question: s1 ∼T s2 ?

Problem: Model checking problem with logic L

Instance: Labelled transition system T = (S,Act,−→),
s ∈ S and a formula φ of the logic L.

Question: T, s |= φ ?

First of all, we remind the reader of the fact that our transformation works
immediately for finite-state transition systems. In the following corollary
we consider the model checking problem with these logics: Hennessy-
Milner logic, EF -logic, EG-logic, UB, CTL and modal µ-calculus.

Corollary 1. Let T = (S,Act,−→) be a finite-state labelled transition
system, i.e., |S|, |Act| < ∞. There is a polynomial time reduction from
the bisimilarity (model) checking problem for T to the bisimilarity (model)
checking problem for T̂ , where T̂ is an unlabelled (and finite-state) tran-
sition system.

Proof. Immediately from Theorem 1, Theorem 2 and Remark 4. In the
case of EG-logic, UB and CTL we can ensure the validity of condition (5)
of Remark 4 by adding a self-loop s

u
−→ s (u is a fresh action) to every

state s ∈ S such that s 6−→. This does not influence satisfiability of EG,
UB and CTL formulas. ⊓⊔

4.1 Petri nets

It is a well known fact that the bisimilarity checking problem is undecid-
able for labelled Petri nets [Jan95]. The technique of the proof is based



on a reduction from the counter machine of Minsky [Min67] and the
labelling is essential for the reduction. It is also known that bisimilar-
ity is decidable for the class of Petri nets which are deterministic up to
bisimilarity [Jan95], i.e., F-deterministic nets of Vogler [Vog92]. Bisimi-
larity between a labelled Petri net and a finite-state system is decidable
[JM95,JKM98] and EXPSPACE-hard (see e.g. comments in [May00a]).

Model checking of even weak temporal logics on labelled transition
systems generated by Petri nets is quite pessimistic. The only decid-
able logic is (trivially) Hennessy-Milner logic. The EF -logic is undecid-
able [Esp97] and model checking with EG is also undecidable, even for
BPP [EK95] — BPP is a strict subclass of labelled Petri nets where each
transition has exactly one input place.

We examine the bisimilarity and model checking problems for unla-
belled Petri nets in this subsection.

Definition 6 (Labelled Petri net). A labelled Petri net is a tuple
N = (P, T, F, L, λ), where P is a finite set of places, T is a finite set of
transitions such that T ∩P = ∅, F ⊆ (P ×T )∪ (T ×P ) is a flow relation,
L is a finite set of labels and λ : T → L is a labelling function.

A marking M of a net N is a mapping M : P → N0, i.e., each place is
assigned a nonnegative number of tokens. We define •t = {p | (p, t) ∈ F}
and t• = {p | (t, p) ∈ F} for a transition t ∈ T . We say that t ∈ T is
enabled in a marking M iff ∀p ∈ •t. M(p) > 0. If t is enabled in M then
it can be fired, producing a marking M ′ such that:

– M ′(p) = M(p) for all p ∈
(
P r (•t ∪ t•)

)
∪ (•t ∩ t•)

– M ′(p) = M(p) − 1 for all p ∈ •tr t•

– M ′(p) = M(p) + 1 for all p ∈ t• r •t.

Then we write M [t〉M ′. Without loss of generality we assume that if
M [t1〉M

′ and M [t2〉M
′ then λ(t1) 6= λ(t2) for any pair of markings M,M ′

and transitions t1 and t2.

Definition 7 (Labelled transition system T (N)).
Let N = (P, T, F, L, λ) be a labelled Petri net. We define a corresponding
labelled transition system T (N) as T (N) = ([P → N0], L,−→) where
M

a
−→ M ′ whenever M [t〉M ′ and a = λ(t) for M,M ′ ∈ [P → N0] and

t ∈ T .

Now, we define unlabelled Petri nets.

Definition 8 (Unlabelled Petri net). An unlabelled Petri net is a
labelled Petri net N = (P, T, F, L, λ) such that |L| = 1.



Remark 5. Whenever |L| = 1, let us say L = {a}, we can omit L and λ
from the definition of the net N and instead of M

a
−→ M ′ in T (N) we

simply write M −→M ′.

Let N = (P, T, F, L, λ) be a labelled Petri net. Without loss of generality
assume that L = {1, . . . , n} for some n > 0. We construct an unlabelled
Petri net N ′ = (P ′, T ′, F ′) and a mapping ψ : (P → N0) → (P ′ → N0)

such that ̂T (N)M1 and T (N ′)ψ(M1) are isomorphic unlabelled transition

systems for any marking M1 of N . Let us recall that ̂T (N)M1 is the tran-
sition system restricted to markings reachable from M1 and T (N ′)ψ(M1)

is restricted to markings reachable from ψ(M1) — see Definition 2. The
net N ′ is defined as follows:

P ′ = P ∪ {pkt | t ∈ T ∧ 0 ≤ k ≤ λ(t)} ∪ {pc} ∪ {dk | 0 ≤ k ≤ n}

T ′ = {tin, tout | t ∈ T} ∪ {lkt | t ∈ T ∧ 0 ≤ k < λ(t)} ∪ {lk | 0 ≤ k ≤ n}

F ′ = {(p, tin) | (p, t) ∈ F} ∪ {(tout, p) | (t, p) ∈ F} ∪
{(tin, p0

t ), (p
0
t , t

out) | t ∈ T} ∪

{(pkt , l
k
t ), (l

k
t , p

k+1
t ) | t ∈ T ∧ 0 ≤ k < λ(t)} ∪

{(pc, t
in), (tout, pc) | t ∈ T} ∪

{(pc, l
0)} ∪ {(lk, dk), (dk, lk+1) | 0 ≤ k < n} ∪ {(ln, dn)}.

In this construction each transition t with input places p1, . . . , pk1 and
output places q1, . . . , qk2 is transformed into a set of transitions shown
in Figure 2. Now, we give the mapping ψ. Let M ∈ (P → N0). Then
ψ(M) : P ′ → N0 is defined by

ψ(M)(p) =





1 if p = pc

M(p) if p ∈ P

0 otherwise.

Lemma 3. Let N = (P, T, F, L, λ) be a labelled Petri net and N ′ =

(P ′, T ′, F ′) the unlabelled Petri net defined above. Then ̂T (N)M1 and
T (N ′)ψ(M1) are isomorphic unlabelled transition systems for any M1 ∈
[P → N0].

Proof. Assume that ̂T (N)M1 = (S1,−→1) and T (N ′)ψ(M1) = (S2,−→2).

Recall that S1 ⊆ [P → N0] ∪ {rk(M,λ(t),M ′) | M [t〉M ′ ∧ 0 ≤ k ≤ λ(t)} ∪

{dkM | M ∈ [P → N0] ∧ 0 ≤ k ≤ n} and S2 ⊆ [P ′ → N0]. We define a
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Fig. 2. Transformation of a transition t

mapping f : S1 → S2 by

f(s1) =





ψ(s1) if s1 ∈ [P → N0]

M if s1 = rk(M,λ(t),M ′) such that M [t〉M ′

M if s1 = dkM such that M ∈ [P → N0]

where

M(p) =





M(p) if p ∈ P r •t

M(p) − 1 if p ∈ •t

1 if p = pkt
0 otherwise

and M(p) =





M(p) if p ∈ P

1 if p = dk

0 otherwise.

Let s1 −→1 s
′
1 for some s1, s

′
1 ∈ S1. It can be easily seen that f(s1) −→2

f(s′1). On the other hand, let M2 −→2 M ′
2 and M2 = f(s1) for some

s1 ∈ S1 and M2,M
′
2 ∈ S2. Then there exists s′1 ∈ S1 such that M ′

2 =
f(s′1) and s1 −→1 s′1. This implies that f is surjective and moreover



f is trivially injective. Hence, ̂T (N)M1 and T (N ′)ψ(M1) are isomorphic
unlabelled transition systems. ⊓⊔

Theorem 3. Let N be a labelled Petri net, and M1,M2 a pair of mark-
ings in N and φ a µ-calculus formula. There is a polynomial time reduc-
tion producing an unlabelled and normed Petri net N ′, a pair of markings
ψ(M1), ψ(M2) in N ′ and a µ-calculus formula φ̂ such that

M1 ∼T (N) M2 if and only if ψ(M1) ∼T (N ′) ψ(M2)

and

T (N),M1 |= φ if and only if T (N ′), ψ(M1) |= φ̂.

Proof. From Lemma 3 and Theorems 1 and 2. Normedness is because of
Remark 3. ⊓⊔

Since the bisimilarity checking problem and model checking problems
with EF -logic and EG-logic are undecidable [Jan95,Esp97,EK95] for la-
belled Petri nets, we obtain the following undecidability results for un-
labelled and normed Petri nets. In the case of model checking problems
we use Remark 4 and the fact that undecidability of model checking with
EG-logic can be proved by standard “weak” simulation of a 2-counter
machine and we can easily ensure the validity of condition (5) for the
Petri net simulating the 2-counter machine.

Corollary 2. Bisimilarity checking problem for unlabelled and normed
Petri nets is undecidable.

Corollary 3. Model checking problems with EF -logic and EG-logic for
unlabelled and normed Petri nets are undecidable.

Since the bisimilarity checking problem between a labelled Petri net and a
finite-state system is EXPSPACE-hard (see comments e.g. in [May00a]),
we get also the following corollary.

Corollary 4. Bisimilarity checking problem between an unlabelled and
normed Petri net and a finite-state system is EXPSPACE-hard.

4.2 Pushdown systems

It is known that the bisimilarity checking problem for pushdown processes
is decidable [Sén98] and PSPACE-hard [May00a]. PSPACE-hard is also
the bisimilarity checking problem between a pushdown process and a



finite-state system [May00a] — this problem is moreover in EXPTIME
[JKM98].

Model checking pushdown processes with modal µ-calculus is decid-
able and EXPTIME-complete [Wal96]. This means that the model check-
ing problem with EF -logic, EG-logic and CTL is also in EXPTIME.
The model checking problems with these logics are PSPACE-hard —
see e.g. [May98]. Moreover, model checking with EF -logic and CTL is
known ([Wal00]) to be PSPACE-complete and EXPTIME-complete, re-
spectively. The exact complexity of model checking with EG-logic is un-
known, however, it seems to be EXPTIME-complete by modification of
arguments from [Wal00].

We examine the bisimilarity and model checking problems for unla-
belled pushdown systems in this subsection.

Definition 9 (Pushdown system). A pushdown system ∆ is a tuple
∆ = (Q,Γ,Act,−→∆) where

– Q is a finite set of control states,

– Γ is a finite stack alphabet such that Q ∩ Γ = ∅,
– Act is a finite input alphabet and

– −→∆⊆ Q × Γ × Act × Q × Γ ∗ is a finite (|−→∆ | < ∞) transition
relation, written pA

a
−→∆ qα for (p,A, a, q, α) ∈−→∆.

Definition 10 (Labelled transition system T (∆)).
Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system. We define a corre-
sponding labelled transition system T (∆) as T (∆) = (S,Act,−→) where
S = {pβ | p ∈ Q ∧ β ∈ Γ ∗} and pβ

a
−→ qγ iff β = Aβ′, γ = αβ′ and

pA
a

−→∆ qα.

Our aim is to transform ∆ into an unlabelled pushdown system such that
bisimilarity and model checking are preserved. For technical convenience,
we assume from now on that Γ contains a distinct “dummy” symbol Z
such that pZ 6−→ for any p ∈ Q. Then trivially

p1β1 ∼T (∆) p2β2 if and only if p1β1Z ∼T (∆) p2β2Z (6)

and

T (∆), p1β1 |= φ if and only if T (∆), p1β1Z |= φ (7)

for any p1, p2 ∈ Q, β1, β2 ∈ Γ ∗ and a µ-calculus formula φ. In particular,
all reachable states from pβZ are of the form qβ′Z where p, q ∈ Q and
β, β′ ∈ Γ ∗.



Definition 11 (Unlabelled pushdown system). An unlabelled push-
down system is a pushdown system ∆ = (Q,Γ,Act,−→∆) such that
|Act| = 1.

Remark 6. Whenever |Act| = 1, let us say Act = {a}, we can omit Act
from the definition of the pushdown system ∆ and instead of pA

a
−→∆ qα

we simply write pA −→∆′ qα where ∆′ = (Q,Γ,−→∆′) and −→∆′⊆
Q× Γ ×Q× Γ ∗.

Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system such that Z ∈ Γ is the
“dummy” stack symbol. Without loss of generality assume that Act =
{1, . . . , n} for some n > 0. We construct an unlabelled pushdown system

∆′ = (Q,Γ ′,−→∆′) where Γ ⊆ Γ ′ such that ̂T (∆)p1α1Z and T (∆′)p1α1Z

are isomorphic unlabelled transition systems for any p1 ∈ Q and α1 ∈ Γ ∗.
Again, see Definition 2 for the notation of transition systems restricted
to reachable states from p1α1Z. The system ∆′ is defined as follows:

Γ ′ = Γ ∪ {Xk
(pA,a,qα) | pA

a
−→∆ qα ∧ 0 ≤ k ≤ a} ∪ {Dk | 0 ≤ k ≤ n}

−→∆′ = {(p,A, p,X0
(pA,a,qα)), (p,X0

(pA,a,qα), q, α) | pA
a

−→∆ qα} ∪

{(p,Xk
(pA,a,qα), p,X

k+1
(pA,a,qα)) | pA

a
−→∆ qα ∧ 0 ≤ k < a} ∪

{(p,A, p,D0A) | p ∈ Q ∧ A ∈ Γ} ∪
{(p,Dk, p,Dk+1) | p ∈ Q ∧ 0 ≤ k < n}.

Notice that in particular pXa
(pA,a,qα)βZ 6−→ and pDnβZ 6−→ for any β ∈

Γ ′∗. Graphical representation showing the transformation of pAβZ
a

−→
qαβZ where β ∈ Γ ∗ and pA

a
−→∆ qα can be seen in Figure 3.

Lemma 4. Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system containing
Z ∈ Γ . Let ∆′ = (Q,Γ ′,−→∆′) be the unlabelled pushdown system de-

fined above. Then ̂T (∆)p1α1Z and T (∆′)p1α1Z are isomorphic unlabelled
transition systems for any p1 ∈ Q and α1 ∈ Γ ∗.

Proof. Immediately from the construction. Notice that it is important
that any reachable state in T (∆′)p1α1Z ends with Z. In particular, from
any state of the form pβZ where p ∈ Q and β ∈ Γ ∗ (even if β = ǫ) the
following transition is possible in T (∆′): pβZ −→ pD0βZ. ⊓⊔

Theorem 4. Let ∆ be a pushdown system, and p1β1, p2β2 a pair of states
in T (∆) and φ a µ-calculus formula. There is a polynomial time reduction



pAβZ
a // qαβZ

⇓

pDnAβZ pD0AβZoo qD0αβZ // qDnαβZ

pAβZ

OO

// pX0
(pA,a,qα)βZ //

��

qαβZ

OO

pX1
(pA,a,qα)βZ // pX2

(pA,a,qα)βZ // pXa
(pA,a,qα)βZ

Fig. 3. Transformation of a transition pAβZ
a

−→ qαβZ

producing an unlabelled and normed pushdown system ∆′, a pair of states
ψ(p1β1), ψ(p2β2) in T (∆′) and a µ-calculus formula φ̂ such that

p1β1 ∼T (∆) p2β2 if and only if ψ(p1β1) ∼T (∆′) ψ(p2β2)

and

T (∆), p1β1 |= φ if and only if T (∆′), ψ(p1β1) |= φ̂.

Proof. Directly from Lemma 4 together with (6) and (7) — producing
the mapping ψ such that ψ(pβ) = pβZ for p ∈ Q and β ∈ Γ ∗ — and
from Theorems 1 and 2. Normedness is because of Remark 3. ⊓⊔

Since the bisimilarity checking problem between a pushdown system and
a finite-state system is PSPACE-hard [May00a] (this is trivially also a
lower bound for two pushdown systems), and because the model checking
problems with CTL and Hennessy-Milner logic are EXPTIME-complete
resp. PSPACE-complete [Wal00,May98], we obtain the following corollar-
ies. In the case of CTL we use Remark 4 and the fact that we can easily
ensure the validity of condition (5) similarly as in the proof of Corollary 1.

Corollary 5. Bisimilarity checking problem between an unlabelled and
normed pushdown system and a finite-state system (or another unlabelled
and normed pushdown system) is PSPACE-hard.

Corollary 6. Model checking problems with CTL and Hennessy-Milner
logic for unlabelled and normed pushdown systems are EXPTIME-complete
and PSPACE-complete, respectively.



The bisimilarity checking problem between a pushdown system and a
finite-state system is in EXPTIME [JKM98] and PSPACE-hard [May00a].
In order to establish its containment in e.g. PSPACE, it is enough to show
it for unlabelled and normed pushdown systems.

4.3 BPA and BPP

By imposing a special restriction on the number of control states of a
pushdown system to be a singleton set, let us say Q = {p}, we obtain a
BPA system [BK85] with deadlocks — we call it a BPAδ system. In this
case, a deadlock δ is a stack symbol which has no defining equation, i.e.,
pδ 6−→. The class of labelled transition systems generated by BPAδ sys-
tems is strictly more expressive (w.r.t. bisimilarity) than the BPA class
without such deadlocks [Srb98]. Observe that the class BPAδ is closed
under the transformation from labelled transition systems to unlabelled
ones — the number of control states of a pushdown system ∆ is the same
as the number of control states of the transformed unlabelled pushdown
system ∆′. However, the class BPA is not closed under such transforma-
tion: let ∆ = ({p}, {A,Z}, {a, b},−→∆) be a BPA system such that

pA
a

−→∆ pAA, pA
b

−→∆ p.

The minimal norm of any reachable state in ̂T (∆)pAZ is less or equal to 3
where 3 = |{a, b}|+1. Moreover pAkZ 6∼ ̂T (∆)pAZ

pAk
′

Z for any k, k′ ∈ N0

such that k 6= k′. On the other hand there are only finitely many states

with norm less or equal to 3 in any BPA system . Thus ̂T (∆)pAZ cannot
be described by any BPA system. Similarly the class BPP [Chr93] (sub-
class of Petri nets where each transition has exactly one input place) is
not closed under the transformation — it is enough to replace in our sys-
tem ∆ the sequential composition with a parallel one. This demonstrates
that process algebras BPA and BPP are not strong enough to describe
deadlock behaviour which is essential for our reduction.

Bisimilarity checking problem for BPA is in 2-EXPTIME [BCS95]
and there is no known lower bound yet. Again, in order to prove the
containment of the problem in some lower complexity class (PSPACE, NP
or even P), it is enough to demonstrate a decision algorithm (running with
the corresponding complexity) for normed and unlabelled BPAδ systems.
This is especially interesting because the bisimilarity checking problem for
normed BPA (without deadlocks) is known to be decidable in polynomial
time [HJM96].
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