
On the Practical Exploitation of Scarsity

Andrew Lyons and Jean Utke

Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA,
{lyonsam,utke}@mcs.anl.gov

Summary. Scarsity is the notion that the Jacobian J for a given function f : Rn !→ Rm may
have fewer than n ∗m degrees of freedom. A scarse J may be represented by a graph with a
minimal edge count. So far, scarsity has been recognized only from a high-level application
point of view, and no automatic exploitation has been attempted. We introduce an approach
to recognize and use scarsity in computational graphs in a source transformation context. The
goal is to approximate the minimal graph representation through a sequence of transformations
including eliminations, reroutings, and normalizations, with a secondary goal of minimizing
the transformation cost. The method requires no application-level insight and is implemented
as a fully automatic transformation in OpenAD. This paper introduces the problem and a set
of heuristics to approximate the minimal graph representation. We also present results on a set
of test problems.

Key words: reverse mode, scarsity, source transformation

1 Introduction

While automatic differentiation (AD) is established as key technology for computing deriva-
tives of numerical programs, reducing the computational complexity and the memory require-
ments remains a major challenge. For a given numerical program many different high-level
approaches exist for obtaining the desired derivative information; see [2, 1]. In this paper we
concentrate on the transformation of the underlying computational graph, defined following
the notation established in [2]. Consider a code that implements a numerical function

y= f(x) : Rn !→ Rm (1)

in the context of AD. We assume f can be represented by a directed acyclic computational
graph G = (V,E). The set V = X ∪Z ∪Y comprises vertices for the n independents X , the m
dependents Y , and the p intermediate values Z occurring in the computation of f. The edges
(i, j)∈E represent the direct dependencies of the j ∈ Z∪Y computed with elemental functions
j= !(. . . , i, . . .) on the arguments i∈X∪Z. The computations imply a dependency relation i≺
j and its transitive closure ≺∗. The ! are the elemental functions (sin, cos, etc.) and operators
(+,-,*, etc.) built into the given programming language. All edges (i, j) ∈ E are labeled with
the local partial derivatives c ji = " j

" i .

2 Andrew Lyons and Jean Utke

(a)

zc
c c

cc
c

(b)
Fig. 1. Computational graph (a) for
f(x) = (D+ axT)x with an intermedi-
ate variable z = xT x and after its elim-
ination (b); constant edge labels marked
with “c.”

Generally the code for f contains control flow (loops, branches) that precludes its repre-
sentation as a single G. One could construct G for a particular x= x0 at runtime, for instance
with operator overloading. Therefore, any automatic scarsity detection and exploitation would
have to take place at runtime, too. Disregarding the prohibitive size of such a G for large-scale
problems, there is little hope of amortizing the overhead of graph construction and manipula-
tion at runtime with efficiency gains stemming from scarsity.

In the source transformation context, we can construct local computational graphs at com-
pile time, for instance within a basic block [7]. Because the construction and manipulation of
the local graphs happen at compile time, any advantage stemming from scarsity directly bene-
fits the performance, since there is no runtime overhead. We will consider f to be computed by
a sequence of basic blocks f1, . . . , fl . Each basic block fi has its corresponding computational
graphGi. Using a variety of elimination techniques [5], one can preaccumulate local Jacobians
Ji and then perform propagation

forward ẏ j = Jjẋ j; j = 1, . . . , l or reverse x̄ j = (Jj)T ȳ j; j = l, . . . ,1 , (2)

where x j = (x ji ∈V : i= 1, . . . ,n j) and y j = (y ji ∈V : i= 1, . . . ,mj) are the inputs and outputs
of Fj, respectively. From here on we will consider a single basic block, its computational graph
G, and Jacobian J without explicitly denoting the index.

Griewank [3, 4] characterizes scarsity using the notion of degrees of freedom of a mapping
from an argument x to the Jacobian J(x) ∈ Rm×n. J is said to be scarse when there are fewer
than n ·m degrees of freedom. Consequently, J that are sparse or have constant entries will
also be scarse. Likewise, rank deficiency can lead to scarsity, for example f(x) = (D+axT)x.
Here we see that the Jacobian is dense but is the sum of a diagonal matrix D and a rank 1 ma-
trix axT . Generally, scarsity can be attributed to a combination of sparsity, linear operations,
and rank deficiency; see [4] for more details. The origin of scarsity is not always as obvious
as in our example but is represented in the structure of the underlying computational graph.
The graph G for our example is shown in Fig. 1. Clearly, it has only 3n edges, n of which
are constant. If we eliminate the intermediate vertex z (see also Sec. 2.1), we end up with the
n2 nonconstant edges. When the reverse mode implementation relies on storing the preaccu-
mulated local Jacobians for use in (2), a reduction in the number of elements to be stored
translates into a longer section between checkpoints, which in turn may lead to less recompu-
tation in the checkpointing scheme.1 Often the edge labels not only are constant but happen to
be ±1. Aiming at the minimal number of nonunit edges will greatly benefit propagation with
(2), especially in vector mode; this was the major motivation for investigating scarsity in [4].
Given these potential benefits of scarsity, we address a number of questions in this paper.

• Can we automatically detect scarsity in a source transformation context given that we
see only local Jacobians and assume no prior knowledge of scarsity from the application
context?

1 One can, of course, also consider the accumulation of the scarse Jacobian directly in the
reverse sweep, but this is beyond the scope of this paper.

On the Practical Exploitation of Scarsity 3

• What is a reasonable heuristic that can approximate a minimal representation of the Jaco-
bian?

• How can this be implemented in an AD tool? Are there practical scenarios where it mat-
ters?

Section 2 covers the practical detection of scarsity and the propagation, Sec. 3 the results on
some test examples, and Sec. 4 a summary and outlook.

2 Scarsity

The notion of scarsity for the local Jacobians introduced in Sec. 1 can already be beneficial
for single assignment statements. For instance consider s = sin(x1 + x2 + x3 + x4), whose
computational graph G is shown in Fig. 2. The initial G has one variable and six unit edges.
After eliminating the vertices (see Sec. 2.1) whose in and out edges are all unit labeled, we still
have one variable and four unit edges; see Fig. 2(b). Complete elimination gives four variable
edges. A forward propagation implementing (2) on a graph G= (V,E) is simply the chain rule
k̇+ = ckl l̇ for all (l,k) in topological order. In vector mode this means each element ẋ ij of ẋ j
and with it each v̇ ∈V is itself a vector ∈ Rp for some 0< p. Likewise, a reverse propagation
is implemented by l̄+ = ckl k̄ for all (l,k) in reverse topological order. Consequently, in our
example the propagation through (b) entails 3p scalar additions and p scalar multiplications,
while with (c) we would have the same number of additions but 4p scalar multiplications.
Clearly, in (c) all the edge labels are numerically the same; however, this information is no
longer recognizable in the structure.

Flattening of assignments into larger computational graphs [7] will provide more oppor-
tunity for exploiting these structural properties beyond what can be achieved by considering
only single assignments. This graph-based framework, on the other hand, limits the scope of
our investigation to structural properties. For example, the fact that in a graph for the expres-
sion #x2i all edge labels emanating from the xi have a common factor 2 is not recognizable in
the structure. Such algebraic dependencies between edge labels can in theory lead to further
reductions in the minimal representation. However, their investigation is beyond the scope of
this paper.

For a given graph Gwe want an approximation G∗ to the corresponding structurally mini-
mal graph, which is a graph with the minimal count of nonconstant edge labels. Alternatively,
we can aim at an approximation G+ to the structurally minimal unit graph, which is a graph
with the minimal count of nonunit edge labels.

2.1 Transformation Methods

Following the principal approach in [4] we consider a combination of edge elimination, rerout-
ing, and normalization to transform the input graph G.

(a)

u u

u uuu

(b)

u u u u

(c) Fig. 2. Computational graph
for s = sin(x1 + x2 + x3 + x4)
(a), minimal representation
after partial elimination (b), and
complete elimination (c); unit
edge labels are marked with “u.”

4 Andrew Lyons and Jean Utke

Elimination: An edge (i, j) can be front eliminated by reassigning the labels
cki = cki+ck j · c ji∀k) j, followed by the removal of (i, j).

An edge (j,k) can be back eliminated by reassigning the labels
cki = cki+ck j · c ji∀i≺ j, followed by the removal of (j,k).

Grouping the elimination of all in or out edges of a given vertex amounts to vertex elimination.
We do not consider face elimination [5], a more general technique, because it entails transfor-
mations of the line graph of G that can result in intermediate states for which we cannot easily
find an optimal propagation (2).

Rerouting was introduced in [6] to perform a factorization and then refined in [4] as fol-
lows.

Rerouting: An edge (j, l) is prerouted via pivot edge (k, l) (see Fig. 5) by setting
ck j = ck j + $ with $ ≡ cl j/clk for the increment edge (j,k)
ch j = ch j−chk · $ for h) k,h ,= l for the decrement edges (j,h)

followed by the removal of (j, l) from G.
An edge (i,k) is postrouted via pivot edge (i, j) by setting

ck j = ck j + $ with $ ≡ cki/c ji for the increment edge (j,k)
clk = clk−c jl · $ for l ≺ j, l ,= i for the decrement edges (l,k)

followed by the removal of (i,k) from G.

If any of the above transformations leaves an intermediate vertex v without in or out edges,
v and all incident edges are removed from G. Our primary goal is the approximation of G∗
or G+, respectively. However, we also track the count of operations (multiplications and di-
visions) as a secondary minimization goal for the overall transformation algorithm. A related
concern is the fill-in, that is, the creation of new edges during the transformation process.

Normalization: An in edge (i, j) is forward normalized by setting
ck j = ck j · c ji∀k) j and c jl = c jl/c ji∀l ≺ j, l ,= i and finally c ji = 1.

An out edge (j,k) is backward normalized by setting
c ji = c ji · ck j∀i≺ j and cl j = cl j/ck j∀l) j, l ,= k and finally ck j = 1.

Here, no fill-in is created, but normalization incurs multiplication and division operations.

2.2 Elimination and Scarsity

A complete sequence % = (&1, . . . ,) of eliminations makes a given G bipartite. Each elimina-
tion step &s in the sequence transforms Gs = (Vs,Es) into Gs+1 = (Vs+1,Es+1), and we can
count the number of nonconstant edge labels |Es|∗ or nonunit edge labels |Es|+. As indicated
by the examples in Figs. 1 and 2, there is a path to approximating the minimal representa-
tion via incomplete elimination sequences. To obtain G∗, we prefer eliminations that preserve
scarsity, that is, do not increase the nonconstant edge label count. To obtain G+, we prefer
eliminations that preserve propagation, that is, do not increase the nonunit edge label count.
Figure 3 shows examples for cases in which the minimal edge count can be reached only after

Fig. 3. Examples for graphs G in which there
is no edge elimination sequence with mono-
tone edge counts.

On the Practical Exploitation of Scarsity 5

a temporary increase above the count in G because any edge elimination that can be attempted
initially raises the edge count. Consequently, a scarsity-preserving elimination heuristic He
should allow a complete elimination sequence and then backtrack to an intermediate stage Gs
with minimal nonconstant or nonunit edge label count. Formally, we define the heuristic as a
chain Fq ◦ . . . ◦F1T of q filters Fi that are applied to a set of elimination targets T such that
FiT ⊆ T and if FT = /0 then F ◦T = T else F ◦T = FT . Following the above rationale,
we apply the heuristic HeEs with five filters at each elimination stage Gs = (Vs,Es).

T1 = F1Es : the set of all eliminatable edges
T2 = F2T1 : e ∈ T1 such that |Es|∗ ≤ |Es+1|∗ (or |Es|+ ≤ |Es+1|+ resp.)
T3 = F3T2 : e ∈ T2 such that |Es|∗ < |Es+1|∗ (or |Es|+ < |Es+1|+ resp.) (3)
T4 = F4T3 : e ∈ T3 with lowest operations count (Markowitz degree)
T5 = F5T4 : reverse or forward as tie breaker

With the above definition of “◦” the filter chain prefers scarsity-preserving (or propagation-
preserving) eliminations and resorts to eliminations that increase the respective counts only
when reducing or maintaining targets are no longer available. Note that the estimate for the
edge counts after the elimination step has to consider constant and unit labels, not only to
determine the proper structural label for fill-in edges but also to recognize that an incremented
unit edge will no longer be unit and a constant edge absorbing variable labels will no longer be
constant. As part of the elimination algorithm we can now easily determine the earliest stage s
for the computed sequence % at which the smallest |Es|∗ (or |Es|+, respectively) was attained
and take that Gs as the first approximation to G∗ (or G+, respectively).

Given the lack of monotonicity, it would not be surprising to find a smaller |Es| with a
different % . However, aside from choices in F5 and fundamentally different approaches such
as simulated annealing, there is no obvious reason to change any of the other filters with re-
spect to our primary objective. On the other hand, given that we have a complete elimination
sequence with He we can try to find improvements for our secondary objective, the minimiza-
tion of elimination operations. We say that an edge has been refilled when it is eliminated
and subsequently recreated as fill-in (see Sec. 2.1). Naumann conjectures that an elimination
sequence with minimal operations count cannot incur refill. Having a complete elimination
sequence %1, we can easily detect refilled (i,k) and insert the fact that in G there is a path
i→ j→ k as an edge-vertex pair 〈(i,k) : j〉 into a refill-dependency set R. We inject another
filter FR before F4 to avoid target edges that have been refilled in previous elimination se-
quences by testing nonexistence of paths.

FRT : (i,k) ∈ T such that ∀ j : 〈(i,k) : j〉 ∈ R it holds that (i ,→ j∨ j ,→ k in Gs) (4)

We then can compute new elimination sequences %2,%3, . . . with the thus-augmented heuristic
HeR by backtracking to the earliest elimination of a refilled edge, updatingR after computing
each %i until R no longer grows. Clearly, this filter construction will not always avoid refill,
but it is an appropriate compromise, not only because it is a relatively inexpensive test, but
also because the backtracking to the minimal Gs for our primary objective may well exclude
the refilling elimination steps anyway; see also Sec. 3. Among all the computed %i we then
pick the one with the minimal smallest |Es|∗ (or |Es|+, respectively) and among those the one
at the earliest stage s.

2.3 Rerouting, Normalization and Scarsity

Griewank and Vogel [4] present simple examples showing that relying only on eliminations
is insufficient for reaching a minimal representation; one may need rerouting and normaliza-
tion. The use of division in rerouting and normalization immediately necessitates the same

6 Andrew Lyons and Jean Utke

i

j k

l

i

j k

l

2

i

j k

l

3

i

j k

l
4

(a) (b) (c) (d)

Fig. 4. In (a) prerouting of (j, l)
via pivot (k, l) followed in (b)
by back elimination of (j,k)
and in (c) postrouting of (i,k)
via pivot (i, j) and in (d) by
front elimination of (j,k) which
restores the initial state.

caution against numerically unsuitable pivots that has long been known in matrix factoriza-
tion. Because only structural information is available in the source transformation context, the
only time when either transformation can safely be applied is with constant edge labels whose
values are known and can be checked at compile time. However, we temporarily defer the nu-
merical concerns for the purpose of investigating a principal approach to exploiting rerouting
and normalization.

When considering rerouting as a stand-alone transformation step that can be freely com-
bined with eliminations into a transformation sequence, one quickly concludes that termina-
tion is not guaranteed. Figure 4 shows a cycle of reroutings and edge eliminations that can
continue indefinitely. While such repetitions can (like the refill of edges) be prevented, a sin-
gle rerouting clearly does not guarantee a decrease of the edge count or the maximal path
length Pm in G or the total path length Pt (the sum of the length of all paths). An individual
rerouting can reduce the edge count by at most one, but in such situations there is an edge
elimination that we would prefer; see Fig. 5. This, however, is also an example where a pair
of reroutings may be advantageous. As with other greedy heuristics, one might improve the
results by introducing some look-ahead. However, we decided that little evidence exists to
justify the complexity of such a heuristic. Instead we will concentrate on our primary objec-
tive and investigate the scenarios in which a single rerouting-elimination combination reduces
|Es|∗ (or |Es|+, respectively), which can happen in the following cases for prerouting (j, l) via
pivot (k, l).

1: The increment edge (j,k) (see Fig. 5) can be eliminated immediately afterwards.
2: The pivot (k, l) (see Fig. 5) becomes the only inedge and can be front eliminated.
3: Removing a rerouted edge (j, l) enables a |Es|∗ or |Es|+ reducing elimination of an edge

(l,q) or (o, j).
4: Creating an increment edge (i,k) as fill-in enables a |Es|∗ or |Es|+ preserving elimination

of an edge (i, j) or (j,k) by absorption into (i,k).

The statements for postrouting are symmetric. Cases 1 and 2 are fairly obvious. Case 3 is
illustrated by Fig. 6 and case 4 by Fig. 7. In case 4 we can, however, consider front elimi-
nating (i, j), which also creates (i,k), and then front eliminating (i,k), which yields the same
reduction while avoiding rerouting altogether. Given this alternative, we point out that case
3 in Fig. 6 permits an |Es|∗ or |Es|+ maintaining back elimination of (l,q1) but no further

k

j

k

k
j

j

S
S

Pi
P

l
Fig. 5. Prerouting (j, l) via pivot (k, l)would reduce the edge
count, but here one could also eliminate (j,k). On the other
hand, after eliminating (j,k) one might decide to postroute
(i,k) via pivot (i, j) thereby refilling (j,k) and then eliminat-
ing it again. Such a look-ahead over more than one step is
possible but complicated and therefore costly as a heuristic.

On the Practical Exploitation of Scarsity 7

(a)

k

k

j

q
12q

Sl

(b)

k

k

j

q
12q

Sl

(c)

kj

j
kS

i

Sl

Fig. 6. After prerouting (j, l)where (j,k) is fill-in (a), we can back eliminate (l,q1) to achieve
an edge count reduction (b). In (c) the use of prerouting to eliminate (j, l) to achieve a reduc-
tion is unnecessary because front eliminating (i, j) and (i,k) leads to the same reduction.

reduction, while a second possible scenario for case 3 (see Fig. 6(c)) avoids rerouting. We can
now use scenarios 1 to 4 to construct a filter Fr for edge-count-reducing rerouting steps to be
used in a greedy heuristic.

In the above scenarios there is no provision for creating decrement edges as fill-in. Rather,
we assume that (e.g., for prerouting (j, l) as in Fig. 5) the successor set Sk of vertex k is a subset
of S j . Given a numerically suitable pivot, one could have an decrement edge (j,h) as fill-in.
However, doing so creates a pseudo-dependency in the graph. Although the labels of (j,k)
combined with (j,k) and (k,h) cancel each other out in exact arithmetic, such a modification
of the structural information in the graph violates our premise of preserving the structural
information and is therefore not permitted.

When considering the effects of normalization steps from a structural point of view, one
has to take into account that in a given graph Gs we can normalize at most one edge per
intermediate vertex i ∈ Zs; see also Sec. 1. If we exclude nonconstant edges incident to i ∈ Z,
where i has another incident constant or unit edge , we can guarantee a reduction in |Es|∗ or
|Es|+, respectively. This permits a simple heuristic for applying normalizations, but it is clearly
not optimal. For instance, one can consider a graph such as 1 2 543u u , where
no intermediate vertex is free of incident unit edges; but clearly we could, for instance, forward
normalize (2,3), which would maintain the count, since (3,4) would no longer be a unit
edge, but then forward (re)normalize (3,4) and have just one nonunit edge left. In general,
however, permitting normalizations that do not strictly reduce the edge count would require
an additional filter to ensure termination of the heuristic. Such a filter could be based on an
ordering of the i ∈ Zs, or it could prevent repeated normalizations with respect to the same
i, but neither implied order has an obvious effect relating to the preexisting constant or unit
edges.
Proposition: Normalization does not enable reductions in subsequent eliminations unless all
involved edges are constant.
Proof: Consider a front elimination substep (equivalent to a face elimination [5]) of combining
a nonconstant, normalized (i, j) with (j,k) into (i,k) where it is potentially absorbed; see
Fig. 8. We distinguish three major cases and a number of subcases as follows.

1. If (i, j) is front normalized, then (j,k) is variable, so will be (i,k),⇒ skip normalization.

(a)

j
k

i

l (b)

j
k

i

l Fig. 7. In the initial scenario (a),
back eliminating (j,k) would create
(i,k) as fill-in. Alternatively, prerout-
ing (i, l) creates (i,k) as increment
fill-in (b); we can then back eliminate
(j,k), absorbing into (i,k).

8 Andrew Lyons and Jean Utke

j

i

k

h

l
Fig. 8. We consider the normalization of (i, j) and the subsequent effects on
eliminations related to (i, j). There is a case distinction depending on the exis-
tence of the vertices h and l and the dashed edges (h, j), (j, l), and (i,k).

2. If (i, j) is back normalized and (i,k) existed, then it will be variable,⇒ skip normalization.
3. If (i, j) is back normalized and (i,k) did not exist before

a) If (j,k) is variable,⇒ skip normalization.
b) If (j,k) is constant or unit, then so will be (i,k)

• If (h, j) exists then all out edges of j must be retained,⇒ no edge count reduction.
• If (j, l) exists then all in edges of j must be retained,⇒ no edge count reduction.
• If neither (h, j) nor (j, l) exist,⇒ no reduction in |Es|∗ or |Es|+, respectively.

For normalizing an edge to have an effect on any elimination, the normalized edge has to be
consecutive to a constant or unit edge. Therefore we can restrict consideration to the immedi-
ately subsequent elimination. 45

We conjecture the same to be true when we permit subsequent reroutings. Consequently,
we will postpone all normalizations into a second phase after the minimal Gs has been found.
Considering the above, we can now extend the elimination heuristic HeR by extending the
initial target set T to also contain reroutable edges (which exclude edges that have previously
been rerouted) and using Fr defined above. The filters in HeR act only on eliminatable edges,
while Fr acts only on reroutable edges. We provide a filter Fe that filters out eliminatable edges
and define our heuristic as

Hr = F5 ◦F4 ◦FR ◦Fe ◦F3 ◦Fr ◦F2 ◦F1T . (5)

3 Test Examples

For comparison we use computational graphs from four test cases A-D, which arise from
kernels in fluid dynamics, and E, which is a setup from the MIT General Circulation Model.
Table 1 shows the test results that exhibit the effects of the heuristics HeR from Sec. 2.3
and Hr from (5). The results indicate, true to the nature of the heuristic, improvements in all

Table 1. Test results for pure elimination sequences according to He and sequences including
rerouting steps according to (5), where |E| is the initial edge count and #(J) is the number of
nonzero entries in the final Jacobian. We note the minimal edge count, reached at step s, and
the number of reroutings r and reducing normalization targets i at that point, where applicable.

Pure Edge Eliminations With Rerouting
min |E| min |E∗| min |E+| min |E| min |E∗| min |E+|

|E| #(J) s |Es| s |E∗
s | s |E+

s | i s |Es| r s |E∗
s | r s |E+

s | r i
A 444 615 197 249 192 231 192 231 5 200 248 2 362 226 7 362 226 7 5
B 105 34 70 34 45 22 45 22 0 70 34 0 85 22 0 85 22 0 0
C 209 325 191 130 14 93 14 93 1 173 122 11 97 83 4 97 83 4 0
D 419 271 282 192 373 185 371 185 17 384 150 6 486 178 11 652 167 26 8
E 4554 2136 2442 2094 1852 1463 1852 1463 0 2442 2094 0 2112 1459 4 2112 1459 4 0

On the Practical Exploitation of Scarsity 9

(a)

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

(b)

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

(c)

 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280

 0 100 200 300 400 500 600 700

(d)

 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280

 0 100 200 300 400 500 600 700 800

Fig. 9. Edge count over transformation step for test case D, with refill marked by circles: (a)
all edges assumed to be variable, leads to two (identical) sequences with |E282| = 192 and
4 active refills; (b) same as (a) but without F3 with |E326| = 190 and 2 active refills in %2;
(c) same as (a) but considers constant edge labels with |E∗373| = 185 and 4 active refills in 2
(identical) sequences (the result for unit labels is almost the same: |E+

371| = 185); (d) same
as (c) but without F3, leading to 3 sequences with a reduction from 5 to 2 active refills and
|E∗
500| = 182.

test cases. Compared to the number of nonzero Jacobian elements, the improvement factor
varies but can, as in case C, be larger than 3. For minimizing |E+| we also provide i as the
number of intermediate vertices that do not already have an incident unit edge. Assuming the
existence of a suitable pivot, i gives a lower bound for the number of additional reductions
as a consequence of normalization. We also observe that, compared to eliminations, there are
relatively few reroutings and, with the exception of case D, the actual savings are rather small.
Case D, however, has the single biggest graph in all the cases and offers a glimpse at the
behavior of the heuristics shown in Fig. 9. Given the small number of reroutings, one might
ask whether one could allow stand-alone rerouting steps that merely maintain the respective
edge count and aren’t necessarily followed by a reducing elimination. The profile in Fig. 10
exhibits the problems with controlling the behavior of free combinations of reroutings and
eliminations that may take thousands of steps before reaching a minimum. Our experiments
show that such heuristics sometimes produce a lower edge count, for instance |E+

1881| = 150
for case D with 657 reroutings and 48 active refills. In such cases, the huge number of steps
required to reach these lower edge counts renders them impractical.

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 10.Here the heuristic has been modified to
allow isolated reroutings that do not increase
the nontrivial edge count. The result is 3 se-
quences, the best of which obtains |E1913| =
150 with 16 active refills and 768 reroutings.

10 Andrew Lyons and Jean Utke

4 Conclusions and Outlook

We have demonstrated an approach for exploiting the concept of Jacobian scarsity in a source
transformation context. The examples showed savings for the propagation step up to a fac-
tor of three. We introduced heuristics to control the selection of eliminations and reroutings.
A tight control of the rerouting steps proved to be necessary with the practical experiments.
Even without any reroutings, however, we can achieve substantial savings. This approach
bypasses the problem of choosing potentially unsuitable pivots, particularly in the source
transformation setting considered here. One possible solution to this problem entails the gen-
eration of two preaccumulation source code versions. A first version would include rerout-
ing/normalization steps, checking the pivot values at runtime, and switching over to the sec-
ond, rerouting/normalization-free version if a numerical threshold was not reached. Currently
we believe the implied substantial development effort is not justified by the meager benefits we
observed with rerouting steps. However, the implementation of rerouting as a structural graph
manipulation in the OpenAD framework allows us to track the potential benefits of rerouting
for future applications.

Acknowledgement. We thank Andreas Griewank for discussions on the topic of scarsity. The
authors were supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Dept. of Energy under Contract DE-AC02-06CH11357.

References

1. Bücker, H.M., Corliss, G.F., Hovland, P.D., Naumann, U., Norris, B. (eds.): Automatic Dif-
ferentiation: Applications, Theory, and Implementations, Lecture Notes in Computational
Science and Engineering, vol. 50. Springer, New York (2005)

2. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia (2000)

3. Griewank, A.: A mathematical view of automatic differentiation. In: Acta Numerica,
vol. 12, pp. 321–398. Cambridge University Press (2003)

4. Griewank, A., Vogel, O.: Analysis and exploitation of Jacobian scarcity. In: H. Bock,
E. Kostina, H. Phu, R. Rannacher (eds.) Modelling, Simulation and Optimization of Com-
plex Processes, pp. 149–164. Springer, New York (2004)

5. Naumann, U.: Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Mathematical Programming, Ser. A 99(3), 399–421 (2004)

6. Utke, J.: Exploiting macro- and micro-structures for the efficient computation of newton
steps. Ph.D. thesis, Technical University of Dresden (1996)

7. Utke, J.: Flattening basic blocks. In: Bücker et al. [1], pp. 121–133

On the Practical Exploitation of Scarsity 11

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (”Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Sci-
ence laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

