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Abstract

Variable elimination is a general technique for constraint processing. It is often dis-
carded because of its high space complexity. However, it can be extremely useful when
combined with other techniques. In this paper we study the applicability of variable elim-
ination to the challenging problem of finding still-lifes. We illustrate several alternatives:
variable elimination as a stand-alone algorithm, interleaved with search, and as a source of
good quality lower bounds. We show that these techniques are the best known option both
theoretically and empirically. In our experiments we have been able to solve the n = 20
instance, which is far beyond reach with alternative approaches.

1. Introduction

Many problems arising in domains such as resource allocation (Cabon, de Givry, Lobjois,
Schiex, & Warners, 1999), combinatorial auctions (Sandholm, 1999), bioinformatics and
probabilistic reasoning (Pearl, 1988) can be naturally modeled as constraint satisfaction
and optimization problems. The two main solving schemas are search and inference. Search
algorithms constitute the usual solving approach. They transform a problem into a set of
subproblems by selecting one variable and instantiating it with its different alternatives.
Subproblems are solved applying recursively the same transformation rule. The recursion
defines a search tree that is normally traversed in a depth-first manner, which has the
benefit of requiring only polynomial space. The practical efficiency of search algorithms
greatly depends on their ability to detect and prune redundant subtrees. In the worst-case,
search algorithms need to explore the whole search tree. Nevertheless, pruning techniques
make them much more effective.

Inference algorithms (also known as decomposition methods) solve a problem by a se-
quence of transformations that reduce the problem size, while preserving its optimal cost. A
well known example is bucket elimination (BE, also known as variable elimination) (Bertele
& Brioschi, 1972; Dechter, 1999). The algorithm proceeds by selecting one variable at a
time and replacing it by a new constraint which summarizes the effect of the chosen vari-
able. The main drawback of BE is that new constraints may have large arities which require
exponentially time and space to process and store. However, a nice property of BE is that
its worst-case time and space complexities can be tightly bounded by a structural parame-
ter called induced width. The exponential space complexity limits severely the algorithm’s
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practical usefulness. Thus, in the constraint satisfaction community variable elimination is
often disregarded.

In this paper we consider the challenging problem of finding still-lifes which are stable
patterns of maximum density in the game of life. This academic problem has been recently
included in the CSPlib repository1 and a dedicated web page2 has been set to maintain
up-to-date results. In Bosch and Trick (2002), the still-life problem is solved using two
different approaches: integer programming and constraint programming, both of them based
on search. None of them could solve up to the n = 8 problem within reasonable time. Their
best results were obtained with a hybrid approach which combines the two techniques and
exploits the problem symmetries in order to reduce the search space. With their algorithm,
they solved the n = 15 case in about 8 days of cpu. Smith (2002) proposed an interesting
alternative using pure constraint programming techniques, and solving the problem in its
dual form. In her work, Smith could not improve the n = 15 limit. Although not explicitly
mentioned, these two works use algorithms with worst-case time complexity O(2(n2)).

In this paper we show the usefulness of variable elimination techniques. First we apply
plain BE. Against what could be expected, we observe that BE is competitive with state-
of-the-art alternatives. Next, we introduce a more sophisticated algorithm that combines
search and variable elimination (following the ideas of Larrosa & Dechter, 2003) and uses
a lower bound based on mini-buckets (following the ideas of Kask & Dechter, 2001). With
our algorithm, we solve in one minute the n = 15 instance. We have been able to solve up to
the n = 20 instance, which was far beyond reach with previous techniques. For readability
reasons, we only describe the main ideas and omit algorithmic details.3

The structure of the paper is the following: In the next Section we give some preliminary
definitions. In Section 3 we solve the problem with plain BE. In Section 4 we introduce the
hybrid algorithm with which we obtained the results reported in Section 5. In Section 6 we
discuss how the ideas explored in this article can be extended to other domains. Besides,
we report additional experimental results. Finally, Section 7 gives some conclusions and
lines of future work.

2. Preliminaries

In this Section we first define the still-life problem. Next, we define the weighted CSP
framework and formulate the still-life as a weighted CSP. Finally, we review the main
solving techniques for weighted CSPS.

2.1 Life and Still-Life

The game of life (Gardner, 1970) is played over an infinite checkerboard, where each square
is called a cell. Each cell has eight neighbors: the eight cells that share one or two corners
with it. The only player places checkers on some cells. If there is a checker on it, the cell
is alive, else it is dead. The state of the board evolves iteratively according to the following
three rules: (1) if a cell has exactly two living neighbors then its state remains the same

1. www.csplib.org

2. www.ai.sri.com/~ nysmith/life

3. The interested reader can find an extended version, along with the source code of our implementation
in www.lsi.upc.edu/~ larrosa/publications
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Figure 1: A: A 3 × 3 still-life. B: constraint graph of a simple WCSP instance with four
variables and three cost functions. C: the constraint graph after assigning variable
x4. D: the constraint graph after clustering variables x3 and x4. E: the constraint
graph after eliminating variable x4.

in the next iteration, (2) if a cell has exactly three living neighbors then it is alive in the
next iteration and (3) if a cell has fewer than two or more than three living neighbors,
then it is dead in the next iteration. Although defined in terms of extremely simple rules,
the game of life has proven mathematically rich and it has attracted the interest of both
mathematicians and computer scientists.

The still-life problem SL(n) consist on finding a n×n stable pattern of maximum density
in the game of life. All cells outside the pattern are assumed to be dead. Considering the
rules of the game, it is easy to see that each cell (i, j) must satisfy the following three
conditions: (1) if the cell is alive, it must have exactly two or three living neighbors, (2) if
the cell is dead, it must not have three living neighbors, and (3) if the cell is at the grid
boundary (i.e, i = 1 or i = n or j = 1 or j = n), it cannot be part of a sequence of three
consecutive living cells along the boundary. The last condition is needed because three
consecutive living cells at a boundary would produce living cells outside the grid.

Example 1 Figure 1.A shows a solution to SL(3). It is easy to verify that all its cells
satisfy the previous conditions, hence it is stable. The pattern is optimal because it has 6
living cells and no 3 × 3 stable pattern with more that 6 living cells exists.

2.2 Weighted CSP

A weighted constraint satisfaction problem (WCSP) (Bistarelli, Montanari, & Rossi, 1997)
is defined by a tuple (X, D,F), where X = {x1, . . . , xn} is a set of variables taking values
from their finite domains Di ∈ D. F is a set of weighted constraints (i.e., cost functions).
Each f ∈ F is defined over a subset of variables, var(f), called its scope. The objective
function is the sum of all functions in F ,

F =
∑

f∈F

f

and the goal is to find the instantiation of variables that minimizes the objective function.

Example 2 Consider a WCSP with four variables X = {xi}
4
i=1 with domains Di = {0, 1}

and three cost functions: f1(x1, x4) = x1 + x4, f2(x2, x3) = x2x3 and f3(x2, x4) = x2 + x4.
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The objective function is F (x1, x2, x3, x4) = x1 + x4 + x2x3 + x2 + x4. Clearly, the optimal
cost is 0, which is obtained with every variable taking value 0.

Constraints can be given explicitly by means of tables, or implicitly as mathematical
expressions or computing procedures. Infeasible partial assignments are specified by con-
straints that assign cost ∞ to them. The assignment of value a to variable xi is noted
xi = a. A partial assignment is a tuple t = (xi1 = v1, xi2 = v2, · · · , xij = vj). The extension
of t to xi = a is noted t · (xi = a). WCSPs instances are graphically depicted by means
of their interaction or constraint graph, which has one node per variable and one edge con-
necting any two nodes that appear in the same scope of some cost function. For instance,
Figure 1.B shows the constraint graph of the problem in the previous example.

2.3 Overview of Some Solving Techniques

In this Subsection we review some solving techniques widely used when reasoning with
constraints.

2.3.1 search

WCSPs are typically solved with depth-first search. Search algorithms can be defined in
terms of instantiating functions,

Definition 1 Let P = (X, D,F) a WCSP instance, f a function in F , xi a variable in
var(f), and v a value in Di. Instantiating f with xi = v is a new function with scope
var(f)− {xi} which returns for each tuple t, f(t · (xi = v)). Instantiating P with xi = v is
a new problem P |xi=v= (X −{xi}, D−{Di},F

′), where F ′ is obtained by instantiating all
the functions in F that mention xi with xi = v.

For instance, instantiating the problem of Example 2 with x4 = 1, produces a new
problem with three variables {xi}

3
i=1 and three cost functions: f1(x1, x4 = 1) = x1 + 1,

f2(x2, x3) = x2x3 and f3(x2, x4 = 1) = x2 + 1. Figure 1.C shows the corresponding
constraint graph, obtained from the original graph by removing the instantiated variable x4

and all adjacent edges. Observe that the new graph depends on the instantiated variable,
but does not depend on the value assigned to it.

Search algorithms transform the current problem P into a set of subproblems. Usually
it is done by selecting one variable xi which is instantiated with its different domain values
(P |xi=v1

, P |xi=v2
, · · · , P |xi=vd

). This transformation is called branching. In each subprob-
lem the same process is recursively applied, which defines a tree of subproblems. Search
algorithms expand subproblems until a trivial case is achieved: there is no variable left, or
a pruning condition is detected. In optimization problems, pruning conditions are usually
defined in terms of lower and upper bounds. Search keeps the cost of the best solution so
far, which is an upper bound of the optimal cost. At each node, a lower bound of the best
cost obtainable underneath is computed. If the lower bound is greater than or equal to the
upper bound, it is safe to backtrack.

The size of the search tree is O(dn) (being d the size of the largest domain) which bounds
the time complexity. If the tree is traversed depth-first, the space complexity is polynomial.
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2.3.2 clustering

A well-known technique for constraint processing is clustering (Dechter & Pearl, 1989). It
merges several variables into one meta-variable, while preserving the problem semantics.
Clustering variables xi and xj produces meta-variable xk, whose domain is Di × Dj . Cost
functions must be accordingly clustered. For instance, in the problem of Example 2, cluster-
ing variables x3 and x4 produces variable xc with domain Dc = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Cost functions f2 and f3 are clustered into fc(x2, xc) = f2 + f3. With the new variable
notation fc = x2xc[1] + x2 + xc[2], where xc[i] denotes the i-th component of xc. Function
f1 needs to be reformulated as f1(x1, xc) = x1 +xc[2]. The constraint graph of the resulting
problem is obtained by merging the clustered variables and connecting the meta-node with
all nodes that were adjacent to some of the clustered variables. Figure 1.D shows the con-
straint graph after the clustering of x3 and x4. The typical use of clustering is to transform
a cyclic constraint graph into an acyclic one, which can be solved efficiently thereafter.

2.3.3 variable elimination

Variable elimination is based on the following two operations,

Definition 2 The sum of two functions f and g, noted (f + g), is a new function with
scope var(f) ∪ var(g) which returns for each tuple the sum of costs of f and g,

(f + g)(t) = f(t) + g(t)

Definition 3 The elimination of variable xi from f , noted f ⇓ xi, is a new function with
scope var(f) − {xi} which returns for each tuple t the cost of the best extension of t to xi,

(f ⇓ xi)(t) = min
a∈Di

{f(t · (xi = a))}

Observe that when f is a unary function (i.e., arity one), eliminating the only variable
in its scope produces a constant.

Definition 4 Let P = (X, D,F) be a WCSP instance. Let xi ∈ X be an arbitrary variable
and let Bi be the set of all cost functions having xi in their scope (Bi is called the bucket of
xi). We define gi as

gi = (
∑

f∈Bi

f) ⇓ xi

The elimination of xi transforms P into a new problem P ⇓xi
= {X −{xi}, D −{Di}, (F −

Bi) ∪ {gi}}. In words, P ⇓xi
is obtained by replacing xi and all the functions in its bucket

by gi.

P and P ⇓xi
have the same optimal cost because, by construction, gi compensates the

absence of xi. The constraint graph of P ⇓xi
is obtained by forming a clique with all the

nodes adjacent to node xi and then removing xi and all its adjacent edges. For example,
eliminating x4 in the problem of Example 2 produces a new problem with three variables
{xi}

3
i=1 and two cost functions: f2 and g4. The scope of g4 is {x1, x2} and it is defined as,
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g4 = (f1 + f3) ⇓ x4 = (x1 + x4 + x2 + x4) ⇓ x4 = x1 + x2. Figure 1.D shows the constraint
graph after the elimination.

In the previous example, the new function g4 could be expressed as a mathematical ex-
pression. Unfortunately, in general, the result of summing functions or eliminating variables
cannot be expressed intensionally, and new cost functions must be stored extensionally in
tables. Consequently, the space complexity of computing P ⇓xi

is proportional to the num-
ber of entries of gi, which is: Θ(

∏

xj∈var(gi) |Dj |). Since xj ∈ var(gi) iff xj is adjacent to xi

in the constraint graph, the previous expression can be rewritten as Θ(
∏

xj∈N(i,GP ) |Dj |),
where GP is the constraint graph of P and N(i, GP ) is the set of neighbors of xi in GP .
The time complexity of computing P ⇓xi

is its space complexity multiplied by the cost of
computing each entry of gi.

Bucket elimination (BE) works in two phases. In the first phase, it eliminates variables
one at a time in reverse order. In the elimination of xi, the new gi function is computed
and added to the corresponding bucket. The elimination of x1 produces an empty-scope
function (i.e., a constant) which is the optimal cost of the problem. In the second phase, BE
considers variables in increasing order and generates the optimal assignment of variables.
The time and space complexity of BE is exponential on a structural parameter from the
constraint graph, called induced width, which captures the maximum arity among all the
gi functions. Without any additional overhead BE can also compute the number of optimal
solutions (see Dechter, 1999, for details).

2.3.4 super-buckets

In some cases, it may be convenient to eliminate a set of variables simultaneously (Dechter
& Fatah, 2001). The elimination of the set of variables Y is performed by collecting in BY

the set of functions mentioning at least one variable of Y . Variables in Y and functions in
BY are replaced by a new function gY defined as,

gY = (
∑

f∈BY

f) ⇓ Y

The set BY is called a super-bucket. Note that the elimination of Y can be seen as the
clustering of its variables into a meta-variable xY followed by its elimination.

2.3.5 mini-buckets

When the space complexity of BE is too high, an approximation, called mini buckets
(Dechter & Rish, 2003), can be used. Consider the elimination of xi, with its associated
bucket Bi = {fi1 , . . . , fik}. BE would compute,

gi = (
∑

f∈Bi

f) ⇓ xi

The time and space complexity of this computation depends on the arity of gi. If it is beyond
our available resources, we can partition bucket Bi into so-called mini-buckets Bi1 , . . . , Bik

where the number of variables in the scopes of each mini-bucket is bounded by a parameter.
Then we can compute,

gij = (
∑

f∈Bij

f) ⇓ xi, j = 1..k
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Figure 2: A constraint graph and its evolution over a sequence of variable eliminations and
instantiations.

where each gij has a bounded arity. Since,

(

gi
︷ ︸︸ ︷
∑

f∈Bi

f) ⇓ xi ≥
k∑

j=1

gij
︷ ︸︸ ︷

(
∑

f∈Bij

f) ⇓ xi

the elimination of variables using mini-buckets yields a lower bound of the actual optimal
cost.

2.3.6 combining search and variable elimination

When plain BE is too costly in space, we can combine it with search (Larrosa & Dechter,
2003). Consider a WCSP whose constraint graph is depicted in Figure 2.A. Suppose that
we want to eliminate a variable but we do not want to compute and store constraints with
arity higher than two. Then we can only take into consideration variables connected to at
most two variables. In the example, variable x7 is the only one that can be selected. Its
elimination transforms the problem into another one whose constraint graph is depicted in
Figure 2.B. Now x6 has its degree decreased to two, so it can also be eliminated. The
new constraint graph is depicted in Figure 2.C. At this point, every variable has degree
greater than two, so we switch to a search schema which selects a variable, say x3, branches
over its values and produces a set of subproblems, one for each value in its domain. All of
them have the same constraint graph, depicted in Figure 2.D. For each subproblem, it is
possible to eliminate variable x8 and x4. After their elimination it is possible to eliminate
x2 and x9, and subsequently x5 and x1. Eliminations after branching have to be done at
every subproblem since the new constraints with which the eliminated variables are replaced
differ from one subproblem to another. In the example, only one branching has been made.
Therefore, the elimination of variables has reduced the search tree size from d9 to d, where
d is the size of the domains. In the example, we bounded the arity of the new constraints
to two, but it can be generalized to an arbitrary value.

3. Solving Still-life with Variable Elimination

SL(n) can be easily formulated as a WCSP. The most natural formulation associates one
variable xij with each cell (i, j). Each variable has two domain values. If xij = 0 the cell is
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Figure 3: A: Structure of the constraint graph of SL(n). The node in the center, associated
to cell (i, j), is linked to all cells it interacts with. The shadowed area indicates
the scope of fij . B (left): Constraint graph of SL(6) after clustering cells into
row variables. B (from left to right: Evolution of the constraint graph during the
execution of BE.

dead, if xij = 1 it is alive. There is a cost function fij for each variable xij . The scope of
fij is xij and all its neighbors. It evaluates the stability of xij : if xij is unstable given its
neighbors, fij returns ∞; else fij returns 1 − xij .

4 The objective function to be minimized
is,

F =
n∑

i=1

n∑

j=1

fij

If the instantiation X represents an unstable pattern, F (X) returns ∞; else it returns the
number of dead cells. fij can be stored as a table with 29 entries and evaluated in constant
time.

Figure 3.A illustrates the structure of the constraint graph of SL(n). The picture shows
an arbitrary node xij linked to all the nodes it interacts with. For instance, there is an edge
between xij and xi,j+1 because xi,j+1 is a neighbor of xij in the grid and, consequently,
both variables are in the scope of fij . There is an edge between xij and xi−1,j−2 because
both cells are neighbors of xi−1,j−1 in the grid and, therefore, both appear in the scope of
fi−1,j−1. The shadowed area represents the scope of fij (namely, xij and all its neighbors).
The complete graph is obtained by extending this connectivity pattern to all nodes in the
graph.

For the sake of clarity, we use an equivalent but more compact SL(n) formulation
that makes BE easier to describe and implement: we cluster all variables of each row
into a single meta-variable. Thus, xi denotes the state of cells in the i-th row (namely,
xi = (xi1, xi2, . . . , xin) with xij ∈ {0, 1}). Accordingly, it takes values over the sequences of
n bits or, equivalently, over the natural numbers in the interval [0..2n − 1]. Cost functions
are accordingly clustered: there is a cost function fi associated with each row i, defined as,

fi =
n∑

j=1

fij

4. Recall that, as a WCSP, the task is to minimize the number of dead cells. Therefore, we give cost 1 to
dead cells and cost 0 to living cells.
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For internal rows, the scope of fi is {xi−1, xi, xi+1}. The cost function of the top row, f1,
has scope {x1, x2}. The cost function of the bottom row, fn, has scope {xn−1, xn}. If there
is some unstable cell in xi, fi(xi−1, xi, xi+1) = ∞. Else, it returns the number of dead cells
in xi. Evaluating fi is Θ(n) because all the bits of the arguments need to be checked. The
new, equivalent, objective function is,

F =
n∑

i=1

fi

Figure 3.B (left) shows the constraint graph of SL(6) with this formulation. An arbitrary
variable xi is connected with the two variables above and the two variables below. The
sequential structure of the constraint graph makes BE very intuitive. It eliminates variables
in decreasing orders. The elimination of xi produces a new function gi = (fi−1 + gi+1) ↓ xi

with scope {xi−2, xi−1}. Figure 3.B (from left to right) shows the evolution of the constraint
graph along the elimination of its variables. Formally, BE applies a recursion that transforms
subproblem P into P ⇓xi

, where xi is the variable in P with the highest index. It satisfies
the following property,

Property 1 Let gi be the function added by BE to replace xi. Then gi(a, b) is the cost of
the best extension of (xi−2 = a, xi−1 = b) to the eliminated variables (xi, . . . , xn). Formally,

gi(a, b) = min
vi∈Di,...,vn∈Dn

{fi−1(a, b, vi) + fi(b, vi, vi+1) +

+fi+1(vi, vi+1, vi+2) + . . .

+fn−1(vn−2, vn−1, vn) + fn(vn−1, vn)}

If gi(a, b) = ∞, it means that the pattern a, b cannot be extended to the inferior rows
with a stable pattern. If gi(a, b) = k (with k 6= ∞), it means that a, b can be extended and
the optimal extension has k dead cells from xi−1 to xn.

The space complexity of BE Θ(n × 22n), due to the space required to store n functions
gi extensionally (2n × 2n entries each). Regarding time, computing each entry of gi has
cost Θ(n × 2n) (finding the minimum of 2n alternatives, the computation of each one is
Θ(n)). Since each gi has 22n entries, the total time complexity is Θ(n2×23n). Observe that
solving SL(n) with BE is an exponential improvement over search algorithms, which have
time complexity O(2n2

).

Table 4 reports some empirical results. They were obtained with a 2 Ghz Pentium IV
machine with 2 Gb of memory. The first columns reports the problem size, the second
reports the optimal cost as the number of dead cells (in parenthesis, the number of living
cells), the third column reports the number of optimal solutions. We count as different
two solutions even if one can be transformed to the other through a problem symmetry.
The fourth column reports the CPU time of BE in seconds. The fifth, sixth and seventh
columns report the results obtained with the three approaches tried by Bosch and Trick
(2002):5 constraint programming (CP), integer programming (IP), and a more sophisticated
algorithm (CP/IP) which combines CP and IP, and exploits the problem symmetries.

5. The corresponding OPL code is available at http://mat.gsia.cmu.edu/LIFE.
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n opt n. sol. BE CP IP CP/IP

5 9(16) 1 0 0 0 0
6 18(18) 48 0 0 1 0
7 21(28) 2 0 4 3 0
8 28(36) 1 0 76 26 2
9 38(43) 76 4 > 600 > 600 20

10 46(54) 3590 27 * * 60
11 57(64) 73 210 * * 153
12 68(76) 129126 1638 * * 11536
13 79(90) 1682 13788 * * 12050
14 92(104) 11 105 * * 5 × 105

15 106(119) ? * * * 7 × 105

Figure 4: Experimental results of four different algorithms on the still-life problem. Times
are in seconds.

It can be observed that BE clearly outperforms CP and IP by orders of magnitude.
The n = 14 case is the largest instance that we could solve due to exhausting the available
space. Comparing BE with CP/IP, we observe that there is no clear winner. An additional
observation is that BE scales up very regularly, each execution requiring roughly eight times
more time and four times more space than the previous, which is in clear accordance with
the algorithm complexity.

4. Combining Search and Variable Elimination

One way to overcome the high space complexity of BE is to combine search and variable
elimination in a hybrid approach HYB (Larrosa & Schiex, 2003). The idea is to use search
(i.e, instantiations) in order to break the problem into independent smaller parts where
variable elimination can be efficiently performed.

Let us reformulate the problem in a more convenient way for the hybrid algorithm. For
the sake of simplicity and without loss of generality consider that n is even. We cluster
row variables into three meta-variables: xC

i denotes the two central cells of row i, xR
i and

xL
i denote the n

2 − 1 remaining cells on the right and left, respectively (see Figure 5.A).
Consequently, xC

i takes values in the range [0..3], xL
i and xR

i take values in the range
[0..2

n
2
−1 − 1]. Cost functions are accordingly clustered,

fL
i =

n
2∑

j=1

fij , fR
i =

n∑

j=n
2
+1

fij

The new, equivalent, objective function is,

F =
n∑

i=1

(fL
i + fR

i )
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The scopes of internal row functions, fL
i and fR

i , are {xL
i−1, x

C
i−1, x

L
i , xC

i , xL
i+1, x

C
i+1} and

{xC
i−1, x

R
i−1, x

C
i , xR

i , xC
i+1, x

R
i+1}. Top functions fL

1 and fR
1 have scopes {xL

1 , xC
1 , xL

2 , xC
2 }

and {xC
1 , xR

1 , xC
2 , xR

2 }. Bottom functions fL
n and fR

n have scopes {xL
n−1, x

C
n−1, x

L
n , xC

n } and
{xC

n−1, x
R
n−1, x

C
n , xR

n }. Figure 5.B shows the corresponding constraint graph. The impor-
tance of this formulation is that xL

i and xR
i are independent (i.e, there is no edge in the

constraint graph connecting left and right variables).

The hybrid algorithm HYB searches over the central variables and eliminates the lateral
variables. Variables are considered in decreasing order of their index. Thus, the algorithm
starts instantiating xC

n , xC
n−1 and xC

n−2, which produces a subproblem with the constraint
graph shown in Figure 5.C. Observe that variable xL

n (respectively, xR
n ) is only connected

with variables xL
n−1 and xL

n−2 (respectively, xR
n−1 and xR

n−2). Then it is eliminated producing
a new function gL

n with scope {xL
n−2, x

L
n−1} (respectively, gR

n with scope {xR
n−2, x

R
n−1}).

Figure 5.D shows the resulting constraint graph. Lateral variables have domains of size
2

n
2
−1. Hence, their elimination is space Θ(2n) and time Θ(23n

2 ). It is important to note that
these eliminations are subject to the current assignment of xC

n , xC
n−1 and xC

n−2. Therefore,
they have to be recomputed when their value change. After the elimination of xL

n and
xR

n , the algorithm would assign variable xC
n−3 which will make possible the elimination of

xL
n−1 and xR

n−1, and so on. At an arbitrary level of search, the algorithm assigns xC
i , which

makes xL
i+2 and xR

i+2 independent of the central columns and only related to their two
variables above. Then, it eliminates them by replacing the variables by functions gL

i+2 and
gR
i+2 with scopes {xL

i , xL
i+1} and {xR

i , xR
i+1}, respectively. Formally, HYB applies a recursion

that transforms subproblem P into 4 simpler subproblems {((P |xC
i

=v) ⇓xL
i+2

) ⇓xR
i+2

}3
v=0. It

satisfies the following property,

Property 2 Let gL
i be the function computed by HYB used to replace variable xL

i . Then
gL
i (a, b) is the cost of the best extension of (xL

i−2 = a, xL
i−1 = b) to eliminated variables

(xL
i , . . . , xL

n), conditioned to the current assignment. Similarly, for the right side, gR
i (a, b)

is the cost of the best extension of (xR
i−2 = a, xR

i−1 = b) to eliminated variables (xR
i , . . . , xR

n ),
conditioned to the current assignment.

A consequence of the previous Property is that the minimum gL
i+2(a, b) among all com-

binations of a and b is a lower bound of the best cost that can be obtained in the left
part of the grid if we continue the current line of search. Therefore, mina,b{g

L
i+2(a, b)} +

mina,b{g
R
i+2(a, b)} is a valid lower bound of the current node and can be used for pruning

purposes.

The space complexity of the algorithm is Θ(n × 2n), due to the gL
i and gR

i functions
which need to be explicitly stored. The time complexity is O(n × 23.5n), because O(4n)
nodes may be visited (n variables with domains of size 4) and the cost of processing each
node is Θ(n × 23n

2 ) due to the variable eliminations.

Thus, comparing with BE, the time complexity increases from Θ(n2×23n) to O(n×23.5n).
This is the prize HYB pays for the space decrement from Θ(n × 22n) to Θ(n × 2n).
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4.1 Refining the Lower Bound

It is well-known that the average-case efficiency of search algorithms depends greatly on
the lower bound that they use. Our algorithm is using a poor lower bound based on the gL

i

and gR
i functions, only.

Kask and Dechter (2001) proposed a general method to incorporate information from
yet-unprocessed variables into the lower bound. Roughly, the idea is to run mini buckets
(MB) prior search and save intermediate functions for future use. MB is executed using the
reverse order in which search will instantiate the variables. When the execution of MB is
completed, the search algorithm is executed. At each node, it uses mini-bucket functions
as compiled look-ahead information. In this Subsection, we show how we have adapted this
idea to SL(n) and how we have integrated it into HYB.

Consider SL(n) formulated in terms of left, central and right variables (xL
i , xC

i , xR
i ).

The exact elimination of the first row variables (xL
1 , xC

1 , xR
1 ) can be done using super-bucket

B1 = {fL
1 , fR

1 , fL
2 , fR

2 } and computing the function,

h1 = (fL
1 + fR

1 + fL
2 + fR

2 ) ⇓ {xL
1 , xC

1 , xR
1 }

The scope of h1 is {xL
2 , xC

2 , xR
2 , xL

3 , xC
3 , xR

3 }. Using the mini-buckets idea, we partition the
bucket into BL

1 = {fL
1 , fL

2 } and BR
1 = {fR

1 , fR
2 }. Then, we approximate h1 by two smaller

functions hL
1 and hR

1 ,
hL

1 = (fL
1 + fL

2 ) ⇓ {xL
1 , xC

1 }

hR
1 = (fR

1 + fR
2 ) ⇓ {xC

1 , xR
1 }

The scopes of hL
1 and hR

1 are {xL
2 , xC

2 , xL
3 , xC

3 } and {xC
2 , xR

2 , xC
3 , xR

3 }, respectively. The same
idea is repeated row by row in increasing order. In general, processing row i, yields two
functions,

hL
i = (hL

i−1 + fL
i+1) ⇓ {xL

i , xC
i }

hR
i = (hR

i−1 + fR
i+1) ⇓ {xC

i , xR
i }

The scopes of hL
i and hR

i are {xL
i+1, x

C
i+1, x

L
i+2, x

C
i+2} and {xC

i+1, x
R
i+1, x

C
i+2, x

R
i+2}, respec-

tively. By construction, hL
i (a, a′, b, b′) contains the cost of the best extension of a, a′, b, b′

to processed variables xL
i , xC

i , . . . , xL
1 , xC

1 considering left functions only. We have the same
property for hR

i (a′, a, b′, b) and right functions.
The complexity of MB is space Θ(n×2n) and time Θ(n2×21.5n). Since these complexities

are smaller than the complexity of HYB, running this pre-process does not affect its overall
complexity.

After MB is executed, HYB can use the information recorded in the hL
i and hR

i functions.
Consider an arbitrary node in which HYB assigns xC

i and eliminates xL
i+2 and xR

i+2. Let a
and b be domain values of variables xL

i and xL
i+1. From Property 2 we have that gL

i+2(a, b)
contains the best extension of a, b that can be attained in the left part of rows i + 1
to n as long as the current assignment XC is maintained. Additionally, we have that
hL

i−1(a, xC
i , b, xC

i+1) contains the best extension of a, b that can be attained in the left part
of rows i to 1. Therefore, gL

i+2(a, b) + hL
i−1(a, xC

i , b, xC
i+1) is a lower bound for a, b and XC

of the left part of the grid. Consequently,

min
a,b∈[0..2

n
2
−1

−1]
{gL

i+2(a, b) + hL
i−1(a, xC

i , b, xC
i+1)}
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is a lower bound of the left part of the grid for the current assignment. With the same
reasoning on the right part we have that,

min
a,b∈[0..2

n
2
−1

−1]
{gL

i+2(a, b) + hL
i−1(a, xC

i , b, xC
i+1)} +

+min
a,b∈[0..2

n
2
−1

−1]
{gR

i+2(a, b) + hR
i−1(x

C
i , a, xC

i+1, b)}

is a lower bound of the current assignment.

4.2 Refining the Upper Bound

The efficiency of the algorithm also depends on the initial value of the upper bound. A
good upper bound facilitates pruning earlier in the search tree. Bosch and Trick (2002)
suggested to modify SL(n) by adding the additional constraint of considering symmetric
patterns, only. Since the space of solutions becomes considerably smaller, the problem is
presumably simpler. Clearly, the cost of an optimal symmetric stable pattern is an upper
bound of the optimal cost of SL(n). It has been observed that such upper bounds are very
tight.

Since the motivation of our work is to use variable elimination techniques, we have
considered still-lifes which are symmetric over a vertical reflection, because they can be
efficiently solved using BE. The symmetric still-life problem SSL(n) consists on finding a
n× n stable pattern of maximum density in the game of life subject to a vertical reflection
symmetry (namely, the state of cells (i, j) and (i, n − j + 1) must be the same.6

Adapting BE to solve SSL(n) is extremely simple: we only need to remove symmetrical
values from the domains. Let us assume that n is an even number (the odd case is similar).
We represent a symmetric sequences of bits of length n by considering the left side of the
sequence (i.e, the first n/2 bits). The right part is implicit in the left part. Thus, we
represent symmetrical sequences of n bits as integers in the interval [0..2

n
2 −1]. Reversing a

sequence of bits a is noted ā. Hence, if a is a sequence of n/2 bits, a · ā is the corresponding
symmetrical sequence of n bits.

The complexity of BE, when applied to SSL(n) is time Θ(n2×21.5n) and space Θ(n×2n).
Therefore, executing it prior HYB and setting the upper bound with its optimal cost does
not affect the overall complexity of the hybrid.

4.3 Further Exploitation of Symmetries

SL(n) is a highly symmetric problem. For any stable pattern, it is possible to create an
equivalent pattern by: (i) rotating the board by 90, 180 or 270 degrees, (ii) reflecting
the board horizontally, vertically or along one diagonal or (iii) doing any combination of
rotations and reflections.

Symmetries can be exploited at very different algorithmic levels. In general, we can
save any computation whose outcome is equivalent to a previous computation due to a
symmetry if we have kept its outcome. For instance, in MB it is not necessary to compute
hR

i (a′, a, b′, b) because it is equal to hL
i (a, a′, b, b′) due to the vertical reflection symmetry.

Another example occurs in HYB. Let xC
n = vn, xC

n−1 = vn−1, . . . , x
C
i = vi be the current

6. Unlike Smith’s (2002) work we cannot easily exploit a larger variety of symmetries such as rotations and
diagonal reflections.
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n opt opt-SSL CP/IP BE HYB HYB no LB HYB no UB
13 79(90) 79 12050 13788 2 2750 2
14 92(104) 92 5 × 105 105 2 7400 3
15 106(119) 106 7 × 105 * 58 2 × 105 61
16 120(136) 120 * * 7 6 × 105 49
17 137(152) 137 * * 1091 * 2612
18 153(171) 154 * * 2029 * 2311
19 171(190) 172 * * 56027 * 56865
20 190(210) 192 * * 2 × 105 * 2 × 105

22 ? 232 * * * * *
24 ? 276 * * * * *
26 ? 326 * * * * *
28 ? 378 * * * * *

Figure 6: Experimental results of three different algorithms on the still-life problem. Times
are in seconds.

assignment. The reversed assignment xC
n = vn, xC

n−1 = vn−1, . . . , x
C
i = vi is equivalent due

to the vertical reflection symmetry. Thus, if it has already been considered, the algorithm
can backtrack. Our implementation uses these tricks and some others which we do not
report because it would require a much lower level description of the algorithms.

5. Experimental Results

Figure 6 shows the empirical performance of our hybrid algorithm. The first column contains
the problem size. The second column contains the optimal value as the number of dead
cells (in parenthesis the corresponding number of living cells). The third column contains
the optimal value of the symmetrical problem SSL(n), obtained by executing BE. It can
be observed that SSL(n) provides very tight upper bounds to SL(n). The fourth column
reports the time obtained with the CP/IP algorithm (Bosch & Trick, 2002). The fifth
column reports times obtained with BE. The sixth column contains times obtained with
our hybrid algorithm HYB. As it can be seen, the performance of HYB is spectacular. The
n = 14 and n = 15 instances, which require several days of CPU, are solved by HYB in a few
seconds. Instances up to n = 18 are solved in less than one hour. The largest instance that
we can solve is n = 20, which requires about two days of CPU (Figure 7 shows the optimal
n = 19 and n = 20 still-lifes). Regarding space, our computer can handle executions of
HYB up to n = 22. However, neither the n = 21 nor the n = 22 instance could be solved
within a week of CPU. It may seem that solving the n = 20 instance is a petty progress with
respect previous results on the problem. This is clearly not the case. The search space of
the n = 15 and n = 20 instances have size 2152

= 2225 and 2202

= 2400, respectively. Thus,
we have been able to solve a problem with a search space 2175 times larger than before.
Since BE scales up very regularly, we can accurately predict that it would require 4000 Gb
of memory and about 7 centuries to solve the n = 20 instance.
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Figure 7: Maximum density still-lifes for n = 19 and n = 20.

Since HYB combines several techniques, it is interesting to assess the impact of each
one. The seventh column reports times obtained with HYB without using mini-buckets
information in the lower bound. As can be seen, the algorithm is still better than plain BE,
but it performance is dramatically affected. The information gathered during the preprocess
improves the quality of the lower bound and anticipates pruning. Finally, the eighth column
reports times obtained with HYB without having the upper bound initialized to SSL(n).
In this case we see that the importance of this technique is quite limited. The reason is
that HYB, even with a bad initial upper bound, finds the optimum very rapidly and, after
that moment, the quality of the initial upper bound becomes irrelevant.

6. Extension to Other Domains

The SL(n) problem has a very well defined structure, and the hybrid algorithm that we
have proposed makes an ad hoc exploitation of it. It is easy to find the right variables to
instantiate and eliminate. It is also easy to find a variable order for which mini buckets
produces good quality lower bounds. A natural question is whether it is possible to apply
similar ideas to not so well structured problems. The answer is that it is often possible,
although we need to rely on more naive and consequently less efficient exploitation of the
problems’ structure. In this Section we support our claim by reporting additional exper-
imental results on different benchmarks. In particular, we consider spot5 and DIMACS
instances. Spot5 instances are optimization problems taken from the scheduling of an earth
observation satellite (Bensana, Lemaitre, & Verfaillie, 1999). The DIMACS benchmark con-
tains SAT instances from several domain. Since we are concerned with optimization tasks,
we have selected some unsatisfiable instances and solved the Max-SAT task (i.e, given an
unsatisfiable SAT instance, find the maximum number of clauses that can be simultaneously
satisfied), which can be modeled as a WCSP (de Givry, Larrosa, Meseguer, & Schiex, 2003).
We consider aim instances (artificially generated random 3-SAT), pret (graph coloring), ssa
and bf (circuit fault analysis).

Figure 8 shows the constraint graph of one instance of each domain, as visualized by
LEDA graph editor. It can be observed that these graphs do not have an obvious pattern
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Figure 8: Constraint graph of four WCSP instances. From the top-left corner, clockwise,
aim-100-1-6-no-1, pret60-25, ssa0432-003 and Spot5-404.

to be exploited. Thus, we have to use variable elimination techniques in a more naive way.
We solve the problems with the generic WCSP solver toolbar7 (TB). It performs a depth-
first branch-and-bound search and it is enhanced with general-purpose dynamic variable and
value ordering heuristics. We modified toolbar to combine search and variable elimination
as follows: at an arbitrary subproblem, every variable with degree less than 3 is eliminated.
Only when all the variables have degree larger than or equal to 3, an unassigned variable is
heuristically selected and each of its domain values are heuristically ordered and sequentially
instantiated. The process is recursively applied to each of the subproblems. Note that
this is a generic version of the HYB algorithm where the decision of which variables are
instantiated and which variables are eliminated is left to a heuristic, instead of establishing

7. Available at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP.
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it by hand. We will refer to this implementation as TBHY B. Toolbar offers a variety
of lower bounds based on different forms of local consistency (Larrosa & Schiex, 2003).
One of them, directional arc consistency (DAC*), is essentially equivalent to mini-buckets
of size 2 and, therefore, similar in spirit to the lower bound computed by HYB. However,
unlike HYB where mini-buckets are executed only once as a pre-process, toolbar executes
DAC* at every search state, subject to the current subproblem. It has been shown by Kask
(2000) that this approach is generally more efficient. The other main difference with respect
HYB, is that toolbar executes DAC* subject to an arbitrary variable ordering (in HYB
a good order was identified from the problem structure). Other lower bounds available
in toolbar are node consistency (NC*) which is weaker than DAC*, and full directional
arc consistency (FDAC*) which can be seen as a (stronger) refinement of DAC*. We have
experimented with four algorithms: TBNC∗, TBDAC∗, TBDAC∗

HY B and TBFDAC∗
HY B , where AB

denotes algorithm A with lower bound B.

Most spot5 instances are too difficult for toolbar. Therefore, we decreased their size
by letting toolbar make a sequence of k greedy assignments driven by its default variable
and value ordering heuristics. The result is a subproblem with k less variables. In the
following, Ik denotes instance I where k variables have been greedily assigned by toolbar

with default parameters.

Table 9 reports the result of these experiments. The first column indicates the instances
and subsequent columns indicate the CPU time (in seconds) required by the different algo-
rithms. A time limit of 3600 seconds was set up for each execution. It can be observed that
toolbar with the weakest lower bound (TBNC∗) is usually the most inefficient alternative.
It cannot solve any of the spot5 instances and also fails with several aim and ssa instances.
When toolbar is enhanced with a mini buckets lower bound (TBDAC∗) all spot5 problems
are solved. In the other domains, the new lower bound does not produce a significant ef-
fect. When we further add variable elimination (TBDAC∗

HY B ) all the problems are solved. In
general, there is a clear speed-up. The worst improvements are in the pret instances where
the time is divided by a factor of 2 and the best ones are obtained in the spot5 50340 and
ssa7552-158 instances which are solved instantly. Typical speed-ups range from 5 to 10.
Finally, we observe that the addition of the stronger lower bound (TBFDAC∗

HY B ) has a limited
effect in these problems. Only the execution of instance ssa7552-038 is clearly accelerated.
Therefore, from these experiments we can conclude that the main techniques that we used
to solve the still-life problem can also be successfully applied to other domains.

7. Conclusions

In this paper we have studied the applicability of variable elimination to the problem of
finding still-lifes. Finding still-lifes is a challenging problem and developing new solving
techniques is an interesting task per se. Thus, the first contribution of this paper is the
observation that plain variable elimination (i.e, BE) is competitive in practice and provides
time complexity exponentially better than search-based approaches. Besides, we have de-
veloped an algorithm with which we have been able to solve up to the n = 20 instance,
with which we clearly improved previous results. The second contribution of the paper
has a deeper insight. Our algorithm uses recent techniques based on variable elimination.
Since these techniques are little known and rarely applied in the constraints community,
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Problem TBNC∗ TBDAC∗ TBDAC∗

HY B
TBFDAC∗

HY B

Spot5 4040 - 242 40 40
Spot5 408100 - 314 48 43
Spot5 412200 - 223 47 42
Spot5 414260 - 1533 221 139
Spot5 50340 - 546 0 0
Spot5 505120 - 3353 84 84
Spot5 507200 - 204 58 42
Spot5 509240 - 684 166 121
aim-100-1-6-no-1 - - 1665 1427
aim-100-1-6-no-2 - - 707 571
aim-100-1-6-no-3 - - 1960 1627
aim-100-1-6-no-4 - - 2716 2375
aim-100-2-0-no-1 2516 2007 830 583
aim-100-2-0-no-2 1191 931 479 285
aim-100-2-0-no-3 1222 850 319 278
aim-100-2-0-no-4 2162 1599 738 600
bf0432-007 - - 1206 1312
pret60-25 110 120 49 56
pret60-40 110 120 48 56
ssa0432-003 22 22 5 5
ssa2670-141 - - 749 767
ssa7552-038 - - 20 2
ssa7552-158 - - 0 1

Figure 9: Experimental results in some WCSP instances with four different algorithms.
Each column reports CPU time in seconds. Symbol - indicates that a time limit
of 3600 seconds has been reached.

the results presented in this paper add new evidence of their potential. We have also shown
that variable elimination can be used beyond the academic still-life problem by providing
experimental results in some unstructured realistic problems from different domains.
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