
On the Power of Power Analysis in the

Real World: A Complete Break of the

KeeLoq Code Hopping Scheme

Thomas Eisenbarth1, Timo Kasper1, Amir Moradi2,⋆, Christof Paar1,
Mahmoud Salmasizadeh2, and Mohammad T. Manzuri Shalmani2

1 Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

2 Department of Computer Engineering and Electronic Research Center
Sharif University of Technology, Tehran, Iran

{eisenbarth,tkasper,moradi,cpaar}@crypto.rub.de

{salmasi,manzuri}@sharif.edu

Abstract. KeeLoq remote keyless entry systems are widely used for
access control purposes such as garage openers or car door systems. We
present the first successful differential power analysis attacks on nume-
rous commercially available products employing KeeLoq code hopping.
Our new techniques combine side-channel cryptanalysis with specific
properties of the KeeLoq algorithm. They allow for efficiently revealing
both the secret key of a remote transmitter and the manufacturer key
stored in a receiver. As a result, a remote control can be cloned from only
ten power traces, allowing for a practical key recovery in few minutes.
After extracting the manufacturer key once, with similar techniques, we
demonstrate how to recover the secret key of a remote control and repli-
cate it from a distance, just by eavesdropping on at most two messages.
This key-cloning without physical access to the device has serious real-
world security implications, as the technically challenging part can be
outsourced to specialists. Finally, we mount a denial of service attack on
a KeeLoq access control system. All proposed attacks have been verified
on several commercial KeeLoq products.

1 Motivation

The KeeLoq block cipher is widely used for security relevant applications, e.g.,
remote keyless entry (RKE) systems for car or building access, and passive radio
frequency identification (RFID) transponders for car immobilizers [13]. In the
course of the last year, the KeeLoq algorithm has moved into the focus of the
international cryptographic research community. Shortly after the first crypt-
analysis of the cipher [1], more analytical attacks were proposed [4, 5], revealing
mathematical weaknesses of the cipher. The best known analytical attacks tar-
get the identify friend or foe (IFF) mode of KeeLoq and require at least 216

⋆ Amir Moradi performed most of the work described in this contribution as a visiting
researcher at Ruhr University Bochum.



plaintext-ciphertext pairs from one transponder. This allows, after several days
of computations, for a simple cloning of the transponder and, only in case of a
weak key derivation method1, for obtaining the manufacturer key that is required
to generate keys for new valid transponders. Despite the impressive contribution
to the cryptanalysis of the cipher, the real-world impacts of the previous attacks
are somewhat limited, as described in Sect. 2.3.

Motivated by the ongoing research we investigate the vulnerability of actual
KeeLoq implementations with respect to side-channel analysis (SCA), in order
to evaluate the security of all KeeLoq modes (IFF and code hopping) and all
key derivation schemes. As a result, we present three very practical key recovery
attacks and a denial of service attack with severe implications for RKE systems
that are currently used in the field. These new attacks — which combine differ-
ential power analysis (DPA) with the extend-and-prune strategy of [3] — can
be applied to various implementations of KeeLoq. In particular, we have been
able to successfully attack hardware realizations, i.e., the Microchip HCSXXX
family of integrated circuits (ICs), as well as software implementations running
on Microchip PIC microcontrollers. In contrast to the hitherto existing attacks,
the techniques proposed by us are also applicable in case of more sophisticated
key derivation schemes (cf. Sect. 2.2) and are suitable for breaking both the
KeeLoq code hopping mode and the IFF mode.

Since the introduction of DPA in 1999 [6], it has become an established
method for extracting cryptographic keys from security devices by exploiting
power consumption traces. However, almost ten years later, there is a surprising
discrepancy between the well established theory of power analysis (cf., e.g., the
CHES workshop proceedings since 1999) and the very few, if any, confirmed DPA
attacks on real-world security systems. The targets considered in the literature
are often home-made or known implementations on platforms that are well-
known to the attacker, and are typically examined in an ideal environment [16,
9, 14], for example with an artificially generated trigger signal. The practical
relevance of such a white box cryptanalysis for real-world realizations of cryp-
tography sometimes remains an open question. During our investigations, we
were confronted with a known cipher, but with a black box implementation, i.e.,
no knowledge or information about the devices except for the characterization in
the data sheet. This demanded for some extra efforts and reverse engineering of
the unknown targets. Despite these obstructions, we were able to mount highly
effective attacks with considerable implications on the security of commercial
KeeLoq code hopping systems.

The remainder of this contribution is structured as follows. After an intro-
duction to the KeeLoq cipher and its key derivation schemes in Sect. 2, we
elaborate in Sect. 3 on how the secret key of a transmitter can be revealed using
SCA with as few as ten power traces and only minutes of computation time.
Similarly, the manufacturer key used in a receiver is obtained in less than one
day. In Sect. 4, we describe several real-world attacks which follow from the

1 If the key of the transmitter is derived from XORing a simple function of the device
serial number with the manufacturer key, the latter can easily be obtained.



1 17 02 4 0

XOR

Key Register,

State Register,

k

y

07

Fig. 1. Block diagram of the KeeLoq encryption

32

Synchronization Counter

Secret 
Key

Discrimination 
Value

Func.

Hopping Code

KEELOQ 
Encryption

32

64

Fig. 2. Generation of KeeLoq

hopping codes

key extraction. First, remotes which are in the possession of an attacker can
be cloned. The most devastating attack allows to recover the secret key of a
transmitter from a distance, just by eavesdropping on at most two hopping code
messages. It is perceivable that a technically experienced person (with malicious
intent) will develop a machine that allows for automatically spoofing KeeLoq

code hopping systems. With such a machine, a completely unskilled attacker
could gain access to objects that are protected by these systems without leaving
any traces. Finally, we detail on putting an RKE system out of service which
would prevent the legitimate owner to open a car door or to access a garage.
All our attacks have been extensively tested and verified. We present various ex-
perimental results and provide figures for power analysis both based on electric
current and the electromagnetic (EM) emanation of different KeeLoq devices.

2 Background

KeeLoq is a block cipher with a 64 bit key and a block size of 32 bits. As
illustrated in Fig. 1, it can be viewed as a non-linear feedback shift register
(NLFSR) where the feedback depends linearly on two register bits, one key bit,
and a non-linear function (NLF). The NLF maps five other register bits to a
single bit [1, 4, 5]. Prior to an encryption, the secret key and plaintext are loaded
in the key register and the state register, respectively. In each clock cycle, the
key register is rotated to the right and the state register is shifted to the right
so that the fresh bit prepared by the XOR function becomes part of the state.
After 528 clock cycles, the state register contains the ciphertext. The decryption
process is similar to the encryption, except for the direction of the shifts and the
taps for the NLF and the XOR function.



2.1 Code Hopping Protocol

In addition to KeeLoq IFF systems which provide authentication of a trans-
mitter to the main system using a simple challenge-response protocol, KeeLoq

is used in code hopping (or rolling code) applications [10]. In this mechanism,
which is widely used, e.g., in car anti-theft systems and garage door openers,
the transmitter is equipped with an encoder and the receiver with a decoder.
Both share a secret key and a fixed discrimination value, disc, with 10 or 12
bits. In addition, they are synchronized with a 16 bit or 18 bit synchronization
counter, cnt, which is incremented in the encoder each time a hopping code is
transmitted. According to Fig. 2, the transmitter constructs a hopping code by
encrypting a 32 bit message formed of disc, cnt and a 4 bit function informa-
tion. The latter determines the task desired by a remote control, for instance, it
enables to open or close more than one door in a garage opener system.

One message sent via the radio frequency (RF) interface consists of a hopping
code followed by the serial number of the transmitter. The receiver decrypts the
hopping code using the shared secret key to obtain disc and the current cnt.
The transmitter is authenticated if disc is identical to the shared one and cnt

fits in a window of valid values. Three windows are defined for the counter. If
the difference between a received cnt and the last stored value is within the first
window, i.e., 16 codes, the intended function will be executed after a single button
press. Otherwise, the second window containing up to 215 codes2 is examined.
In this so-called resynchronization window, the desired function is carried out
only if two consecutive counter values are within it, i.e., after pressing the button
twice. The third window contains the rest of the counter space. Any transmission
with a cnt value within this window will be ignored, to exclude the repetition of
a previous code and thus prevent replay attacks.

2.2 Key Derivation Schemes

There are two types of keys involved in a typical KeeLoq application. The
device key is unique for each remote control and is shared by the transmitter
and the receiver. It is established during a learning phase. The manufacturer key
is mainly used for deriving device keys. It is to our knowledge identical for all
receivers of a given manufacturer and hence enables producing transmitters that
cannot be cloned by competitors. Since the manufacturer’s key is critical for the
security of the product, it is stored in a read protected memory of the receiver.
The known key derivation schemes are reviewed in the following:

(a) According to Fig. 2.2.a, the device key is obtained by two KeeLoq decryp-
tions. The two functions F1 and F2 (which are usually simple paddings) are
applied to the serial number of the transmitter to form the plaintexts for the
decryptions.

2 These window sizes are recommended by Microchip, but they can be altered to fit
the needs of a particular system.



1

32

32

64

2

Device Key

32
Manufacturer

Key

32

64

Serial Number/SEED

(a)

1

32

2

Device Key

32

Serial Number/SEED

64

64Manufacturer

Key

64

(b)

Fig. 3. Key derivation schemes

(b) The next key derivation scheme is similar to the previous one, except for a
randomly generated seed value which is stored in the transmitter and is used
instead of the serial number to generate the device key. During the learning
phase, a transmitter can be forced to send its seed value.

(c) As presented in Fig. 2.2.b, sometimes the device key is generated from an
XOR of a simple function of the serial number with the manufacturer key.

(d) The last scheme is similar to the third one. The device key is derived from
an XOR of the manufacturer key and a simple function of the seed value of
the transmitter.

Note that a manufacturer may develop a proprietary key derivation scheme not
included in the above list.

2.3 Previous Work

The first two cryptanalytical attacks on the KeeLoq algorithm were published
by Bogdanov [1]. One attack is based on slide and guess-and-determine tech-
niques and needs about 250.6 KeeLoq encryptions. The other one additionally
uses a cycle structure analysis technique and requires 237 encryptions. However,
both attacks require the entire codebook, i.e., all 232 plaintext-ciphertext pairs.
Courtois et al. [4] proposed two attacks. One is a slide-algebraic attack demand-
ing for 251.4 KeeLoq encryptions and 216 known plaintext-ciphertext pairs.
The second slide attack can be carried out knowing almost the entire codebook.
It reveals the secret key with a complexity of approximately 227 KeeLoq en-
cryptions. Recently, Indesteege et al. presented more practical attacks on the
KeeLoq cipher [5]. All of them are based on slide and meet-in-the-middle at-
tacks. The best one uses 216 known plaintext-ciphertext pairs and has a com-
plexity of 244.5 KeeLoq encryptions. It can find the secret key in two days using
50 dual core computers.

The above attacks are applicable to KeeLoq IFF systems but they cannot
be directly applied to the code hopping mode [10], which appears to be the
dominant commercial application of KeeLoq. The required minimum of 216

plaintext-ciphertext pairs cannot be obtained in case of a code hopping system,



because an adversary has only access to the ciphertexts that are transmitted
by a remote control, while the corresponding plaintexts are unknown. Although
knowing a sequence of 216 ciphertexts and the discrimination value of a code
hopping encoder would be sufficient to perform the attack described in [5], the
commercial products employing the KeeLoq code hopping protocol, i.e., HCS
modules, do not allow an attacker to access this information.

3 DPA on KeeLoq

When we started to analyze the targets using KeeLoq, we were exposed to a
“classical” situation for physical attacks: even though the algorithm was known,
hardly anything was known about the implementation. We found that the trans-
mitters usually employ HCSXXX modules of Microchip, featuring a hardware
implementation of the cipher. The receivers we looked at are typically equipped
with a read-protected PIC microcontroller on which a KeeLoq decryption rou-
tine is implemented in software. This section explains the details of DPA-attacking
transmitters and receivers, starting with a general approach that is appropriate
for both types of realizations.

Initial Cipher Analysis Before being able to actually perform a DPA on a
particular implementation of a cipher, one needs to make certain assumptions
about the leakage produced by it. Then, a DPA scheme for exploiting that leakage
must be developed, which depends on the cipher structure as well as on the
particularities of the given implementation.

Measurement The power traces are gathered by measuring the current via
a shunt resistor connected to the ground pin of the target chip. In addition,
we acquire the EM radiation of the device by means of near field probes. For
convenience, we built a printed circuit board (PCB) that allows for emulating
KeeLoq chips and for controlling a transmitter from a PC so that a measure-
ment sequence can be executed automatically. The power traces were acquired
using an Agilent Infiniium 54832D digital oscilloscope with a maximum sampling
rate of 4GS/s.

Data Pre-Processing and Alignment One problem of aligning the power
traces of an unknown implementation is the absence of a suitable trigger signal.
The solution for this is target-specific and detailed in Sect. 3.2 and Sect. 3.3
for transmitters and receivers, respectively. Another problem is that all of the
target devices are clocked by a noisy internal oscillator. Hence we had to find
a way to remove the clock jitter. We know that most of the data-dependent
leakage occurs in the instant when the registers are clocked, producing peaks
with varying amplitudes in each clock period. The amplitudes of these peaks
directly correspond to the dynamic power consumption of the target circuit and
thus hold most of the relevant information. Accordingly, we extract the peaks



from the power consumption in software, and base our DPA attack solely on the
amplitudes of the peaks. This peak extraction step has two advantages for the
subsequent analysis: (i) the amount of data is greatly reduced, which facilitates
the post-processing and the data storage, and (ii) more importantly, the peak
extraction allows for an accurate alignment of the traces. Other methods for
removing the clock jitter, such as Fourier transform, filtering, etc., turned out
to be less effective and more complicated.

Developing and Performing the DPA After peak extraction and alignment
steps, the traces can be processed by the DPA algorithm. For the transmitter
modules we only knew the ciphertext and hence had to perform our attacks
starting from the last round of the encryption. For the software implementation
of the PICs we knew the plaintexts and started the attack of the first round of
the decryption.

3.1 Building a Powerful DPA for KeeLoq

It is known that for successfully performing a DPA attack, some intermediate
value of the cipher has to be identified that (i) depends on known data (like the
plaintext or the ciphertext), (ii) depends on the key bits, and (iii) is easy to
predict. Furthermore, it is advisable to choose a value that has a high degree of
nonlinearity with respect to the key, to avoid so-called “ghost peaks” for “similar”
keys [2]. For every DPA, a model for estimating the power consumption is needed.
Compared to the two shift registers, the power consumption of the combinational
part, i.e., a few XORs and the 5 × 1 non-linear function, is small and can be
neglected. Note that the Hamming distance of the key register does not change,
since the key is simply rotated. This leads to a theoretically constant power
consumption of the key register in each clock cycle. Hence, we focus on the state
register y. We execute a correlation DPA attack (CPA) [2] based on the following
hypothetical power model

P
(i)
Hyp = HD

(

y
(i),y(i−1)

)

= HW
(

y
(i) ⊕ y

(i−1)
)

(1)

where P
(i)
Hyp denotes the hypothetical power consumption in the ith round, HD

and HW are Hamming distance and Hamming weight, respectively, y
(i) indi-

cates the content of the state register in the ith round, and ⊕ is a 32 bit XOR
function. As mentioned before, the known ciphertext attack on the encryption
is identical to the known plaintext attack on the decryption3. We describe the
known ciphertext attack on the encryption. Starting from the 528th round, 32

bits of the final state y
(528) =

(

y
(528)
0 , . . . , y

(528)
31

)

, are known. Furthermore, 31

bits of y
(527), i.e.,

(

y
(527)
1 , . . . , y

(527)
31

)

, are known because they are identical to

3 Both attacks target state y
(l) of the decryption, which is the same as state y

(528−l)

of the encryption.



(

y
(528)
0 , . . . , y

(528)
30

)

. Therefore, just y
(527)
0 is unknown. According to Fig. 1, we

can write

y
(i+1)
31 = k

(i)
0 ⊕ y

(i)
16 ⊕ y

(i)
0 ⊕ NLF

(

y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)

(2)

where k
(i)
0 is the rightmost bit of the key register in the ith round. Knowing that

k
(i)
j = k(i+j) mod 64, we can rewrite Eq. (2) as

y
(527)
0 = k15 ⊕ y

(527)
16 ⊕ y

(528)
31 ⊕ NLF

(

y
(527)
31 , y

(527)
26 , y

(527)
20 , y

(527)
9 , y

(527)
1

)

(3)

Thus, recovering y
(527)
0 directly reveals one bit of the key register. This pro-

cess is the same for recovering the LSB of the state register of the previous

rounds, i.e., y
(i)
0 , i = (526, 525, . . .). However, Eq. (3), depends linearly on the

key bit k15. Above we stated that nonlinearity helps distinguishing correct key
hypotheses from wrong ones. Hence, recovering the key bit-by-bit might not be
the best choice4. Fortunately, according to Fig. 1, the LSB of the round state,

y
(i)
0 , enters the NLF leading to a nonlinear relation between the key bit k15 and

the state y
(526). Accordingly, the nonlinearity for one key bit kj increases in each

round after it was clocked into the state.

Algorithm 1 A Scalable DPA for KeeLoq

Input: m : length of key guess, n: number of surviving key guesses, k: known previous
key bits

Output: SurvivingKeys
1: KeyHyp ← all {0, 1}m

2: for all KeyHypi; 0 ≤ i < 2m do

3: Perform CPA on round (528−m) using PHyp and k

4: end for

5: SurvivingKeys ← n most probable partial keys of KeyHyp

Taking the increased nonlinearity in the successive rounds into account, we
developed a scalable DPA, as described in Alg. 1, that allows for finding a subset
n of surviving key candidates by guessing m bits of the key in an instant. Note
that in step 3 of the algorithm the CPA is performed on round (528−m), hence
taking advantage of a key bit passing the NLF m times. The significance of the
known previous bits k will become clear below in the extended attack (Alg. 2),
where Alg. 1 is executed repeatedly.

We performed simulations of the attack described in Alg. 1, assuming a Ham-
ming distance leakage model. The simulated traces allow for testing our attacks

4 Simulations show that an attack recovering the key bit by bit is much weaker than
an attack that recovers several key bits at a time. Still, the key can also be recovered
for single bit key guesses – in other words even a classical DPA on the LSB of the
state register is feasible.



and also to evaluate how well an attack would work under “perfect” conditions.
We generated a set of encryption traces with random plaintext input and com-

514516518520522524526
0.6

0.7

0.8

0.9

1

Round

C
or

re
la

tio
n

Fig. 4. Simulated correlation of key hypotheses as a function of KeeLoq rounds.
Correct key guess (black solid line) vs. wrong key guesses (thin gray lines).

puted the Hamming distance of all registers for each round. We performed a
correlation DPA where we predicted the Hamming distance of the state register
of round 522, PHyp = HD

(

y
(522)

)

. Fig. 4 shows the correlation for the 26 = 64
key hypotheses over the first few rounds. Of course, the correlation is 1 for the
right key (thick solid line) in round 522. Unfortunately, some of the wrong key
guesses (thin gray lines) also yield a high correlation. This is due to the high
linearity between both the state and the key guesses, and between the different
states. Furthermore we get a high correlation in the rounds before and after the
predicted round. This is because most of the bits of the shift register remain
unchanged in the nearby rounds. The most probable wrong key guess is always
the one that differs only in the LSB. This underlines our expectation that the
linearity increases the error probability of guessing the less significant key bits.

Algorithm 2 Pruning for the Best Key Hypothesis

Input: m : length of key guess, n: number of surviving key guesses
Output: K: recovered key
1: K ← Algorithm 1(m, n, ∅)
2: for round = 1 to ⌈ 64

m
⌉ do

3: K′ ← ∅
4: for all ki ∈ K, 0 ≤ i < n do

5: K′ ← K′∪ Algorithm 1(m, n, ki)
6: end for

7: K ← n most probable keys of K′

8: end for

9: return K

To improve the strength of our attack and to take care of the misleading
high correlations, we added another attack step. Alg. 1 can be repeated to guess



all partial keys, one after the other. These iterations of the attack need to be
done one after another, because we require the previous key bits and thus the
state y as a known input for each execution of the algorithm. Since some of the
bits of the previous key guess might be faulty, we keep a number n of the most
probable partial key guesses as survivors. Wrong surviving candidates of the
previous round will result in a misleading initial state y for the following attack
round and hence strongly decrease the correlation of subsequent key guesses.
This does not only allow for an assertion of the correct previous key guesses, but
also for detecting faulty previous keys. Hence, the attack has an error-correcting
property. If all key guesses of one round show a low correlation, we can go one
step back and broaden the number of surviving key guesses n. Alg. 2 describes
this procedure, which is similar to the “pruning process” described by Chari et

al. in [3]. In the last round (i = ⌈ 64
m
⌉) the program verifies whether an error

occurred and the key with the highest correlation coefficient is selected out of
the n surviving keys. It will be shown in the following subsections that Alg. 2
results in a quite strong attack.

3.2 Details of the Hardware Attack

For attacking commercial KeeLoq code hopping encoders we first had to find
the points in time in the power traces (Fig. 5.a) that correspond to the encryption
function. We found that the encryption happens after writing to the EEPROM5,
i.e., in the time interval between 20.5ms and 24ms (Fig. 5.b). The power traces
reveal that the frequency of the internal oscillators of the ICs is approximately
1.25MHz.

(a) From power up to start sending (b) Encryption part

Fig. 5. Power consumption traces of a HCS module

We modified the attack described in Sect. 3.1 to correlate all known and
predicted rounds to the corresponding power peaks. This is possible since we are

5 The high amplitude periods of the power trace correspond to writing to the internal
EEPROM.



5 10 15 20 25 30 35 40 45 50

0.4

0.2

0

0.2

0.4

0.6

0.8

Number of traces

C
o

r
r
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

(a) DIP

5 10 15 20 25 30 35 40 45 50

0.4

0.2

0

0.2

0.4

0.6

0.8

Number of traces

C
o

r
r
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

(b) SOIC

Fig. 6. Correlation coefficients of key hypotheses of HCS201 ICs as a function of the
number of measured traces.

able to locate the leakage of each round. The modified attack was performed on
HCS200, HCS201, HCS300, HCS301, HCS361, HCS362, and HCS410 [11, 12]
in both DIP and SOIC packages. In the best case we were able to recover the
secret key of DIP package ICs from only six power traces when sampling at a
rate of 200MS/s. At most 30 power traces are sufficient to reveal the secret key
of an HCS module in an SOIC package, which has a lower power consumption,
resulting in a worse signal-to-noise ratio (SNR) of the measurements. Fig. 6
compares the correlation coefficients of the correct key of HCS201 chips in DIP
and SOIC packages as a function of the number of traces. The sudden increase
of the correlation is due to the error-correcting property of our attack, and also
due to the fact that we repeated the attack for all 528 rounds of the algorithm
in order to verify the revealed key.

We repeated the above experiments with an EM near field probe RF-U 5-
2 [8] to directly monitor the electromagnetic emanation, instead of measuring
the electric current via a shunt resistor. The probe was positioned close to the
ground pin of the HCS201 IC in a DIP package, in order to acquire the peaks
of the EM field that are caused by the change of electric current. Compared
to inserting a resistor in series to the device, this differential electromagnetic
analysis (DEMA) can be regarded as non-invasive, as no modification of the
PCB is necessary. Contrary to our assumption that the SNR would suffer from
environmental noise and thus much more traces would be required to recover the
key, the results obtained and the number of traces needed are very comparable
to the case of power traces acquired by means of a resistor (Fig. 5). In the best
case, we succeeded with recovering the key after only 10 DEMA measurements.

To estimate the minimum technical requirements for the SCA, we performed
experiments with varying sampling rates and evaluated the number of power
traces required for recovering the correct key. Fig. 7 shows the results for attack-
ing a HCS201 chip in a DIP package in the case of current measurements via
a resistor. We conclude that our attack can be carried out effectively even with
low-cost equipment, e.g., an oscilloscope with a maximum sample rate as low as
50MS/s enables finding the secret key from only 60 power traces.



(125, 10)(100, 30)(50, 60)
(200, 10)

(40, 90)

(25, 135)

(20, 160)

(10, 1250)

0

250

500

750

1000

1250

0 50 100 150 200

Sampling Rate [MS/s]

N
u

m
b

e
r 

o
f 

th
e
 n

e
e
d

e
d

 t
ra

c
e
s

Fig. 7. Number of measurements required for revealing the secret key of a HCS201 IC
in a DIP package as a function of the sampling rate. The numbers in parentheses give
the exact coordinates of the points.

3.3 Details of the Software Attack

The next target of our attack is the code hopping decoder implemented in the
receiver. We recall that the receiver contains the manufacturer key, which is an
attractive target for a complete break of the system. A PIC microcontroller han-
dles the key management, controls for instance the motor of the garage door or
the locking system of the car, and performs the KeeLoq decryption in software.

Receivers usually offer a so-called “learning mode”. In this learning mode
the user can register new transmitters to cooperate with the receiver. We were
able to identify the key derivation scheme of the target receiver as scheme (a)
of Sect. 2.2. Hence we can recover the manufacturer key kM by performing a
DPA key recovery on the KeeLoq decryption that is performed during learning
mode.

Before executing the DPA, we adapted the power model of the attack of
Sect. 3.1 to a PIC software implementation. Typically, PIC microcontrollers
leak the Hamming weight of the processed data [15]. Furthermore, one can as-
sume that the state is stored in the 8 bit registers of the PIC microcontroller
which are regularly accessed. Hence, instead of predicting the Hamming dis-
tance HD

(

y
(i),y(i−1)

)

of the whole state – as was done for the hardware attack
in Sect. 3.2 – we predict the Hamming weight of the least significant byte (LSB)
of the KeeLoq state register:

P
(i)
Hyp = HW

(

y
(i)
LSB

)

=

7
∑

k=0

y
(i)
k

We performed the attack by putting the receiver into learning mode and sending
hopping code messages with random serial numbers to the receiver6. Lacking any
information in the power consumption of the PIC that could have been used as

6 We emulated a remote control by connecting the RF interface of a transmitter to
the parallel port of a PC.



trigger, we triggered the scope directly after transmitting the last bit via the
RF interface. This results in our traces not being well-aligned, leading to a high
number of power samples needed to perform a successful DPA attack.

While performing the attack we noticed that the correlation coefficient of the
correct key become continuously worse with an increasing number of rounds. For
the first few key bits, 1000 traces sampled at 125MS/s are sufficient to find the
key. Surprisingly, we need roughly ten times as many traces for recovering the
full 64 bit key. This gradual decrease of the correlation is due to a misalignment
that occurs during the execution of the KeeLoq algorithm. Hence, the problem
is not a bad trigger condition, since the trigger affects all time instances in the
same way. We assume that the program code is likely to have a data-dependent
execution time for each round of KeeLoq, causing the increasing misalignment
with an increasing number of rounds, and hence complicating the SCA.

4 Attacks and Implications

In the previous section we showed how the keys of hardware and software im-
plementations of KeeLoq can be recovered by a skilled adversary using SCA.
We will now evaluate the vulnerability of real-world systems to our attacks and
illustrate the implications. We detail four different attack scenarios, which allow
for breaking basically any system using KeeLoq with modest efforts. We focus
on code hopping applications, since they are more commonly used and, due to
the lack of known plaintexts, harder to cryptanalyze than IFF systems. Still, IFF
systems are just as vulnerable to our DPA attacks as the code hopping devices.
Some of the transmitters we analyzed even offer both operating modes. The suc-
cess of some of our attacks depends on the knowledge about the particular key
derivation scheme, as described in Sect. 2.2. However, they are appropriate for
all key derivation schemes we are aware of.

Note that for all the attack scenarios described below it is very difficult,
e.g., for an insurance or a prosecutor, to find evidence that a crime has been
committed, as typically no traces are left when electronically circumventing an
RKE system.

4.1 Cloning a Transmitter

For cloning a transmitter using power analysis, an adversary needs physical ac-
cess to it to acquire at least 10 to 30 power traces. Hence, the button of the
remote control has to be pressed several times, while measuring the power con-
sumption and monitoring the transmitted hopping code messages. After recov-
ering the device key kDev with the side-channel attack described in Sect. 3.2, the
recorded messages can be decrypted, disclosing the discrimination and counter
values of the original transmitter at the time of the attack. Now, the HCS module
of a spare remote control can be programmed with the serial number, counter
value and discrimination value of the master. Consequently, the freshly produced
transmitter appears to be genuine to a receiver and allows for accessing the same
target as the original.



Implications This attack applies to scenarios in which a transmitter is handed
over to an untrustworthy person for some minutes, e.g., car rental or cleaning
personnel. While possessing the transmitter, an attacker could clone it for future
reuse. Depending on the time interval between recovering the key and using the
reproduced remote control, the attacker will have to press the button of the
transmitter several times, for catching up with the counter value in the receiver
which might have been increased meanwhile by the legitimate operator.

Given that a technically demanding SCA has to be carried out in order
to clone just one remote control, and physical access to it is required, it can
be speculated that the impact of this attack is limited. The cost-benefit ratio is
typically too low, except for the case that very high monetary values are involved,
e.g., rental of expensive cars. In most cases it is easier, e.g., to smash a window,
unless an attacker intends to remain unnoticed or to gain access to an object
repeatedly. It is important to stress that in most modern cars the door access
mechanism and the immobilizer are separate systems. Thus, even if a car can be
opened with our attack, this does not imply that a criminal can equally easily
drive away with it.

4.2 Recovering a Manufacturer Key

The key recovery of the manufacturer key kM depends on the particular key
derivation scheme. If scheme (c) or (d) of Sect. 2.2 is used, i.e., an XOR of a
known input and the manufacturer key kM , disclosing the latter is trivial. After a
successful key recovery attack on one transmitter (see above) of the same brand,
kM is found by reversing the XOR function. The known input is either part of
each hopping code message, in case of the serial number, or can be obtained
from the remote control, in case of a seed. The derived kM can be verified with
a second transmitter.

An adversary targeting the manufacturer key kM for scheme (a) or (b) of
Sect. 2.2 requires physical access to one receiver of that manufacturer. The key
of the KeeLoq decryption performed inside the receiver during the learning
phase is recovered with an SCA requiring several thousand power traces, as
described in Sect. 3.3. The kM obtained from the DPA can be verified with a
single hopping code message.

Knowing the manufacturer key kM , valid device keys for producing trans-
mitters with arbitrary serial numbers can be generated, just by applying the key
derivation. The counterfeited remote controls will be recognized as genuine by
all receivers of that manufacturer.

Implications The described key recovery requires access to a transmitter (key
derivation by XOR) or a receiver (key derivation by KeeLoq) of the manu-
facturer to be attacked and, in case of a key derivation employing KeeLoq, a
very skilled adversary for performing the SCA. The RKE devices can be sim-
ply purchased, e.g., from a hardware store, and even returned after extracting
the key. The recovered kM does not directly permit to unauthorizedly open a



door secured by KeeLoq, because the newly produced transmitters need to be
registered by the receiver first, implying physical access. Still, the described key
recovery is highly relevant in the context of product piracy: the economic func-
tion of kM is customer retention, e.g., a business model could comprise making
the main profit on selling spare transmitters that operate with the receivers of
that manufacturer. Without knowledge of the manufacturer key, valid trans-
mitters cannot be produced to work with the receiver. However, a competitor
possessing kM could produce transmitters compatible to those receivers, or even
produce whole RKE systems bearing the brand and being compatible to those
of the original manufacturer, and hence severely affect the business of the latter.
Due to the depicted high economic impact, it is very conceivable that this attack
will be carried out by criminals sooner or later. In the worst case, this might
result in publicly available lists of manufacturer keys on the web.

4.3 Cloning a Transmitter without Physical Access

Knowing the manufacturer key kM , e.g., by performing the previous attack, and
the key derivation method of a target device family, a remote control can be
cloned by eavesdropping. The adversary has to intercept at most two hopping
code messages, c1 and c2, sent by the target transmitter of the same brand. The
process of finding the secret key of the eavesdropped transmitter depends on the
key derivation schemes detailed in Sect. 2.2.

If the key is derived from the serial number of the transmitter (schemes (a)
and (c)), finding its device key is straightforward, since the intercepted messages
contain the serial number. The adversary can simply perform the key derivation
using the known manufacturer key to obtain the device key. After decrypting
one message ci and thereby disclosing the current counter value, the adversary
is able to generate valid hopping code messages for spoofing the receiver and
gain access to a protected site. The computational complexity of this attack is
a single KeeLoq decryption.

However, if a seed value is used during the key derivation (schemes (b) and
(d)), recovering the secret key of the eavesdropped transmitter is more difficult.
An exhaustive search needs to be performed to find the seed value. For recov-
ering kDev, the adversary calculates kseed

Dev = KeyDerivation (kM , seed) for each
possible value of seed and decrypts the two intercepted messages c1 and c2 using
kseed

Dev :

(cnt1, disc1) = KeeLoq
−1

(

c1, k
seed
Dev

)

(cnt2, disc2) = KeeLoq
−1

(

c2, k
seed
Dev

)

Once both messages have the same discrimination value, i.e., disc1 = disc2, and
similar counter values7 cnt1 and cnt2, the correct device key is found8.

7 “Similar” counters means that the difference cnt2−cnt1 is less than a small threshold,
e.g., 16, depending on the period between the two eavesdrops.

8 With a small probability we get false positives. These can easily be identified by
sending one message to the target receiver.



There are three different seed sizes possible for KeeLoq systems, depending
on the chip family. If a 32 bit seed value is used (e.g., HCS200), the adversary
has to run on average 232 KeeLoq decryptions to find the correct seed. Ac-
cording to our software implementations, this takes less than two hours on a
2.4GHz Intel Core2 Quad PC. On a special-purpose computing machine such
as COPACOBANA [7], the correct 32 bit seed value and hence the key can be
recovered in just one second. In case of a 48 bit seed value (e.g., HCS360) it is
not promising to recover the correct seed value using standard PCs. Still, it is
possible to perform the 248 required KeeLoq decryptions on average in about
nine hours using COPACOBANA. However, chips like the HCS410, using a 60
bit seed, are not vulnerable to this attack. Running 260 KeeLoq decryptions is
not feasible in a reasonable time with currently existing equipment. We would
like to mention that none of the real-world KeeLoq systems we analyzed used
any seed. Moreover, if physical access to the transmitter is given, even 60 bit
seed values are obtained by pressing one button.

Implications This attack has the most devastating impact and it scales very
well. It affects all KeeLoq RKE systems of a manufacturer, as soon as the
respective kM is known. Extracting kM , as described in Sect. 4.2, can be out-
sourced to criminal cryptographers who may construct (and sell) an easy-to-use
machine that eavesdrops on two messages, automatically recovers the device key,
and opens the target. Thus it enables a completely unskilled person to gain illicit
access to objects secured with KeeLoq, at little cost and without leaving any
traces. Building such an eavesdropping device is simple once the manufacturer
key is available. It is sufficient to connect a legitimate receiver to a (laptop) PC
and to monitor hopping codes from a range of up to several hundred meters,
depending on the targeted RKE system.

4.4 Denial of Service

As detailed in Sect. 2.1 and in [10], the counters of a receiver and a transmitter
are synchronized with every valid hopping code message received. This behavior
can be exploited for putting an RKE system out of operation. We assume that
the adversary has recovered the device key kDev of a target transmitter, e.g.,
by performing one of the attacks described above, and is thus able to generate
valid hopping code messages. She sets the counter value to the maximum value
inside the resynchronization window and sends two consecutive valid hopping
codes. The receiver resynchronizes its counter to the new value. Consequently,
the counter of the original transmitter is now considered to be outdated and
the respective hopping codes are ignored by the receiver. Finally, the owner of
the original transmitter needs to press the button very often, namely 215 times,
to increase the counter value back into the first window, where the transmitter
produces valid hopping code messages.

Implications This attack allows for locking out a legitimate user, leaving the
impression that the KeeLoq RKE device is out of service. It can be performed by



an unskilled adversary in the following scenario. Similarly to the eavesdropping
device mentioned in Sect. 4.3, a spare transmitter enables a standard PC to
transmit self-generated hopping codes. The program code for generating valid
hopping codes could be provided by a skilled criminal, e.g., via the internet.
Hence, this attack can have dramatic consequences, especially for the automotive
industry, where reliability is of paramount importance. Apart from compromising
the corporate image, the additional costs for increased customer support, e.g.,
fixing the spoofed devices, have to be considered.

5 Conclusion

We presented the first successful DPA and DEMA attacks on KeeLoq imple-
mentations that can be applied to both IFF and code hopping devices. We
demonstrated new techniques to reveal secret keys from commercial hardware
and software implementations of KeeLoq. By applying these attacks, we illus-
trated how to conduct a complete break of the KeeLoq code hopping scheme.

We revealed a manufacturer key from a receiver using a few 1000 power
traces, and recovered the device key of a remote control with as few as 10 traces.
We found that the investigated hardware implementations show an almost per-
fect leakage and hence constitute an easier target for SCA than the software
implementations, whose data-dependent time variations made the DPA more
difficult.

Analyzing real-world applications of KeeLoq and taking into account sev-
eral key derivation schemes, we developed an eavesdropping attack that allows
for cloning a transmitter from a distance, i.e., by intercepting at most two hop-
ping code messages. This attack could be prevented if a 60 bit seed value, with
good random properties, would be used for the key derivation. In addition, we
introduced a denial of service attack for the KeeLoq code hopping mode. Both
attacks can be performed by a completely unskilled person, as the technically
challenging part, including the key extraction by means of SCA, needs to be con-
ducted only once for each manufacturer and can thus be outsourced to criminal
cryptographers.

This contribution shows that widespread commercial applications, claiming
to be highly secure, can be practically broken with modest cost and efforts using
SCA attacks. Thus, physical attacks must not be considered to be only relevant
to the smart card industry or to be a mere academic exercise. Rather, effective
countermeasures against side-channel attacks need to be implemented not only
in high-value systems such as smart cards, but also in other embedded security
applications.

Acknowledgements

We would like to thank Andrey Bogdanov for helpful discussions regarding the
KeeLoq SCA attack, and for bringing cryptanalysis of KeeLoq to our atten-
tion.



References

1. A. Bogdanov. Attacks on the KeeLoq Block Cipher and Authentication Systems.
In 3rd Conference on RFID Security 2007 (RFIDSec 2007). http://rfidsec07.

etsit.uma.es/slides/papers/paper-22.pdf.
2. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage

Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

3. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. Cryptographic Hardware and
Embedded Systems-Ches 2002: 4th International Workshop, Redwood Shores, CA,
USA, August 13-15, 2002: Revised Papers, 2002.

4. N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and Slide Attacks on
KeeLoq. In Fast Software Encryption - FSE 2008, Lecture Notes in Computer
Science. Springer, 2008.

5. S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Practical
Attack on KeeLoq. In Advances in Cryptology - EUROCRYPT 2008, Lecture Notes
in Computer Science. Springer, 2008.

6. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO ’99:
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, pages 388–397, London, UK, 1999. Springer-Verlag.

7. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In L. Goubin and
M. Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006,
volume 4249 of Lecture Notes in Computer Science, pages 101–118. Springer, 2006.

8. Langer EMV-Technik. Details of Near Field Probe Set RF 2. http://www.

langer-emv.de/en/produkte/prod_rf2.htm.
9. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES

Hardware Implementations. In Cryptographic Hardware and Embedded Systems -
CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 157–171.
Springer, 2005.

10. Microchip. An Introduction to KeeLoq Code Hopping. http://ww1.microchip.

com/downloads/en/AppNotes/91002a.pdf.
11. Microchip. HCS200, KeeLoq Code Hopping Encoder. http://ww1.microchip.

com/downloads/en/DeviceDoc/40138c.pdf.
12. Microchip. HCS410, KeeLoq Code Hopping Encoder and Transponder. http:

//ww1.microchip.com/downloads/en/DeviceDoc/40158e.pdf.
13. Microchip. HCS410/WM, KeeLoq Crypto Read/Write Transponder Module.

http://ww1.microchip.com/downloads/en/DeviceDoc/41116b.pdf.
14. S. B. Örs, E. Oswald, and B. Preneel. Power-Analysis Attacks on an FPGA -

First Experimental Results. In CHES, volume 2779 of Lecture Notes in Computer
Science, pages 35–50. Springer, 2003.

15. E. Peeters, F. Standaert, and J. Quisquater. Power and Electromagnetic Analysis:
Improved Model, Consequences and Comparisons. Integration, the VLSI Journal,
40(1):52–60, 2007.

16. K. Schramm, G. Leander, P. Felke, and C. Paar. A Collision-Attack on AES:
Combining Side Channel- and Differential-Attack. In Cryptographic Hardware and
Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer Sci-
ence, pages 163–175. Springer, 2004.


