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Abstract. Collision resistant hash functions are an important basic tool
for cryptographic applications such as digital signature schemes and in-
tegrity protection based on “fingerprinting”. This paper proposes a new
efficient class of hash functions based on a block cipher that allows for a
tradeoff between security and speed. The principles behind the scheme
can be used to optimize similar proposals.

1 Introduction

Although more theoretical definitions of collision resistant hash functions are
available [Dam89], we will be satisfied with a more practical definition as given
in [Mer89].

Definition 1 A function h() is a collision resistant hash function if:

– The description of h() is publicly known and does not require any secret
information for its operation (extension of Kerckhoff’s principle).

– The argument X can be of arbitrary length and the result has a fixed length
of h (with h ≥ 112 − 128 bits in order to avoid the birthday or square-root
attack [QD89,Yuv79]).

– Given h() and X, the computation of h(X) must be “easy”.
– The hash function must be one-way in the sense that given a Y in the image
of h, it is “hard” to find a message X such that h(X) = Y , and given X
and h(X), it is “hard” to find a message X ′ 6= X such that h(X ′) = h(X).

– If is “hard” to find two distinct arguments that hash to the same result (the
collision resistant property).

Here “easy” and “hard” can to be substituted by adequate definitions. In this
paper, “hard” will mean that it requires at least 2S encryptions, with S the
security level of the hash function. Note that under certain circumstances one-
wayness is implied by the collision resistant property [Dam89].

Two arguments can be indicated to construct a hash function based on a
block cipher. The first argument is the minimization of the design and imple-
mentation effort. The major advantage however is that the trust in an existing
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block cipher can be transferred to a hash function. It is important to note that
for the time being significantly more research has been spent on the design of
secure block ciphers compared to the effort to design hash functions. It is also
not obvious at all that the limited number of design principles for encryption
algorithms are also valid for hash functions. The main disadvantage of this ap-
proach is that dedicated hash functions are likely to be more efficient. Moreover
some block ciphers show certain weaknesses that are only relevant if they are
used in a hash function. One also has to take into account that in some countries
export restrictions apply to encryption algorithms but not to hash functions.

For a hash function based on a block cipher, the following notations have
to be fixed. The block length i.e., the size of plaintext and ciphertext in bits
will be denoted with n. The argument of the hash function is padded with an
unambiguous padding rule such that it is a multiple t of the block size. The hash
function can subsequently be described as follows:

Hi = f(Xi, Hi−1) i = 1, 2, . . . t .

Here f is the round function, H0 is equal to the initial value (IV ), that should be
specified together with the scheme, and Ht is the hashcode. Finally the rate R of
a hash function based on a block cipher is defined as the number of encryptions
to process a block of n bits.

A large number of hash functions based on a block cipher have been pro-
posed [MPW91,Pre93]. For most schemes the size of the hashcode is equal to
the block length. However, the block ciphers that have been proposed in liter-
ature comprising DES [Fi46] have only a block length of n = 64 bits, which
implies that for a collision resistant hash function one needs that the size of
the hashcode h = 2n. An additional problem is that the key length of DES is
only 56 bits. Existing proposals of this type are MDC-2 and MDC-4 [MS88],
with rate 2 and 4 respectively, three schemes by R. Merkle [Mer89] with rate
18.3, 5.8, and 3.62. More efficient schemes have been proposed with a rate close
to 1 [BPS90,PBG89,QG89], but currently all these proposals have been broken
[Cop92,Pre93]. The constructions by R. Merkle are based on a collision resistant
function (the “meta-method” [Dam89,Mer89]), and for these schemes it is pos-
sible to write down a proof based on a black box model of DES. On the other
hand, if one wants to use the scheme with DES, it still has to be modified to take
into account properties like the weak keys and the complementation property,
and it should be checked for vulnerability to specific attacks (e.g., differential
attacks). Two new schemes based on a block cipher with a double length key
have been proposed recently [LM92]. The security level of all these schemes is
64 bits, 56 bits or even smaller.

In this paper a new class of schemes will be proposed, that allow for a tradeoff
between security level, rate, and size of the hashcode. Their rate lies between
4 and 8, but they are faster than most other schemes because the key remains
fixed during the evaluation of the hash function. This also implies that they can
be applied under more general circumstances.
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2 Design Principles

The basic principle is that the key remains fixed during the hashing process.
This has the following advantages:

performance: in general, the key scheduling is significantly slower than the en-
cryption operation. A first argument to support this is that the key schedul-
ing can be designed as a very complex software oriented process to discour-
age exhaustive attacks. Here software oriented means that the variables are
updated sequentially, which reduces the advantages of a parallel hardware
implementation. Even when the key schedule is simple, it can be harder to
optimize its implementation. E.g., for highly optimized DES software, an
encryption with key change will between 2.5 and 4.5 times slower. Moreover,
encryption hardware is in general not designed to allow fast modification of
the key, as a key change can cause loss of pipelining, resulting in a serious
speed penalty.

security: an attacker has no control at all over the key. Hence attacks based on
weak keys can be eliminated completely in the design stage.

generality: the hash function can be based on any one-way function with small
dimensions (e.g., 64 bit input and output).

collision resistant MAC: if the keys are kept secret, the scheme gives a con-
struction for a MAC for which it is hard to produce collisions even for some-
one who knows the secret key. This is not possible with the widespread
schemes for a MAC. An application where this property might be useful has
been discussed in [MW88].

The other design principles of the scheme are:

atomic operation: the one-way function that is used will be encryption of the
argument X with the key K followed by the addition modulo 2 of X to the
ciphertext: E(K,X)⊕X. It has shown to be very useful for single length hash
functions (e.g., [MMO85]) and was also used by R. Merkle and in MDC-2
and MDC-4.

parallel operation : the one-way function will be used more than once, but it
will be possible to evaluate the function in parallel; this opens the possibility
of a fast parallel hardware implementation. It is also clear that a scheme in
which several instances are used in a serial way is much harder to analyze.

tradeoff between memory, rate, and security level : the rate of the sys-
tem can be decreased at the cost of a decreasing security level; it will also
be possible to decrease the rate by increasing the size of the hashcode. This
could also be formulated in a negative way, namely that the security level
will be smaller than what one would expect based on the size of the hash-
code. Observe that this property is also present in a limited way in MDC-2,
MDC-4 [MS88], and in the schemes of R. Merkle.

the basic function is not collision resistant: the construction is not based
on a collision resistant function, because it can be shown that this would not
yield an acceptable performance (the efficiency will decrease with a factor
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4 or more). This means that producing collisions for different values of the
chaining variable is easy. As it should be hard to produce collisions for the
data input, this input will be protected more strongly.

3 Description of the New Scheme

One iteration step consists of k parallel instances of the one-way function, each
parameterized with a fixed and different key. In the following, these instances
will be called ‘blocks’. These k keys should be tested for specific weaknesses: in
the case of DES it is recommended that all 16 round keys are different, and that
no key is the complement of any other one. The total number of input bits is
equal to kn. These inputs are selected from the x bits of the data Xi and from
the h bits of the previous value of the chaining variable Hi−1. Every bit of Xi

will be selected α times, and every bit of Hi−1 will be selected only once (this
can be generalized), which implies the following basic relation:

α · x+ h = k · n . (1)

The rate R of this scheme is given by the expression:

R =
n · k

x
. (2)

As it does not make sense to enter the same bit twice to a single block, it will
always be the case that 2 ≤ α ≤ k.

The output of the functions has also size kn. This will be reduced to a size
of h by selecting only h/k bits from every output. Subsequently a simple mixing
operation is executed, comparable to the exchange of left and right halves in
MDC-2. The goal of this operation is to avoid that the hashing operation consists
of k independent chains. If h is a multiple of k2, this mixing operation can be
described as follows. The selected output block of every function (consisting of
h/k bits) is divided into k parts, and part j of block i is denoted with H ij

(1 ≤ i, j ≤ k). Then Hji
out ←− Hij

in. Figure 1 depicts one iteration for the case
k = 4 and α = 4. It will become clear that the complexity of the scheme does not
depend on α, but on the difference between k and α. Therefore, the parameter
φ is defined as k − α.

The next step in the design is the decision on how the data bits are to be
distributed over the different blocks if φ > 0. The construction is obtained by
considering the following attack. Let S be a subset of the blocks. For a given
value of Hi−1, fix the data input of the blocks in S, which means that the output
of these blocks will be the same for both input values. Subsequently, match the
remaining outputs with a birthday attack. In order to maximize the effort for
this attack, it is required that after fixing the input of the blocks in S, the
number of bits that can still be freely chosen by an attacker is minimal (this will
be explained in more detail in Sect. 4). This number will be denoted with A(S).
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Fig. 1. One iteration of the new hash function proposal.

Theorem 1 If the data is divided into
(

k
φ

)

parts, and every part goes to a dif-

ferent combination of
(

k
φ

)

blocks, an optimal construction is obtained. Let As be

defined as max|S|=sA(S), then this construction results in the following expres-
sion for As:

As =

(

k−s
k−φ

)

(

k
φ

) · x =

(

φ
s

)

(

k
s

) · x 1 ≤ s ≤ φ (3a)

= 0 else . (3b)

This construction is optimal in the sense that for any other construction there
will be an s (with 1 ≤ s ≤ k) such that A′s ≥ As. If equality holds for all values
of s both constructions are equivalent.

In order to clarify the scheme, a detailed description will be given for the
case n = 64, k = 4, φ = 2, h = 148, and hence x = 54. In this case Theorem 1
states that in order to optimize the security level, Xi has to be split into 6 parts
of 9 bits each. The first 9-bit part of Xi goes to blocks 1 and 2, the second 9-bit
part to encryption block 1 and 3, etc., and the sixth part goes to block 3 and 4.
The 64-bit input of a single block cipher consists of 148/4 = 37 bits of h and 3
parts of 9 bits each. The rate of this scheme is 4.7 (but with a fixed key), and
from our evaluation it follows that the security level is about 55 bits. In the next
sections it will be explained how the security level can be determined.
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4 Attacks on the Scheme

A security proof for the scheme can not be given for the time being. This dis-
advantage is shared with all other schemes (including MDC-2 and MDC-4); the
only exceptions are the schemes by R. Merkle [Mer89]. The main difference with
the other schemes is that the system is parameterized, and that the security level
depends on the size of hashcode h.

In the following, the number of operations to produce a preimage and a
collision for the hash function will be studied by considering a number of attacks
that are faster than a straightforward exhaustive or birthday attack. Such attacks
are possible as not all output bits depend in a strong way on the inputs of a
single iteration step. Indeed, the data only enter α blocks, and hence if α < k, the
output of φ = k−α blocks does not depend on these input bits. The diffusion of
the Hi−1 is limited to one block. Note that this property is shared with MDC-2.
This limited dependency is solved by increasing the size of the hashcode. The
required number of bits for the hashcode is estimated from studying a set of
attacks that exploit the structure of the scheme. The generality of the proposed
attacks should form an argument for the security. However, it is for the time being
not possible to prove that there does not exist any more sophisticated attack.
The advantage of the scheme is that the security level can always be increased
at the cost of an increased memory and decreased efficiency. By construction
the scheme is not vulnerable to attacks based on weak keys or based on the
complementation property.

Before discussing the collision attacks in detail, expressions are required for
the number of operations to produce a collision under certain constraints. As-
sume one has a random function with B output bits and A input bits that can
be chosen arbitrarily. The function might have C inputs bits that can not be
chosen freely; these input bits will be called parameters. If a collision is to be
produced for this function for a certain value of a parameter, i.e., two inputs
that result in the same output bits, two cases have to be distinguished:

A > B/2: in this case producing a collision requires 2B/2 function evaluations.
A < B/2: in this case, the number of expected collisions after a single trial is

equal to p = (2A)2/2B . This process will be repeated for several values
of the parameter (it is assumed that C is sufficiently large). The expected
number of trials is given by 1/p and the effort for a single trial is 2A function
evaluations. Hence the expected number of function evaluations is equal to
2B/2A, which is always larger than 2B/2.

For the evaluation of the scheme one has to determine an expression for the
number of operations to produce a 2c-fold collision. It can be shown that for
large values of c this number is given by 2B+c (if A is sufficiently large). For
smaller values of c expressions have been derived in [Pre93].

Four types of birthday attacks that exploit the structure of the scheme will
be discussed. They are only valid if φ > 0. All these attacks yield a piece-wise
linear relation between memory h and security level S. Because of (1) and (2),
there will be a hyperbolic relation between the rate R and the security level S.
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Attack A: fix the input bits to the first s blocks and match the output of the
remaining k − s blocks with a birthday attack. The number of output bits
of these blocks is denoted with Bs. It is clear that Bs =

k−s
k · h. The binary

logarithm of number of operations for this attack is given by the following
expression:

Bs

2
+ 1 + log2(k − s) if As ≥

Bs

2

Bs −As + 1 + log2(k − s) if As <
Bs

2
.

Attack B: a more effective attack consists of generating a 2c-fold collision for
the first s blocks. In the next step, one has As+c degrees of freedom available
to match the remaining k−s blocks. This attack has already two parameters:
s and c. A problem that should be considered is the following: for large
values of c, an attacker needs about h sk + c degrees of freedom to produce
such a multiple collision. In most cases, there are not that many data bits
that enter the first block(s). However, one can assume that an attacker can
also introduce variations in the previous iteration steps. If we would have
designed a collision resistant function, this assumption would not have been
valid. In that case any attack has to produce a collision for a single iteration
step.

Attack C: under certain circumstances, attack B can be optimized by exploit-
ing the block structure: first a 2c1 -fold collision is produced for the output of
the first block (possibly using variations in previous rounds), subsequently
a 2c2-fold collision is produced for the output of the second block. This con-
tinues until a 2cs -fold collision is produced for the output of block s. Finally
the last s blocks are matched with a birthday attack with As + cs degrees
of freedom. The attack is optimized with respected to the parameter cs; the
choice of cs fixes the other ci’s as follows: in order to produce a 2cs -fold
collision for block s, h/k + cs trials are necessary (assuming cs is not too
small). There are only as (= As−1 −As) bits available at the input of block
s, which means that a 2cs−1 -fold collision will be required at the output of
block s − 1, with cs−1 = h/k + cs − as. This procedure is repeated until
the first block is reached. It is assumed that there are sufficient degrees of
freedom are available through variations in the previous iterations.

Attack D: This attack is different from attacks B and C because it makes a
more explicit use of interaction with the previous iteration step. It is based on
the observation that if h is significantly smaller than the value that is being
evaluated, it should be easy to produce collisions or even multiple collisions
for Hi−1. Therefore it should also be easy to produce multiple collisions for
the first s′ blocks of Hi−1, that contain h′ = s′/h bits. The data bits that
enter the first s′ block are now fixed, and this implies that the output of
these blocks will be identical. From block s′ + 1 on, the attack continues
with a type C attack.
The next step consists in determining the number of operations to produce
a multiple collision for the first s′ blocks of Hi−1. This can be done by
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determining the optimal attack on a reduced scheme. It might be that again
attack D is optimal and then the evaluation program works in a recursive
mode.
The problem that remains to be solved is how to evaluate the number of
operations to produce a multiple collision for the first s′ blocks of Hi−1. This
number is estimated by calculating the number of operations for a collision
S′; in general S′ will be smaller than h′/2. Subsequently, the expression for
the number of operations for a multiple collision is used where the size of
the block is replaced by the effective block length 2S ′. The number S′ can
be found by comparing the efficiency of attacks A, B, C, and D for a scheme
with the same configuration as the original one (this means the number of
data bits has not been modified), but with h replaced by h′ (at the output).
If attack D is optimal, the program works in a recursive mode.

The non-linear behavior of the number of operations for the birthday attacks
and the recursive nature of the attack D forced us to evaluate the security with a
computer program. However, the results can be verified by using approximations
for the expressions.

The applicability of differential attacks to hash functions based on block
ciphers has been studied in [Pre93]. The main reasons why differential attacks
on this scheme will not work if DES is used as the underlying block cipher is
that there has not been found a good characteristic with an even number of
rounds. Differential attacks on this scheme are harder because the attacker has
no complete control over the plaintext, and because the keys can be selected in a
special way to minimize the probability of iterative characteristics (which is not
possible for MDC-2). On the other hand, the characteristic has only to hold for
the subset of the output bits that has been selected. This means that in the last
round the characteristic must not be completely satisfied. However, it should be
noted that the success probability will decrease very fast if the characteristic
is not satisfied in earlier rounds. Like in the case of MDC-2, every data bit is
used at least twice, which implies that a characteristic with a high probability
is required for an attack faster than exhaustive search. Once a detailed scheme
has been fixed, more work can be done on selecting the keys in such a way that
differential attacks are less efficient.

When looking for a preimage, one can also exploit the limited dependencies
between Hi and Hi−1. Going one step backwards in the chain (for a fixed Xi)
requires only 2h/k+log

2
(k) operations. Subsequently one will try to obtain a match

for the chaining variable with a meet in the middle attack. This implies that one
can find a preimage with less than 2h operations. However, for the time being no
attack has been identified that is faster than the attacks that look for a collision.

5 A Detailed Study of the Security Level

In this section the security level of schemes with φ between 0 and 4 will be
discussed. In order to keep the schemes practical, the value of k will be limited
to 6. If φ = 0 it can be shown that for practical values of the security level
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the schemes with small values of k are more efficient. For all other schemes,
larger values of k would imply that there are too many small parts (recall that
the number of parts is equal to

(

k
φ

)

), which would increase the overhead of bit
manipulations to an unacceptable level. Finally note that the restriction α ≥ 2
is equivalent to k ≥ φ+ 2.

5.1 The Case φ = 0

In this case α = k, which means that every data bit goes to every block. There are
no problems in determining an optimal configuration of the scheme. As indicated
above, none of above attacks applies, which means that the security level is equal
to its upper bound S = h/2. It can be shown that under certain circumstances
the security level is 1 bit lower.

The expression for the rate of this scheme reduces to R = k/(1− 2S
kn ). It can

be seen that it becomes advantageous to increase k by one if the security level

is given by S = n · k(k+1)
2k+1 . This means that k = 4 will be the optimal solution

for a security level between 54.9 and 71.1 bits. A graphical representation of the
relation between R and S is given in Fig. 2.

Rate

k = 3

k = 4

k = 5

k = 6

4

12

5

6

7

8

9

10

11

50 55 60 65 70 75 80

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p

p

p

p

p

p

p

p

p

p p
p p
p p
p p
p p
p p
p p
p p
p
p p
p p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p

p

p

p

p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p
p p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p
p
p
p
p
p
p
p

Security level

(bits)

Fig. 2. Relation between the rate R and the security level S for φ = 0 and k between
3 and 6. The optimal value of k increases with S.
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5.2 The Case φ = 1

In this case the data input is split into k parts, and every part goes to k − 1
blocks. Computer calculation has shown that the most efficient attack is attack
D with s = s′ = 1. The number of operations can be approximated by the fol-
lowing expressions:

1. number of operations to produce a collision for blocks 2 to k:

k − 1

k
h−

x

k
+ 1 + log2(k − 1)− c .

2. number of operations to produce a 2c-fold collision for the first block ofHi−1:

k − 1

k

h

k
+ 2(1 + log2(k − 1)) + c .

The approximation lies in the fact that the logarithm of the number of operations
to produce a 2c-fold collision is not a linear function of c for small values of c.
The total number of operations should be minimized with respect to c, which
yields the following expression for the security level:

S =
h

2

[

k2 − 1

k2
+

1

k(k − 1)

]

− n
2

k − 1
+

5

2
+

3

2
log2(k − 1) .

For k between 3 and 5, the relation between h and S is indicated in Table 1. For
k ≥ 6, the resulting expression is larger than h/2 for all values of h, which means
that a simple birthday attack is more efficient. The theoretical results agree very
well with the result obtained from computer calculations. The program shows
that k = 4 is the best choice for S between 51 and 72 bits.

k Security level S (bits)

3 19

36
h− 12.0

4 49

96
h− 5.8

5 101

200
h− 2.5

Table 1. Relation between h and S for φ = 1 and k = 3, 4, and 5.

5.3 The Case φ = 2

In this case the data input is split into k(k − 1)/2 parts, and every part goes to
k − 2 blocks. Computer calculation has shown that the most efficient attack is
attack D with s = 2 and s′ = 1. The number of operations can be approximated
by the following expressions:
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1. number of operations to produce a collision for blocks 3 to k:

h

[

k − 2

k
+

2

k(k − 1)(k − 2)

]

− n
2

(k − 1)(k − 2)
+ 1 + log2(k − 2)− c .

2. number of operations to produce a 2c-fold collision for block 2:

h

k
+ c .

3. number of operations to produce a 2c-fold collision for the first block ofHi−1:

h

[

1

k
+
k − 2

k2
+

2

k(k − 1)

]

− n
2

k − 1
+ 2(1 + log2(k − 3)) + c .

This number of operations should be minimized with respect to c. For smaller
values of h, the third term is negligible, while for larger values of h, the second
term is negligible. For k between 4 and 6, the relation between h and S is
indicated in Table 2. The program shows that k = 4 is the best choice for S
smaller than 69 bits.

k Security level S (bits)

4 h ≥ 132 27

48
h− 28.0 h ≤ 132 10

24
h− 8.7

5 h ≥ 122 79

150
h− 16.5 h ≤ 122 5

12
h− 3.0

6 h ≥ 110 37

72
h− 10.5 h ≤ 110 17

40
h− 0.7

Table 2. Relation between h and S for φ = 2 and k = 4, 5, and 6.

5.4 The Case φ = 3

In this case the data input is split into
(

k
3

)

parts, and every part goes to k − 3
blocks. Computer calculation has shown that the most efficient attack is attack
D with s = 3 and s′ = 1. The number of operations can be approximated by the
following expressions:

1. number of operations to produce a collision for blocks 4 to k:

h

[

k − 3

k
+

6

k(k − 1)(k − 2)(k − 3)

]

−n
6

(k − 1)(k − 2)(k − 3)
+1+log2(k−3)−c .

2. number of operations to produce a 2c-fold collision for block 3:

h

k
+ c .
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3. number of operations to produce a 2c
′

-fold collision for block 2 (with c′ =
h/k + c− a3):

h

[

2

k
+

6

k(k − 1)(k − 2)

]

− n
6

(k − 1)(k − 2)
+ 2(1 + log2(k − 3)) + c .

4. number of operations to produce a 2c
′′

-fold collision for the first block ofHi−1

(with c′′ = h/k + c′ − a2). It can be shown that this number is significantly
smaller than h

k + c.

This number of operations should be minimized with respect to c. The second
term is always smaller than the third term. This results in the following expres-
sion for the security level:

S =
h

2

[

k − 1

k
+

6

k(k − 1)(k − 3)

]

− n
3

(k − 1)(k − 3)
+

3

2
+

1

2
log2(k − 3) .

For k equal to 5 and 6, the relation between h and S is indicated in Table 3.
The program shows that k = 5 is the best choice for S smaller than 82 bits.

k Security level S (bits)

5 19

40
h− 22.0

6 9

20
h− 10.5

Table 3. Relation between h and S for φ = 2 and k = 4, 5, and 6.

5.5 The Case φ = 4

The only case that has been studied is k = 6. Here it is not possible to derive
simple analytic expressions that are sufficiently accurate. This is because the
result obtained by the different attacks lie very closely together; depending on
the value of h, the best attack is attack D with s = 4 and s′ = 2 or 4. Moreover,
the optimal values of c are very small, which means that the system is non-linear,
and the attacks are strongly dependent on the use of recursion. An upper bound
on S can be easily obtained using method A:

S ≤
11

30
h− 10.8 .

A least squares fitting the computer evaluation yields a correlation coefficient of
0.99958 with the following expression:

S = 0.3756h− 14.974 .

This can be approximated very well by S = 3/8 h− 15.
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6 Extensions

Before the scheme can be applied in practice, one has to consider the following
limitation: h and x are not continuous variables, but integers that have to satisfy
certain constraints. The scheme can be extended by using every bit of Hi more
than once, but this complicates the evaluation. Another extension is to design
a collision resistant round function based on this scheme: this simplifies the
evaluation but decreases the efficiency. Finally it is explained how the basic
principles can be applied to other hash functions based on block ciphers.

The study of the previous scheme assumed that h and x are continuous vari-
ables. However, in practice they will have to be integers that satisfy certain
constraints:

1. x has to be an integer multiple of
(

k
φ

)

. Therefore define x′ = x/
(

k
φ

)

.
2. nk − h has to be an integer multiple of k − φ.
3. h has to be an integer multiple of k. Therefore define h′ = h/k.

Note that in order to perform the mixing stage on the output of the k blocks, one
needs in fact the requirement that h is an integer multiple of k2. However, this
mixing stage is not critical in the security analysis of the scheme. The following
algorithm steps through all values of x and h that satisfy the constraints, for
which h > h0. First the starting values are generated:

x′1 =

⌈

n−
⌈

h0

k

⌉

(

k−1
φ

)

⌉

(4)

x1 =

(

k

φ

)

x′1 (5)

h1 = k

(

n−

(

k − 1

φ

)

x′1

)

. (6)

Here dxe denotes the smallest integer greater than or equal to x. The next values
are calculated as follows:

xi+1 = xi +

(

k

φ

)

(7)

hi+1 = hi + k

(

k − 1

φ

)

. (8)

In the overview of the results it will be graphically indicated which schemes
satisfy the requirements. It is of course always possible to think of schemes for
which the parts differ 1 or 2 bits in size just to match the constraints. This
will affect the security level compared to the ideal situation, but the decrease
will certainly be only marginal. These schemes are certainly less elegant, but as
long as the asymmetry in the bit manipulations has no negative influence on the
performance, this is not so important.

If the schemes are extended by using every bit of Hi−1 more than once, the
following elements will have to be considered. First, the allocation of the bits of
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Hi−1 to the different blocks will have to be made in a similar way as for the data
bits. However, some additional work has to be done because both allocations
should be as independent as possible, i.e., the bits of Hi−1 and Xi will have to
occur in as many combinations as possible. The study of attacks on this scheme
is more complicated, especially for type D attacks.

Another issue is how to extend this method to construct a collision resistant
function. In this case the attacks to be considered would be simpler, because
the interaction with the previous iteration steps can be neglected. This is not
completely true however, because an attacker could exploit the fact that the
function is not complete, by producing collisions for part of the output blocks.
However, if the program is adapted to evaluate this type of schemes, it becomes
clear that they will never be very efficient: the best scheme with a security level
of 56 bits under the constraint k ≤ 16 has a rate of 20 (which is in case of
software a little worse than MDC-4). It is a scheme with α = 3 or φ = 12. The
size of the hashcode would be 272 bits, and every iteration processes 48 bits. The
scheme is however very impractical because Xi has to be split into 455 blocks of
2 or 3 bits.

The basic principles used here can also be applied to other hash functions
based on block ciphers where the key is modified in every iteration step. As an
example it is indicated how MDC-2 could be extended in two ways to obtain a
security level larger than 54 bits. The 2 parallel DES operations will be replaced
by 3 parallel DES operations (k = 3).

– A trivial way would be α = 3: every data bit is used 3 times as plaintext.
The size of the hashcode would be 192 bits, and the effective security level
is equal to 81 bits. The rate of this scheme is equal to 3 (comprising a key
change).

– A second scheme can be obtained by selecting α = 2: the data input of 96
bits is divided into 3 32-bit parts, that are allocated in the optimal way to
the 3 blocks. The rate of this scheme is equal to 2 (the same as MDC-2), but
the security level is slightly larger than 60 bits.

Of course it is possible to extend this for k > 3, which will result in faster
schemes that require more memory.

A disadvantage of all these new schemes is that the decreased rate has to be
paid for by increasing the memory. The additional 64 to 80 bits are no problem
for the chaining variables (certainly not when the computations are performed
in software), but the increased size of the hashcode might cause problems. This
is not the case for digital signatures, as most signature schemes sign messages
between 256 and 512 bits long. Exceptions to this rule are the scheme by Schnorr
[Sch89] and DSA, the draft standard proposed by NIST [Fi91], where the size of
the argument is 160 bits. If the hash function is used for fingerprinting computer
files, an increased storage can pose a more serious problem. However, it can be
solved by compressing the result to a number of bits equal to twice the security
level S. This can be done with a (slow) hash function with φ = 0, security level
S, and size of the hashcode 2S.
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7 Conclusion

A new class of hash functions based on block ciphers has been proposed, that
allows for a tradeoff between security, memory, and speed. The parameters for
some efficient schemes for a given value of φ and a given security level S are
indicated in Table 4. For k = 4 and k = 5, the relation between the rate R and
the security level S with parameter φ, with 0 ≤ φ ≤ k− 2 can be found in Fig. 3
and 4. The solutions that take into account the discrete character are marked
with a 3. The underlying principles can also be used to improve other proposals
for hash functions based on block ciphers.

φ k security level ' 54 bits security level ' 64 bits
R h S h(k − φ)/φ R h S h(k − φ)/φ

0 4 6.92 108 54 108 8.00 128 64 128
1 4 5.82 124 58 93 6.40 136 64 102
2 4 4.74 148 55 74 6.10 172 69 86
3 5 4.00 160 53 64 4.57 180 62 72
4 6 4.27 204 62 68

Table 4. Overview of best results for small values of φ and k. The quantity h(k−φ)/φ
indicates how many output bits depend on a single input bit.
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Fig. 3. Relation between the rate R and the security level S for k = 4 with parameter
φ = 0, 1, and 2.
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Fig. 4. Relation between the rate R and the security level S for k = 5 with parameter
φ = 0, 1, 2, and 3.
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