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ABSTRACT
This paper offers practical design-guidelines for developing
efficient genetic algorithms (GAs) to successfully solve real-
world problems. As an important design component, a prac-
tical population-sizing model is presented and verified.
Categories and Subject Descriptors: Computing Method-

ologies [Artificial Intelligence]: Heuristic Methods.

General Terms: Algorithms.

Keywords: Genetic algorithms, practical design-guidelines.

1. INTRODUCTION
Over the last decade, genetic algorithms (GAs) have been

successfully applied to problems in business, engineering,
and science [1, 2, 3]. This is a consequence of a noteworthy
progress in their theory, design and development. On the ba-
sis of innovation intuition, in special, a design-decomposition
theory has been proposed for developing competent (selec-
torecombinative) GAs, which are a class of GAs that solve
hard problems quickly, accurately, and reliably [4]. The de-
sign decomposition consists of seven steps: 1) Know what
GAs process – building blocks (BBs) 2) Know thy BB chal-
lengers – BB-wise difficult problems 3) Ensure an adequate
supply of raw BBs 4) Ensure increased market share for
superior BBs 5) Know BB takeover and convergence times
6) Make decisions well among competing BBs 7) Mix BBs
well [4, 5]. In spite of considerable work on various aspects
of GAs, practitioners often face hurdles in confronting real-
world problems due to unavailability of problem dependent
information. The purposed of this paper is to fill the long
standing gap between theory and practices of GAs.

2. PRACTICAL DESIGN GUIDELINES
There are six issues that lead to practical GA design.
1. Representation: This issue is primarily related to

the encoding scheme. It is hard to find an encoding method
(i.e., representation) that transforms a problem so as to
reduce or preserve the intrinsic difficulty of the problem.
Hence, the encoding method that has identical genotype and
phenotype (of the decision variables) is advisable. Although
fixed-length individuals are generally desirable, their vari-
ability is not a critical factor provided their design is easy.

2. Initialization: In general, there are two issues to be
considered for population initialization: the initial popula-
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tion size and the procedure to initialize the population. At
first, the initial population size connected to the supply of
raw BBs is crucial for efficiency of GAs in terms of both
optimality and complexity. Secondly, there are two ways to
generate the initial population: random and heuristic. If no
prior information on the problem is available, random ini-
tialization is the natural choice; otherwise, heuristic initial-
ization is favored. Although the mean fitness of the heuristic
initialization is already high so that it may help the GAs to
find solutions faster, it may just explore a small part of the
solution space and never find global optimal solutions be-
cause of lack of diversity in the population. In the heuristic
case, thus, a portion of the population can still be generated
randomly to ensure some diversity in the population. It is
noted that the random initialization is generally desirable
for stability and simplicity of GAs even when a valuable
piece of information is available.

3. Fitness function: The fitness function interprets the
individual in terms of physical representation and evaluates
its fitness based on desired traits (in the solution). It is
suggested that the fitness function fully reflect the physical
objective of the problem.

4. Genetic operators: The genetic operators must be
carefully designed as they directly affect the performance
of GAs. Selection focuses on the exploration of promising
regions in the solution space. As proportionate selection is
very sensitive to the selection pressure, a scaling function
is employed for redistributing the fitness range of the pop-
ulation. The selection pressure of the ordinal selection is
independent of the fitness distribution, and is based solely
based on the relative ranking of the population although it
may also suffer from high selection pressure. In general, the
ordinal selection is preferable. Among the selection schemes
(in the ordinal selection), tournament selection without re-
placement is advisable due to its capability of achieving
low (selection) noise. Crossover is the primary operator
that increases the exploratory power of GAs. In order to
successfully achieve the cross-fertilizing type of innovation,
crossover operator must ideally intermix good subsolutions
without any disruption of the partitions. In practice, uni-
form crossover is pessimistic as most of real-world problems
have the decision variables that are closely interacted each
other. Moreover, (population) building-block crossover may
also be undesirable because the capability of learning link-
age is an essential prerequisite of the operator. In stead
of pursuing the maximum BB-wise mixing in the popula-
tion, it can be efficient to increase the population size and
employ a simple crossover that has a low probability of dis-
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rupting the BBs found so far. Therefore, it is recommended
that building-block crossover is suitable if the evaluation of
fitness function requires a high computational cost; other-
wise, one- or two-point crossover is desirable. Naturally, the
crossover probability must be relatively high. Mutation is
the secondary operator of GAs to explore a solution space.
To carry out the continual improvement type of innovation,
as in nature, the probability of applying mutation must be
very low. Hence, the suggestion is that any type of mutation
designed is applicable as long as its probability is not very
high. Moreover, it is possible to get rid of mutation when
the design of mutation operator is complicated.

5. Treating infeasible individuals: In case that a
problem has some constraints, crossover or mutation may
often generate infeasible individuals that violate the con-
straints. There are two strategies to deal with infeasible
individuals: one is to impose a penalty and the other is to
repair them. Although a classical method employs penalty
functions, it is not easy to come up with an appropriate
penalty function. Moreover, this technique may sacrifice
some feasible individuals as well because the infeasible in-
dividuals might continue to be reproduced. On the other
hand, the repair method is applied extensively. But it is
not always simple to cure infeasible individuals. Hence, the
repair strategy is always advisable unless developing a re-
pair function is an arduous task or the designed function is
computationally too expensive by far.

6. Population size: A problem that arises with GAs
is to properly estimate the values of parameters. Most of
the parameters can be determined by the transcendental
cognition of practitioners so as to attain good performance.
However, it is not easy to estimate the population size that
guarantees an optimal solution quickly enough. Thus, the
population size has generally been perceived as the most
important factor. With this in view, the population-sizing
model [1] (described in Section 3) is recommended for the
practical use.

3. PRACTICAL POPULATION SIZE
A fancy study has developed a refined population-sizing

model by integrating the requirements of the BB supply and
decision making [5]. It provides an accurate bound on de-
termining an adequate population size that guarantees a so-
lution with desired quality for (selectorecombinative) GAs.
However, it requires stochastic information such as the vari-
ance of fitness (i.e., noise variance σbb) and the expected
difference value of fitness (i.e., signal d) between the best
and the second-best BBs, which may not be available in
many practical problems.

Assume that individuals consist of m non-overlapping (i.e.,
separable) and uniformly scaled BBs of size k. The assump-
tions follow from the decomposition even when the problem
is not separable. It is also assumed that all the competing
BBs are ordered and they are uniformly distributed. The
assumptions are valid when ordinal selection is employed
for real-world problems [1]. Note that standard deviation
can be thought of as the probabilistic “width” or “spread”
of distribution of a random variable; indeed, the factor 2σbb

represents the total average range of fitness changes of all
the BBs. Thus, the signal d can be represented as 2

χk−1
σbb,

where χ is the (average) cardinality of the alphabet. Em-
ploying the signal d makes Harik’s decision model practically

available; it leads to a practical decision model. Note that
a GA succeeds when all the N members of the population
in the BBs of interest are correct. It can be modeled by
the gambler’s ruin process [5]. From the initial BB supply,
practical decision model, and the gambler’s ruin process, a
practical population-sizing model can be obtained as [1]

N = −χk

2
ln(α)

(
χk − 1

2

√
π

(n

k
− 1

)
+ 1

)
.

Here, n and α are the length of individuals and the proba-
bility of GA failure.

The model is verified with test problems; an one-max
problem, a minimal deceptive problem (MDP) [3], and a
modified 3-bit deceptive problem [2]. (The modification is to
fulfill the assumptions.) With regard to the one-max prob-
lem, the practical model is equivalent to Harik’s model; thus,
its validity is clearly supported. The results for deceptive
problems are shown in Fig. 1. (One-point crossover is used
for avoiding the excessive disruption of BBs [5].) It is ob-
served that the analytical model is consistent with the exper-
imental results even for higher population size. Moreover,
the close agreement between the practical population-sizing
model and Harik’s model implies that the pratical decision
model can accurately approximate the actual SNR without
any statistical information about the competing BBs.
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(a) Results for the MDP
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(b) 3-bit deceptive problem

Figure 1: Verification of the population-sizing model

4. CONCLUSION
Design of practical GAs for solving real-world problems

was the main focus all along. Further, this paper also in-
vestigated a practical population-sizing model that comes
in handy in determining an adequate population size for
finding a desired solution without requiring statistical infor-
mation such as the signal or variance of competing BBs.
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