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Abstract:

we consider random access machines with a multiplication
operation, having the added capability of computing logical opera-
tions on bit vectors in parallel. The contents of a register are
considered both as an integer and as a vector of bits and both
arithmetic and boolean operations may be used on the same register.
We prove that, counting one operation as a unit of time and
considering the machines as acceptors, deterministic and nondeter-
ministic polynomial time acceptable languages are the same, and are
exactly the languages recognizable in polynomial tape by a Turing
rmachine. We observe that the same measure on machines without
multiplication is polynomially related to Turing machine time -
thus the power of multiplication on this model characterizes the
difference between Turing machine tape and time measures. We

discuss other instruction sets and their power.
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ON THE POWER OF MULTIPLICATICON
IN RANDOM ACCESS MACEINES
Janos Simon

1. INTRODUCTION

In the theory of computational complexity one tries to classify
problems by the amount of resources needed to compute a solution to
the problem by some idealized computer. "Popular" computer models
are Turing machines (Tms) [10)] and random access machines (R2A
and the amount of resource is usually measured by the nurber of moves
or by the memory used in the computation. One considers both deter-
ministic and nondeterministic mocdels ~- in addition, the inestructicn
repertory of a RAM may or may not contain indirect addrecssing
tion, multiplication, bit operations, shifts, etc. Also
proposed to charge an amount proportional to the length of the regis-
ter operated upon for each move of a RAM, instead of a unit cost {2],
{1, Ch. 1]. Relationships between these models are central precblems
in computational complexity and, with the exception of the straighi-
forward ones, largely unknown.

In this paper we consider these machines as acceptor

<]

. Morecover,
as is customary since (2], we shall pay a lot of attenticn to poly-
nomial bounds, and will consider two models to be essentially eguiva-
lent if they are polynomially related.+

Within this framework the following is known: deterministic Tx

time (one tape or many tapes) and any reasonable model of a

Using 'translation' techniques, it can be shown that two modzals are
polynomially related if the class of languages accepted in polynoxial
bound by the first are also accepted in polyromial bound by the
second and conversely. See [6] for details.
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Geterministic bounded action machine time are polynomially related
{5]. Tais eguiwvalence class contain also deterministic RAM time

(both unit and lcgarithmic cost) with ah instruction set to which we

and even vector bit operations.

P = Np guection [4]. Memory measures form a third

class: Tn vape, ausber of bits used in a RAM computation (with any
rezsonable instruction set) are all polynomially related. It is an
irportant resuit, duc to Savitch [3] that the memory (or tape) class

alsc con-2ins the nondsoternministic versions of these machines -- i.e.

at most a polynomial recduction in the use of

exception of this last result, the proofs of the

re straigntiorward. (Some of the proofs may be found
in {11}. Very recently Pratt, Stockmeyer and Rabin proved that RAMs

instruction set, consisting of shift in-

operations and addition (on the index
registers) are polynemially eguivalent to the third class [8]. How-
n oréer £o obtain their results, they must partition their

normal (vecter) and shift

tween these is shifting a vector
szister kv the amount contained in a shift register. Arithmetics are

22 to additicns in the shift register -- this is a model quite

are polynomially related

is nct xncwn. Other open problems include the relationships between
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relationship between the two time measures for RAMs with multiplica-
tion, the relationship between deterministic and noncdeterministic
RAMs with multiplication and, in general, the amount of power gained
by adding features to a RAM's instruction set.

In this paper we obtain the following results: for RAMs with
multiplication (and bit operations) nondeterministic and deterministic
time models are polynomially related (note that the same gquesticn for
RAMs without multiplication is the P = NP problem). They are alszo
polynonmially related to the memory measure. This implies that the
power gained by having multiplication in a RAM -- if any =--, a problem
discussed already in {2}, is basically the same as the improvement of

Tm tape over time, ancther well-known open problem. Also, the two
% ’ pe P s

bt

time measures for these RAMs are polynomially related if and conly if
memory and time are polynomially related for determiniscic Tws. Our
results, together with [8] show that a wide range of enlarged instruc-
tion set RAMs are polynomially related: we introduce several such
instruction sets, and prove their equivalence. The fact that all
these machines are equivalent is quite surprising: for example, we
will show that the machine introQuced in [8] may be simulated in a
straightforward manner by allowing multiplication by powers of 2.
Since after a polynomial number of steps some of the registers cf a
RAM with multiplicaticn may contain numbers of exponential lengih, it
is not clecar that we may simulate its computation in polynomial time
by a RAM which can multiply only by powers of two.

The outlince of this paper is the following: vyou are reading
Section 1, introduction and outline. Section 2 introduces terminology

and notation. In Section 3 we prove half of our main result, namely
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that we can simulate in polynomial tape a nondeterministic RAM with
multiplication operating in polynomial time. This is the hardest
proof in the paper: it uses the same ideas as {8] but it is quite a
bi+t more involved. We also show that the result is true even if we
ad@ division to the operation set. In Section 4 we sketch a proof

of the other half of the result, i.e. that our RAMs can simulate in
polynomial time Tms with a polynomial tape bound. We prove this by
considering first an instruction set with apparently less power than
RAMs with multiplication, show how these may simulate Tm tape
efficiently by using the programming tricks of [8] and show how these
machines may be simulated by our other models. The results of these
two scctions imply that for our RAMs deterministic and nondeterminis-
tic time reasures are polynomially related since nondeterministic and
deterministic Tm tape mecasures are. They also show that a wide
collection of instru&tion sets are polynomially related to each

other %nd to Tm tape. We conclude by stating a few corollaries and
making some comments on the meaning of our theorems in Section 5.

2. Definitions

A RAM acceptor or RAM with instruction set O is a set of

registers RyrRyre o o ecach capable of storing a non-negative integer
in binary representation, together with a finite program of (possibly
labeled) O-instructions. If no two labels are the same, we say that

the proaram is deterministie, otherwise it is non-decterministic. We

call a RAM model deterministic if we consider only deterministic

programs from the instruction set.
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Our first instruction set consists of the following:

%1
Ri + Rj (=k) (assignment)
Ri « <R_.> (indirect addressing)
R, < Rj + Ry ('sum)
Ri - Rj bool Rk (boolean operations)
if R, comp Rj label 1 else label 2 (conditionzl jump)
accept
reject

comp may be any of <, £, =, >, >, #. For boolean operations we ccn-

sider the integers as bit strirgs and do the operaticns componentwise.
Leading 0s are dropped at the end of operation: for axzample,

11l nand 10 = 1. bool may be any binary boolean operation (e.g. ., V,

eor, nand,® , etc.) accept and reject have obvious meanings. An

operand of =k is a literal and the constant k itself should ke used.
The computation of a RAM starts by putting the input in register

R setting all registers to 0 and executing the first instructicn of

ol
the RAM's program. Instructions are executed in seguence unpil a
conditional jump is encountered, after which one of the instructions
with label "label 1" is executed if the condition is satisfied and

one of the instructions with label "label 2"is executed otherwise.

Execution stops when an accept or reject instruction is met. A

string x € { 0,1 }* is accepted by the RAM if there is a finite com-
putation ending with the exccution of an accept instruction. The
complexity measures defined for RAMs are:

(unit) time measure: the complexity of an accepting computation

is the number of instructions executed in the accepting sequence. The
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legarithmic, cor length time measure: the complexity of an ac-

cepting ceroutation is the sum of the lengths of the operands of the
instructions exscuted in the accepting sequence. When there are two
cperands, we taeke the length of the longer; when an operand has
length § we use 1 in the sum. The complexity of the RAM on input x
iral corplexity among accepting computations.

maximum number of bits used at any time

wiser of bits used at a given time is the

aificant bits of all registers in use at that

CLLED CLnerw

~ated, time measure will mean unit time

I
w
K
15]
e
9]

1

Er4s. For a discuscicn of RAIM complexity measures, see [1] or [3].

shall cail KaMs with instruction set O RAMls or simply

are standard, with the exception of the
argue nowever that the reason they were left

itions (where + was an operator) was mainly

sed to represent von leumann computers

vroslens.,  All real computers have such capabili-

are o be e more or less recalistic model of them,

Loolesn operations.  Anyhow, if we defince RAMs with

A sct consisting of O, minus the boolean operators, call

it ©, thzn FAAMs with instruction set oo’PJQZS' are polynomially

in all measures. This may be proved easily for the

by noting that one can compute a boolean function

cn a MA&% and a boolean function of a bit vector
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in time proportional to the length of the operands. Since the latter
may increase at most by one per operation, the result follows.
We will consider other instruction sets:
2
. . at tion
R; + RJ ° Rk (concatenation)

is 0, plus the instruction
which leaves in Ri the contents of Rj followed by the contents of Rk'
Again, the operands may be literals. We shall call RAMs with in=-

struction set O2 CRAMs (C for concatenation).

O3 is Ol plus the instruction .

Ri “ Rj . Rk (product)
which computes the product of the two operands (which may be literals)
and stores it in Ri’ RAMs with instruction set 03 will be called

MRAMs (M for multiplication).

0, is O3 plus the instruction
Ri ~ Rj + R, (integer divisicn)
which leaves in register Ri the result of dividing Rj by Ry and
taking the integer part of the result. If Rk contains O the machine
jams and rejects. These RAMsS will be called PRAMs (P for roweriul).
Finally, we describe VRAMg, defined in [8]. As we mentioned
before, this model is quite different from the previous ones. There

are two different kinds of registers: shift registers and ceneral

<
=
©
o
o3
mn

(vector) registers. The only interaction between the two is b
of the shift instructions
(shift right)

(shift left)



thch shift the contents of general register Vi to the right or left
by the amcunt contained in shift register Ik' For shift registers
we have the instructions of assignment, sum, proper subtraction and
division by 2; for general registers we have only boolean operations.
In additicn, we have conditional jumps using the result of a com-
parison between two general registers or between two index registers
to decide which label to jump to. Literals and indirect addressing
may be used in all operations.

Qur Tm mcodel is the off-line Tm of [10)}: a finite control,

a read-only input tape and a read-write work tape. Time measure is
the number of moves and tape measure the longest work tape used in
the accepting computation (for nondeterministic models we take the
minimum among accepting computations).

Finally, we define the class PTIME - <mac£ine>, where
<§§chine> may be Tm, RAM, RAMO, CRAM, MRAM or VRAM as the class of
languages for which there is a deterministic machine which accepts
the language within a polynomial number of steps. The class PTAPE -
<machine> will designate the class of languages accepted in poly-
norial storage. We shall use the prefix "N" to designate nondeter-
ministic models. We also use "P" for PTIME~-Tm, "NP" for NPTIME-Tm,
and "PTAPE" for PTAPE~Tm.

As we nmentioned before, the following is true:

Lenma: 1) P = PTIME - RAM = PTIME - RAM
Moreover, if we define length - PTIME to denote the class

PTIME in the length measure,



P = length - PTIME - RAM
= length - PTIME - CRAM
= length - PTIME - MRAM
= length -~ PTIME - VRAM

2) NP = NPTIME - RAM

NPTIME - RAMO

length - NPTIME - RAM

length - NPTIME - CRAM

= length - NPTIME MRAM

length - NPTIME ~ VRAM
3) PTAPE = NPFTAPE = PTAPE - RAM = NPTAPE - RAM
for all RAM models.
We shall prove in the next section that
Theorem l: PTAPE 2 NPTIME =~ MRAM.
In Section 4 we show that
Theorem 2: PTIME ~ CRAM 2 PTAPE.
In the same section we also show that
NPTIME - MRAM = PTIME - MRAM
PTIME -~ MRAM O PTIME - VRAM
PTIME - VRAM > PTIME -~ CRAM
All these containments are straightforward. The set of containments
implies that l
NPTIME - MRAM = PTIME - MRA;VI
and : .
PTIME - MRAM = PTAPE

our main results. It also means that all of the following coincide:
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ME -~ CRAM, NPTIME -~ CRAM
PTIME ~ MRAM, NPTIME - MRAM

PYIME ~ VPAM, NTTIME - VRAM

~
3
(=)
&l
]
*J
2]
gr
3
3
la
<
t=
1

PRAM.
The last line follows from the proof, at the end of Scction

that PRMMe mazy be simulated in polynomial time by MRANMS.

(8]
~

In this seciion w2 prove our main theorem, the simulation

in polynoumial time by Turing machines using poly-

nall not attempt a very efficient simulation, but

the construction as clear as possible.
. . : . k .
he MPAM M operates in time n o, where n is the length

of its tapes

its accept-
chock that the scquence is correct. The sequence

terministically, by enumerating all such

=

rnoin alphabetical order. Since the nuaber of

sgram 15 a constant, the scruence will be of

Zor some constant ¢.  To verifly that such a sequence is
M we necd to check that one step
gram is executed -~ which is only

ional inctructions, whoen we mus

ird cut the contents 92f a register. We shall define a function

FIND{r

;) which will return the value of the b-th bit of register

r at time t. Our thoorem will be proved if this function is
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computable in polynomial tape -- the subject of the remainder of this

section. Note that since we are testing for an accepting seguence

-

it does not matter whether we are simulating deterministic or non-
deterministic machines.

First, let us prove that the arguments of FIND may be written
down in polynomial tape. Note that in t oporations the hiaaony
possible number that may be gencrated is azf produced by suzcessive

t

2
multiplications: a, az, a2 . a2= ad, a4 . a4= as, . . .oa”

where a ie the maximum of x and the biggest literal in M's program.

To address a bit of it, we need to count up to its lenath, that is,

2t t. : . .

up to logz(a ) = 2 log,a, which may be dene in space log, (27

s i - .k i k+1 . e . e e eens

In particular, for t = n", spacc n. will suffice, so that b may
be written down in polynomial tape.

Clearly, t may also be written down in polynomizl tape.

There is a small difficuliy with r:  sincoe we allow in

) . - . X k .
addressing, although in time n” at most n” registers are accessed,
N P
the address of a register may be as high as 2% , which has length 27

and cannot thercfore be written in polynomial tapo. Howover, at the

cost of at most a square factor in time, we may rostrict an
operating in time L to usc only its first t reogisters:

Let M' be an arbitrary MRAM. M" will mimic M' but use only

its first 2t registers. NM" uses its registers in pairs: the first

component of the register pair holds an addicess, the
register of M'; the second component has the actual contents of fhac
register.,  When M" has to simulate a move of M' which accessoes

register s, M" first determines whether a first component holding g
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cxists among the first t register pairs of M". If so, M" accesses the
secend component of that pair. Otherwise, M" creates a new pair in
the first two available locations by storing s in the first component
(register) and using the second for the s-th register of M'. Clecarly
the sirulation of a move of M' takes at most ct steps for some
constant ¢, so that M" opcerates in time ctz. It uses only its

firat 20 reaistors,

We shall suppose that M uses only its first nk registers. We
have shown that in that case all arguments of FIND may be written down
in polynomial space.

Now let us describe FIND and prove that it operates in
poliynomial tape.

.Informally, FIND works as follows: FIND (r,b,0) is easily
computed given the input. We shall argue inductively. FIND (r,b,t)
will be- computed from previous values of FIND -- clearly the only
interesting case is when r was altered in the previous move. For
example, if the move at t-1 was r <« pVs, then FIND (r,b,t) =
FIND (p,b,t-1) V FIND (s,b,t-1). This recursion in time does not
cause any problems, because we may first compute FIND (p,b,t-1) and
then reuse the tape for a call of FIND (s,b,t-1l), so that if kt—l is
the amount of tape necded to compute FINDs for times up to t-1, we

have the recurrence
L, = % + c (Lo = cn )

t t-1
which has the sclution xt = c'nk+l.
In the case of shift machines, studied in [8]), this is the only

recursion necessary. lNowever, with our machines, in the case of

multiplication of two f-digit numbers, we may have to compute up to
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% factors and get the carry from the previous column in order to
obtain the desired bit. Since £ may be an, we must be able to take
advantage of the regularity of operaticns in order to be able to
compute within polynomial tape. Also, the carry from the previces
column may be quite big: in the worst case, when we ruitiply

(1)lby (l)z the carry may be #. This is still manageable, since in

time nk

r A< 2" ; an accunmulator of length nk will suflice. We aisce
need to generate up to % pairs of bits, multiply them in pairs and
add them up. This may be done as follows: we store the addresses
of the two bits being computcd, compute each of the two bits of the
product separately, multiply the two results and update the addresses
to get the addresses of the two bits of the next product. The
product is added to ar accumulator and the process is repeated until
all product terms have been computed. Then we need the carry fron
the previous column.

We cannot compute this carry by a recursive call of FiliD,
because since the length of the register may be exponential, keeping
track of the recursion would take exponential tape. Instead, we
compute the carries explicitly from the bottom up -- i.e., we first
compute the carry at the rightmost column (finding the bits by
recursive calls of FIND on pairs and multiplying them), and then,
with that carry and FIND, we compute the carry from the second
rightmost column, and so on. The space nceded is only for keeping -
track of which column we are at, one recursive call of FIND, one
accumulator and one previous carry holder. Each of thecse rmay be

. . +1 :
written down in space nk , so that we have the recursion
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which implics
i< ank!l
ar.d the simulation of - may ke carried out in polynomial space.

The argument for ; is similar but much easier, since only 2
pits and a carry of at most 1 are involved.

A bastard PL/1 (PL/B ?) of FIND follows:

FIND: PRCCEDURE {r,b,t), returns (digit)

/* We omit the trivial code for t = 0 */

/* We suppose FIND has access to global variables

that specify M's action at all times */

po
=3
o

notruction at time t~1 not of the form q <« p op s

l N

tran retvrn (FIND (r,b,t-1}) £fi

"
Hh

r ¥ q then return (FIND (r,b,t-1))

/* register was not modified at time t-1 */

®
[
w
[\

[N
th

op = boolcan opecration

then /* compute relevant bits from operands */

BIT 1

]

FIND (p,b,t-1)
BIT 2 = FIND (s,b,t-1)

return (BIT 1 op BIT 2)

then /* loop through columns until current one
is reached */

COLUMN = 0
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CARRY = Q
while COLUNN < b do
PIRSTPTR = 0 /* addresses of bits to be 3
SECONDPTR = COLUMN /* rultiplied */
ACUM = 0
while SECONDPTR > 0 do /* add up products
in ACUM */

BIT 1

i

FIND (p,FIRSTPTR,t-1)

BIT 2 = FIND (s,SECONDPTR,t-1)

ACUM = ACUM + BIT 1 + BIT 2

FIRSTPTR = FIRSTPTR + 1

SECONDPTR = SECONDPTR - 1

end

ACUM = ACUM + CARRY /* get total sum in
column */

CARRY = if ACUM > 0 thon UM - 1),
/* shift right Ly

end
return (ACUM mod 2)
else /* op = + */
/* compute carries from right to leifi, as for
COLUNN = 0
CARRY = 0
while COLUMN < b do
ACUM = 0O

BIT 1 = FIND (p,COLUMN,t~1)
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BIT 2 = FIND (s,COLUMN,t-1)

ACUM = BIT 1 + BIT 2 + CARRY

CARRY = if ACUM > 0 then (ACUM - 1)/2 else 0
end

return (ACUM mod 2)
end: FIND.

Let us analyze the tape requirements of FIND.

All the inputs are representable in tape nk+1. Moreover, no
losp control variable exceceds an input variable; the same is true of
FIRSTPTR and SECONDPTR. Also, we saw that the greatest possible

K

o

R ) . k
carry is of ordoer an , and therefore representable in tape n.
. . . . k+1l
Therefore all variables are representable in space c¢n in any
activation of FInd. The only possible problem arises with the
recursion: however note that we have only one active call at a time
in every activation of FIND and it has its t parameter smaller by one
. . . k . :
than the t of its calling routine. Thus, at most n activations of
FIND may be vresent at any given time, and since each of them

v .
occupies at most en” 1 squares of tape, the whole procedure works in

2k+1
space cn .

This ends the proof of our theorcm.

The features of FIND that carry the proof through are:
1) the possibility of computing the relevant digits of results
of previous computations one at a time; even though there is an

exponential number of them, the rule for their formation is easy.



2) the fact that the carry may be computed explicitly, in an
orderly fashion from right to left. In this way, the only inforrmaticn
needed from one column to the next is the carry from the prewvious
column which, luckily, is just small encuch to be reprecsentable in
polynomial space.

For the benefit of the reader who go:t leost in the details: we
have proven

Theorem 1 Polynomial time bounded nondeterministic MRAM-
recognizable languages are recognizable in polynomial tape by Turinc
machines.

In the next section we show the converse.

In the remainder of this section we extend the simulation to
PRAMs. First note that a straightforward extension of the technique

used to prove Theorem 1 fails: to compute the carries in a bit-by-bi

(24

simulation of the division algorithm we may need exponential space,
a fact that the reader may want to verify by himself. However, in
[1, Ch.8} an algorithm is presented which, given an n-bit integer p,
computes 22n-l/p in 0(log n) operations. This number isg basi&ally
the reciprocal of p: to find [a/p] we find "1/p", multiply by a and
shift by an appropriate amount. A shift corresponds to a division
by 2, for which,‘unlike general division, our techniques of simulation
by Tms do work. The computation of the reciprocal is done by a
recursive technigue: it is casy to get the first (most significant)
digit of b = 1/p. At stage 1, we have an approximation ot bi to b
satisfying

b = bi + (1/p) (1 - bip)
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as an approximation for 1/p, we obtain the recursive formula
- bi+1 = bi + bi(l - bip)
Note that the method converges quadratically and may be programmed to
vield 1/p to 2k bits from an approximation to k bits in a constant
nunber of cperations (Algorithm 8.1 in [1]).

To shtain the result [a/p), we need to compute 1/p to an
2 + 1 digits., Since, as we saw, in t operations a is
of grier 2 , we need to get 2t+ 1 bits of 1/p, which may be dcne in

CG{t) creraticns. Thus an MRAM acceptor may simulate a PRAM acceptor

with a2 lozs of efficiency of at most a square factor.

This section starts with a collection of programming tricks.
¥z give only an cutline of the techniques used, hoping that the

1 b2 capable of filling in the dctails. Complete

for the VRAM case may be found in

Trhe idea of the proof is the following: given a Tm, T, opera-

ooon input ®%, we first gencrate all possible

tnis corputation (a configuration of T on an input of

of the state of the finite control, the contents of

tho worrtaps ead the positions of T's heads.) Ve then obtain the

‘ollow in one move" -- i.e. if A is the

rawrix of the relation then aij: 1L iff T passes from the i-th to
the j-th configuration in one move. Clearly, x is accepted by T iff

where A* i3 the transitive closure of A and b and e are
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initial and accepting final configurations respectively. To make
matters simple we shall suppose without loss of generality that T
has only one accepting configuration e. We shall see that parallel
bit operations, together with operations that expand rapidly the
length of a register, enable us to do each of these steps in very
little time.

First let us see how to compute efficiently the transitive
closure of a matrix A. We suppose that initially the whole matrix is
in a single register. Remember that A* + I VA V Al v A3 v ...vatv
where A is n by n and Ai is the i-th power of A in the "and—or"'
multiplication (i.e. if C = A - B, cij=k§laikA bkj)' Moreoveyr, we
may compute only the products (I V A),(I V A)z, (I v A)z s {I VAT =

. Since

293

(T VvV A)4, . . . where the exponent.of (I Vv A) is a power of

+ oL
ntk_ (T v A)™) transitive

there are only log n of these ((I V A)
closure of n by n matrices can be done in time log n times the time

3

for multiplication. Throughout this section, "multiplication" will

o
N
=

mean "A" and "multiplication of matrices" "and-or" multiplica
Also, for simplicity, we assume n to be a power of 2.

To multiply two matrices efficiently, we observe that 1if we
have several copies of the matrix stored in the same register in &

convenient way, we can obtain all products in a single “"L"

all we need is that for all i,3j and k a.y be in the same bit position
&
as bkj' For example, if we have

r n times ]

(3g,0%0,17°*30,n-1’ {%,0- -3

O,n—l)"’(30,0"‘an—l)(al,o"‘al,n—l) e
( )

n
30-1,0" " "3n-1,n-1]

in one register (each row is repeated n times) and
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n
(

(g, 0P1,0 Pn-1,0) ®g, 121,17 *Ppoy, 1) oo+ P ge e by ny)]
(matrix stored by columas, repeated n times) in the other, the "A"

of the two registers yields all terms aikA b Supposing we are

kj*
able to preduce these forms of the matrices easily, all we have to do
is collect terms and add (V) them up. Again, if we are able to take
advantage of the parallel operations at their fullest, we should not
have to do more than log n operations, since each cij is the sum of

n products. Note that in our example, is the sum of the first

0,0
0,1 of the next n, and in general cij is the sum of bits
isn + (3-1)n to i-n + jn = 1.

We show first an algorithm to add up a row of bits --"the idea
will be used in many of the constructions. For clarity, let us suppose

that we have 8 elerments, stored in register A, to add up.

A = ao al 32, a3 a4 as aG a7
we shall add the first half to the second half in parallel, in the
follewing way: we use the mask
M=0 Q0 0 0 1 1 1 1

to get

AAM = Q 0 0 0 a a. a fa
How if we slide A and A A M relative to each other in such a way that
a, and a, are superimposed (say by prefixing 0000 to A) we may add

the two in parallel.

(€2500) .A

1l

0 0 0 0 a
VIANAM) =0 0 0 0
B = (0000.A) V (A A M) =

0 0 0 0 a,va
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We may get rid of the final characters by forming A = B A M.
Now we have
A=0 0 0 0 a

vV a a.V a a,v a6 a,v a7

0 4 1 5 2
which, except for the leading 0Os, is the sarm2 nroblem as before.
Moreover, we may update the mask simply by M = ((00).M) & M:

M=0 0 0 0 1 1 1 1

which again selects the second half of A. Thus B = A A M:

B=90 0 0 0 0 O a2Va6 a3Va7
and A = ((00).A) V B produces
A=0 0 0 O 0 O aOV a2v a4V ag a1V a3V asv 2, a2V 2, a3V

the last two terms of which are eliminated to produce

A=0 0 0 0 0 O aOV azv a4v ag alv a3V asv aq

The reader may easily verify that in the next iteration

M= (0OMyAM=0 0 0 0 0 O 0 1
B=AAM =0 0 0 0 0 0 0 alv a3V asv a,
A= (0.A) VB

=0 0 0 0 0 O aov alv a2v a3v a4v aSV a6v aq ?lV a3v asv

A=AAM= 0 0 0 O 0 0 a

0 v aSV agd 24

v alv a2V a3V a,

which contains the desired resuit.

2

What is even nicer, if we use ()7 (n copies of M) to begin

with and use a register containing all the products a; A byj<in the

k
format of our example, we shall get all eclements of the product

matrix (i.e. all sums) in timn log n. The program is:
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ADDUP: PRCC

2
M = (on/z. 1n/2)n

K = XN/2
while XK 2 1 do
B=ALAM
3
A= ({(07.A) VB) A M
o= (65N A M
X = K/2

end

end: ADDUP

. . k
i 5vill nmvr ke oohow thov M, and 67 for k a power of 2 may be

we do not give details but the concatenation of
a siring with 1tzclf p times results in a string of length 2P,

rnotner preblem 1s to expand a matrix from some standard input
Zorm {say storel by rows) into the forms used in forming the product.

e ideda i oagain the sane:  use nasks and concatenations to get lots

placzs where we need them in parallel. For example,

n . n
""al,n—l) "‘(dn-l,o"'an-l,n-l)

1 *1,677°%,n-1"""%-1,n-1

socond half away, so that we may put the n/2th row
2 2

oP /21n /2:

in its firal place, using the masgk M' =
B o= 1 4 o= oo < P PEPy
B AN [} [¢] dn/2,0 an/z,l “n-l,n—l

etets] 3 I3 i
nder A in such a way that an/2,0 occupies the

z
o
o
2
&
"t
Q
n
o
v
o
[l
t
o1
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n3/2th bit position. For clarity of presentation, let us assume at
this point that we have an “"initial substring" opcrator, SURBSTR (A,B)
that produces A minus its initial substring of length length B.
(e.g. SUBSTR (10011,11) = 011l). Latcr we shall show how to do without
this operator.

To put B in its place, all we need is:

2
z=0"72 4
n2/2

SHIFT = O
XK =N
while K > 1 do

SHIFT = SHIFT.SHIFT

K = K/2
n>/2

end /* SHIFT is now 0 */

SHIFT = SUBSTR (SHIFT,Z) /* now SHIFT is O

3 el
S -
n~ /2 - nv/2

- exactly

/* the amount we need o move B by %/
We get the desired result by setting

= -M! =
A (A A-M') VB a0,0 aO,l"'an/Z -1, n-1

a [FIRNY
n/3,1 n-1,n-1
This is the first stcp in our method, but

A
how to procced: the next mask should be (o7 /4

that we may obtain by:

+ Strictly speaking, this is illegal. Ok: 0 in our RAMs. Howevoer wo

1. -~
may use lk and, in concatenations do (l‘. A} eor 1L= 0°. A, so that

we will use Okas an abbroeviation.
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2
N = (0" 74 m1) eor M

2
M' = SUBSTR (N,0" /4)
and the second halves set B = A A M' will have to be shifted by
s .
n“/4 (n-1) (remember, the previous itcration shifted B by n2/2 (n=-1).

This will put rows n/4 and 3n/4 in their places. The reader should

have no difficulty writing down an efficient program which produces:

A= 30,030,1"'a0,n-lQ"’9 al,Oal,l"'al,n~1o"'0"'an—1,0"‘an-l,n—l
n?-n n-n

(the rrogram outlined will run in time O({(log n)2), but may be

modified to run in time O (log n)). Finally,

SHIFT = 0"
K=nN
while X > 1 do

A=AV .(SHIFT.A)
SHIFT = SHIPT.SHIFT
K = K/2
end

produces ( in 0(log n) moves) the matrix in the desired form.

Basically the same trick works to obtain the column form from
the stored-by-row form: first we produce, as before, the form

(row 0) 0]12_n {row 1) 0n2-n1 ... (row n-1)
from which we get (using the same technique)
n~1 on-l

n-1 n-1 n-1
00,0 0'10 a0’20 “'ao,n-lo 51’0

(i.c. position of o, .= nzi + nj). from which, by using tho mank
3 3 ]
on /2ln /2

-3
*“n-1,n-1

and again the same tricks, onc obtains A in column order.

Concatenation of this with itself tog n times glves ug thoe form needed

for matrix multiplication in O(log n) operations.
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We would like to emphasize that the routines presented aﬁove
are not the most efficient or most economical in terms of storage.
We just wanted to give a hint of the basic technigues and hope that
the interested reader will be ahle to derive the complets programs
himself, by using the tricks shown. 1In any éase, we consicder that
we have proven (by sufficiently complicated example) that transitive
closure may be computed in 0((log n)2) moves.

We still have to convince the reader that given a polyncmial

the "follow

H

tape bounded Tm with input %, we can ohtain the mairix o
in one move" relation easily. We shall do this in an even sketchier
way than our exposition of the method for computing transitive

closure.

v

e

If a Tm operates on an input of length n in tape nk, there
at most 0(2nk) different configurations. Let us take a convenient
encoding of these in the alphabet {0,1)} and interpret the enccdings
as intecers. By convenient encoding we mean one that is linear in
the length of the tape used by the machine, where the positicns of
the heads and the state may be easily found, and which may be easily
updated. Then, if we generate all the integers in the range
0 - ank— l)(where c depends only on the encoding) we shall have
produced encodings of all configurations, together with nuvbers that
are not encodings of any configquration. The reader might amuse
himscelf by writing a CRAM program that procduces all inteqgers betwoeen
0 and m = 2P- 1 in time p (Hint: for a straightforward program get

(m = Zp) 1m/zom/z p~l)m/2' then olm/dom/dlm/dom/d

and

, then (10

0 (]OP-I)m/dnm/4(]0D-J)m/d, V them Logether, rio.)
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Now, it is well known that in the opecration of the Tm the
character under the read-write hecad, the two symbols in the squares
immediately to the right and left of it, the state of the finite
control and the position of the input head uniquely determine the
next configuration. Then we test whether configuration cj follows
fron ¢, as follows: suppose ciand cj are stored in registers R and S.
We first build a pattern which picks up head positions (i.e., once we
builéd the pattern, we obtain from R and S, in a constant number of
moves, bit vectors which have a 1 at the position scanned by the
hezd and 0s everywhere else —- morcover the sequence of moves is
independant from the contents of R and S. For example, suppose that
the head position is indicated by the pattern 11011 appearing

beginning at some position p = 0 (modl5) in the encoding of the

conif¢uration, wiich we suppose of length 2'= 5%. Then Mh = (00100)2
is a mask with the property that T = thor R will have 11111 starting

f R had 11011 there. Using a procedure

&

vector which is 1 only at such positions

Now, again in a manner that does not depend
on whgre the head is in ¢, we may, in another constant number of
@5, Cotain the threo sguares of R that matter for the determination

of the noxi configuraticn, as well as the state of the finite control.

W2 fave this and zero the corresponding bits in the
crncodings, both in oand in S, All of this can Le done in a constant

~umber of moves, which are independent of the contents of R.
vy that the transition was a permissible move of the

Rave to check that the non-hlank portions of R and S are
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identical and that the blanked-out bits satisfy a move rule. The
latter is verified by table look-up, where the size of the table
depends only on the Tm but not on the input, while the former is
checked by first taking R eor $§ (R and S have now 0s where a move
might change R) and using a version of ADDUP to verify that the
result consists only of 0s. This will take only O(log n) roves.
Thus, we know how to detect thoe fact that cj follows frowm 4
in O(log n) CRAM moves, where n is the length of the configuration

and the moves do not depend on Lhoe contonts of <y or c.. Shis s

important, because it shows that if we have Cio in R,

€i1t- Sk
CjO"'cjk in §, we may, in O(log n) moves, test simultancously

whether cjk follows from Ciye Now, the way to geacrate the

transition matrix in time O(log n) where n is the leagth of the input

is easy enough to guess: first we gencrate all integers in the range
n : . . .

0 -(2" -1),call these configurations ¢ Then, as in the matrix

product routine, we form

kK
y° )m...(cm_l)m where m = 2"

(c and (¢

m . .
)T omeans n-io

S
concatenat

o) (e 0

12
i

ony,
and
m
(eg ©yeeeCpoy)
in O(log m) = O(nk) operations, and in O(nk) operations deteormina

simultaneously for all i and j whether Cj follows from o {i.o. obtain

a vector of bits which is 1 iff cj follows from ci).
the description of our simulatien algorithm: putting cverything

together we still have a procedure which runs in polynomial tiwme,
k
since the matrix may be computed in O((log 2" )2) moves and its
k 1+
transitive closure in O{(log 2" )2 2k

) = 0(n~") noves.
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Finally, some comments about the instruction sets necessary to
do this simulation. In our programs we used, besides parallel bit
sorations, the fellowing: concatenation(.), SUBSTR, and loop control
cperations (comparisons and divisions by 2). We first show, as we

mised, how to eliminate SUBSTR. The basic idea is simple,

o]

and we used it implicitly in ADDUP: the SUBSTR operation is used to

drcp off an initial substring of a string to obtain alignment -- but

ot
=g
u
1
o]
2
v
P

~ff{ect can be oblained by concatenating a string of 0s of
the same length to the other string. This has the disadvantage that
row we have a certain amount of useless garbage preceding certain
variables , but that can be taken care of by the following:

is easy to sce that we may always assume that the

is a string of 0s, since for any prefix P, (P.A) eor

second, we maintain, for each variable, an associated "garbage
indicator" -- another register, which contains a string of 1s of
Tength cgual to the uscless dinitial segment.  Whenever a variahlq
with a ncnempty garbage indicator is used in conjunction with others,

12 the operation is a boolean one we prefix the other operand with

the carbage indicator transformed into 0s. If we want to form

“.L n2 nl n2
C = a.B but wo have only A' = 0 ~.A, B' = 0 ".B GA'= 1 GB.= 1
™ "2
we form ¢ = A'.B' (= 0 “.A.0 “.B)
nl+n2+length(A)

C=Ceora (=0 .B)

. ] . mtny

C = CV ({Gy.N) cor Guy) (=0 JA.DB)

5. = G,.0 .
(‘C l'\(‘(\
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In both cases we have only a constant amount of overhead per

operation. Thus SUBSTR is not necessary.

As for the loop control, it is again easy to sce that division

o

by 2 is not necessary, since it is SUBSTR/{ +1). Thus the main
theorem of this section may be written:

CRAMs without arithmetic instructions may simulate PTAPE in
polynomial time.

We sketch now proofs of how our more powerful RAM mcdels may
simulate CRAMs.

1) VRAMs
Clearly A.B is the same as A V (B 4 length (A))
All we have to show is that the neccessary lengths are attainable in
polynomial time for polynomial time bounded CRAM computations.

Initially we store the lengths of all constants used in the
CRAM program in the VRAM's program. The length of the invput rmay be
obtained in linear time. The longest string obtainable in t moves
from a sct S of strings, by a CREAM is given by the troozom:

DUPL: I =0

while I < t do

end
where So is the longest string in S. The length of this s%iiné will
be 2t1cngth(so). It is casy to devise a binary search type VRAM-
algorithm that will find the length of a string in time

0((log length(x))?):
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one builds strings of 1ls, doubles them and tests when this procedure

produces a string longer than x. When this happens, after i

duzlications, we know that 21-li length(x) < 2'. We take SUBSTR
i-1 -
(x,lz ) and call the procedure recursively. Clearly, at most

log length({x) iterations are needed, each of which takes at most

O(icg lenctn(x)) time =- hence the time bound. Thus, if a CRAM

~

opzrates in time no, we may simulate each of its steps in at most
(n°") VR~ steps and, therefore, the whole computation in time

{n”"). Zyain, the simulation technique is not optimal, but, we

First we note that "shift left" instructions are unnecessary

the proof is identical to the argument given to

sh> that SUZ3ZTK 1s nst neccessary for CRAMs -- roughly, that one
shifzz evaryboudy cloe right instead of shifting one register left,

that initial segyrents of some registers should

With this in mind, all we have to simulate is

’ A W4 1
Vj MR Jk {shift right)
Qivelent to the MRAM instruction
I
.(Y{czk
i

I
chow is that it is possible to have 2 K in an MRAM

roglotar wWwroen I, is usod inoa ViRAM shift inctruction. We shall argue,

2z in the Cril case, that the contonts of IP cannot be too big:
since the cnly coperaticn that increases the contents of an index

the program that creates the biggest possible
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number in an index register in t steps of a VRAM's computation consists
of adding a register repcatedly to itseclf. If the initial contents

of the register was k, we produce Ztk after t operations. Thexefore,
in general, we must have at time t all index registers containin
numbers of length t to ¢ at most, ¢ a constant depending only on the

machine. But we may.generate all numbers of the form 2m,

2}

length(m) < t+c in time polynomial in t: we get the powers of 2 by
multiplying 2 by itself and include those factors in the final
product for which m has a 1 bit.

This proves the inclusion PTIME-MRAM D PTIME - VRAM and

concludes the chain of implications proving PTAPE & PTIME - Mi

objective of this section.

5. Conclusions and Comments

After the programming details of the previous two sections, it
might be useful to restate the results of this paper. We defined a
reasonable RAM model =~ the MRAM -- that has multiplication as a

primitive operation, and proved two important facts about theid

power as recognizers:
1) deterministic and nondceterministic time comploxity clagsos
are polynomially related (or PTIME - MRAM = NPTIME - MRAM)

2) time~bounded computations are polynomially

>
"
©
e
£
+
97
o7}
ot
o]
w3

tape (PTIME - MRAM = PTAPE).
Since it can be proven that RAM time and Tm time are polynomiall

related, we also proved
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3) RAM running times with and without multiplication are
polynomially related if and only if Tm time and tape measures are
polynomially related.

This last obsorvation is interesting, since it secems to imply
that the clusive difference between time and memory measures for Tms
might perhaps be attacked by "“algebraic" techniques developed in
"low level" complexity theory. We obtained no results in this
directicn: the sort of problem for which lower bounds on the number

of multiplications are known compute functions, and for transducers

we do already know that tape is more powerful than time.

We also note that Ms may simulate MRAMs in polynomial time,
as long as MRAMs operate in polynomial space and time. Therefore
MRAMs are more nowerful than RAMs if and only if the unit and
lcgarithuic time measures are not polynomially related -- i.e. if
(in our, "polynomial smearing” language) the two are distinct measures.

Many "if and only if" type categories follow, in the same vein,
from 1), 2) and 3). For example:

The set of regular expressions whose complements are non-empty
(Il Ch. 11 1) is accecpted in polynomial time by a deterministic Tm

iff every language recognized by an MRAM in polynomial time is
recognized by a deterministic RAM in polynomial time."

The reader may write down many of these: some of them sound
guite surprising at first.

An we saw, 10 MRAMa are Jddfforent from RAMs, thoy muaat use an
erxponential amount of storage. This suggests asking whether it is

sufticivnt to have a RAM1 and exponential tape to get an MRAM's
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power, or, equivalently to look at operations that make RMM - fTIHL
classes equivalent to PTAPE. The answer, as we saw, is that almost
anything that expands the length of registers fast enough will do,
as long as we have parallel bit operations: multiplication,

concatenation or shifting all have this property.

one of our CRAM models has nothing but concatenaticn, tests and
parallel bit operations (no indirect addressing). On the other hand,
we saw that adding more and more powerful operations (indirect
addressing, shifts by shift registers, division by 2, SULLTR,

multiplication, integer division) do not make the model more pownriul

once we have a fast memory-augmenting device. The stability of

class of RAMs makes them a nice characterizaticn of merory~bound

complexity classes. We also think they might be useful for studring

parallelism,
Minsky suggested [7) that one of the objectives ¢f theoretical

coﬁputer science should be the study of trade-offs (e.g. bectween

memory and time, nondcterminism and time, etc.). Our counstructions
trade exponential storage for polynomial time (simulaticn of .Tms by

MRAMs) and polynomial tape for exponential time in the other
simulation. Whether this trade-off is real or the result of bad
programming is not known, since P = PTAPE? is an open prohlom. I1f
P # PTAPE, then PTAPE would provide us with a class of languages
which have a trade-off property: they may be recognized tithcr.in
polynomial time or in polynomial ntorage, but not simultancously.
Moreover, in the modcl in which they are recognized in polynomial
time, the checking of the fact that one configuralion canc Jegally

from the previous one would of course have tc take expcnential tape.
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P # PTA®E would also imply that the tape - time measure for Tms is

too coarce, since it would put in the same class PTAPE and cxponential

inilize Ly «xhibiting a hierarchy of well-known probloms

{ i3
in terms of restricted RIS,

ciass of languages rccognized by the restricted RAMs

(instructions in brackets may be removed)

restriction language
(N)PTIME PTAPE
NPTIME NP

Py P

{3y, none cs
)Y, - . deterministic dcsl
. . i ].
(=3, {*}, time: < (logn) LG v
: divicion only by 2 NLOG~TAPR
c = division only by 2, DIOG~TAPE
detereinistic
cUTe 2 regicters only Rngular sots
Tienn 4 zrA S wera obsarved py [12); line 6 is obtained by

1 and 2 Lhoid when strengthened to time and tape

»r than the logarithm; 7 and 8 follow from

¢f lcgarithmic space-recognizable languages

(rr sedctted Ly k-nead finite automata for some K.

Panauane i
recogynizable in tape (logn)™ for some i}

ey
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