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Abstract 

Postoperative complications are still hard to predict despite the efforts towards the creation of clinical risk scores. 

The published scores contribute for the creation of specialized tools, but with limited predictive performance and 

reusability for implementation in the oncological context. This work aims to predict postoperative complications 

risk for cancer patients, offering two major contributions. First, to develop and evaluate a machine learning-based 

risk score, specific for the Portuguese population using a retrospective cohort of 847 cancer patients undergoing 

surgery between 2016 and 2018, for 4 outcomes of interest: (1) existence of postoperative complications, (2) severity 

level of complications, (3) number of days in the Intermediate Care Unit (ICU), and (4) postoperative mortality within 

1 year. An additional cohort of 137 cancer patients from the same center was used for validation. Second, to improve 

the interpretability of the predictive models. In order to achieve these objectives, we propose an approach for the 

learning of risk predictors, offering new perspectives and insights into the clinical decision process. For postoperative 

complications the Receiver Operating Characteristic Curve (AUC) was 0.69, for complications’ severity AUC was 0.65, 

for the days in the ICU the mean absolute error was 1.07 days, and for 1-year postoperative mortality the AUC was 

0.74, calculated on the development cohort. In this study, predictive models which could help to guide physicians 

at organizational and clinical decision making were developed. Additionally, a web-based decision support tool is 

further provided to this end.
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Introduction
Cancer is a major health problem worldwide and it is 

among the leading death causes of the  21st century. �ere 

are at least two battlefronts in reducing deaths associated 

to cancer, those resulting from direct consequences of the 

disease, and those occurring due to complications from 

surgery treatment [1]. Surgical complications contribute 

to lower survival probability and, in certain types of can-

cer, to aggravate the recurrence rate [1–4]. �e outcome 

of such surgeries is still widely unpredictable due to the 

large number of factors involved. In an attempt to facili-

tate perioperative risk assessment for the selection of 

patients benefiting from surgery, a variety of traditional 

scoring systems incorporating several risk factors have 

been developed [5].

From a clinical perspective, the traditional risk scores 

(e.g., P-POSSUM [6], ARISCAT [7] and ACS score [8]) 

are important in choosing the course of actions, such as 

prehabilitation or supportive measures, to be taken dur-

ing the preoperative, intraoperative and postoperative 

periods [5]. However, their limited predictive perfor-

mance is clear, particularly in the geriatric population 
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[9]. Moreover, most of these risk scores were constructed 

based on simple linear models with inherent limitations 

for high-dimensional and multi-variate data.

Recently, machine learning (ML) approaches for sur-

gical outcomes prediction have been proposed. ML 

comprises algorithms that can learn from a set of data 

and improve on their own, allowing for more accurate 

predictions [10, 11]. For instance, Wang et  al.  [12] pro-

posed several ML models to predict 5-year mortality 

in a bladder cancer cohort. �e study used clinical and 

histopathological data from 117 patients, and achieved 

80% accuracy. More recently, Corey et  al.  [13] explored 

ML methods to identify high-risk surgical patients from 

a local institution using electronic health record data. 

�e sensitivity and specificity were 76%, evaluated across 

several ML models. Another example is the study con-

ducted by Lee  [14] where deep neural network models 

were successfully used to classify the risks of postopera-

tive mortality, acute kidney injury, and reintubation, out-

performing more traditional approaches such as Logistic 

Regression, ASA [15] and the Surgical Apgar [16] scores.

Despite the inherent potentialities of ongoing efforts, 

the existing postoperative risk prediction studies in the 

oncological domain are limited by the size of available 

hospital records, the lack of systematic evaluation of dif-

ferent predictive models, and no one comprehensively 

targets the Portuguese population. Identification of reli-

able prognostic factors, representative of our own patient 

population, may help clinicians not only to accurately 

select patients eligible for surgery, but also to identify 

high-risk patients that may benefit from individualized 

optimization with multimodal prehabilitation interven-

tions. �ere is thus an urgent need to improve periopera-

tive risk assessment to reduce the growing postoperative 

burden among patients who undergo surgery for cancer.

�is work assesses the predictability of four main post-

operative outcomes in cancer patients: i) existence of 

postoperative complications, ii) the severity of said com-

plications, iii) the number of days in the Intermediate 

Care Unit (ICU), and the iv) one-year death after surgery. 

In this context, it offers two major contributions. First, a 

methodology for the prognostication of oncological post-

operative outcomes. Secondly, establishes principles to 

support the study of this treatment, either by finding rel-

evant variables, or improving the interpretability of these 

models.

Methods
Dataset

�e data derives from a single-center retrospective 

cohort of cancer patients who have undertaken surgery 

at the Portuguese Institute of Oncology, Porto, Por-

tugal (IPO-Porto), and were monitored from 2016 to 

2018. Only surgical patients aged 18 years or older were 

included. All were followed up for at least one year or 

until death. �e cohort of 847 eligible patients contains 

information pertaining to the demographic and physi-

ological data, cancer location, histopathological deter-

minants, traditional risk score variables (from P-Possum 

[6], ACS NSQIP [8], ARISCAT [7]), surgical procedures 

and outcomes of interest. From a total of 136 routinely-

collected variables, only 62 are preoperative. Out of 

these, 20 are binary variables, 20 ordinal, 10 categorical, 

5 numeric, 2 in date format and 5 are pure text variables 

(see Additional file 1: Table S1 in Supplementary Mate-

rial). �e IPO-Porto Ethics Committee approved (CES 

IPO:91/019) the analysis and the study of the anonymized 

data.

Statistical exploration of the dataset was performed 

in Python (version 3.8) with the aid of Seaborn1(version 

0.11.1) and Matplotlib2(version 3.4.2) for the visualiza-

tion, NumPy3(version 1.19.2) and Pandas4(version 1.2.1) 

for the data handling.

Validation dataset

An independent validation dataset collected at IPO-Porto 

between January and October of 2019 was used. �is 

cohort has the same variables as the previous dataset but 

only 137 patients, which have not been used for model 

training. �ere are 4 types of cancer or surgical area: 

head/neck, gastrointestinal, respiratory, and lymphoma, 

but the representativeness of the last two is residual. �e 

average age of the patients is 61 years old; 101 patients 

are males and 36 are females. Additional information 

of the statistical analysis is provided as Supplementary 

Material, in Additional file 1: Figure S1.

Data preprocessing

�e preprocessing is challenged by three main issues: 

missing values, mixed variables with non-identical dis-

tributions and imbalanced/sparse data (considering the 

variety of cancers and surgery types).

Missing values To minimize biases and predictive 

uncertainty, variables with high missing rate (>40%) were 

removed. In less extreme cases, and whenever classifiers 

are unable to handle missing data, missing values were 

imputed using an informed method based on the k-Near-

est Neighbors algorithm [17], to help reduce the error 

introduced when dealing with missing values.

1 https:// seabo rn. pydata. org/.
2 https:// matpl otlib. org/.
3 https:// numpy. org/.
4 https:// pandas. pydata. org/.

https://seaborn.pydata.org/
https://matplotlib.org/
https://numpy.org/
https://pandas.pydata.org/
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Categorical variable encoding Categorical variables 

are commonly represented through a numeric encod-

ing, which may not necessarily contain an implicit ordi-

nal relationship. �is quantitative or ordinal relationship 

might undesirably slip into the analysis. �e simplest 

solution is to use a One-Hot encoder, consisting on split-

ting the categorical variable into a series of binary ones.

Resampling To handle the observed imbalances on 

some of the outcomes and avoid the bias of the classifi-

ers towards the majority class, we apply a mixed strategy, 

combining synthetic oversampling with Tomek Links 

informed undersampling, as proposed in [18].

Feature scaling Numeric variables are normalized to 

promote the learning of the algorithms that are affected 

by the magnitude of the different input variables, com-

monly resulting in wrongfully attributed relevance.

Feature selection Accounting for differences on the rel-

evance of input variables for a given outcome, a restricted 

number of variables were selected (according to the 

scheme on Addional file 1: Fig. S2, in Supplementary 

Material). We used the clinical expert’s opinion, to select 

no more than 20 preoperative variables from the data-

set as inputs to the algorithms for each outcome. Filter 

methods offer a p-value representing the probability that 

a variable is not correlated to an outcome. We defined the 

p-value threshold at 0.0002. �e χ2 test is used to meas-

ure correlation for categorical variables, when the output 

is also categorical. �e ANOVA correlation coefficient 

is used to measure the correlation between categorical 

and numeric variables (it is not relevant which one is the 

dependent variable). Pearson’s correlation coefficient is 

used when both the independent and the dependent vari-

ables are numeric.

Outcomes

We attempt to address two main questions/outcomes: 

first, is a patient going to have postoperative complica-

tions? A postoperative complication was defined as a 

deviation from the ideal postoperative course, which is 

deemed clinically connected to the surgery prior, requir-

ing any intervention, and happening within the first 90 

days after the surgery for cancer treatment. Since the 

outcome is binary, a classification approach is used, with 

a discrete and well defined set of labels to attribute to a 

certain patient.

Secondly, how severe is the complication? �e Cla-

vien-Dindo classification system [19], in 4 major grades 

(excluding death), was used for the classification of surgi-

cal complications. For this outcome, a multi-class classifi-

cation approach is performed.

�e probability of death is also a relevant indicator to 

estimate the existence of future complications, and the 

viability of surgery for a certain patient. In this case, 

death might not be the result of postoperative complica-

tions exclusively, but rather a combination of factors. We 

conducted this outcome as a classification problem with 

the objective of predicting one-year mortality.

�e number of days spent in the ICU following the 

surgical procedure represents important information for 

medical and hospital management reasons. Due to the 

continuous and purely numeric nature of this outcome, 

regression models are used.

Predictive models

We implemented a set of state-of-the-art supervised ML 

models, and assessed the predictive performance of all.

• �e classifier-based prediction algorithms were: 

Naive Bayes (NB), k-Nearest Neighbours (kNN), 

Decision Trees (DT), Random Forests (RF), Support 

Vector Machines (SVM), Logistic Regression (LR), 

Multilayer Perceptron (MLP), XGBoost Classifier 

(XGB) and CatBoost Classifier (CBC);

• �e regression-based prediction algorithms were: 

Linear Regression, Ridge Regression, Lasso Regres-

sion, SVM Regressor, Elastic Regression, k-Nearest 

Neighbours Regressor, Decision Tree Regressor, Ran-

dom Forest Regressor, XGBoost Regressor, Partial 

Least Squares Regression (PLS), Multilayer Percep-

tron Regressor and CatBoost Regressor (CBR).

All the models’ implementations were carried out using 

the scikit-learn [20] package (version 0.23.2) using 

Python (version 3.8). For the XGBoost [21] (version 1.3.3) 

and CatBoost [22] (version 0.24.4) algorithms two inde-

pendent packages were used.

Hyperparameter optimization

�e hyperparameters of the models were selected, using 

informed search methods. Bayesian optimization [23] 

associates a probability distribution to the hyperparam-

eters tested, making the search faster than exhaustive 

approaches. Two objective functions were used:

• Regression models are optimized with respect to the 

Root Mean Squared Error (RMSE);

• Classification models are optimized to maximize 

their F1-Score (the harmonic mean of precision and 

recall).

Model development process

�e development process was performed in two phases: 

training and testing using cross-validation (split into 

the primary dataset); independent validation (training 

with the primary dataset and testing on the secondary 



Page 4 of 13Gonçalves et al. BMC Med Inform Decis Mak          (2021) 21:200 

independent one, also recorded at IPO-Porto, Portugal). 

Both begin by preprocessing the input data before feed-

ing it to the models, either to learn or directly predict the 

outputs. �e difference is that in the first phase there is 

an intermediate step for hyperparameter optimization 

and in the second phase such parameters are already 

available.

�e code and results generated in this article are avail-

able in GitHub at: https:// github. com/ danie lmg97/ can-

cer- progn ostic ation- iposc ore.

After model selection and optimization, a web-based 

graphical application for clinical context use was built 

using the Dash5 library in Python. �e code repository is 

freely available at https:// github. com/ danie lmg97/ iposc 

ore_ webapp.

Model performance and validation

Classification evaluation metrics �e discrete nature of 

classifiers allows for simple evaluation. Given the imbal-

anced nature of data, accuracy is complemented with 

other metrics, like recall/sensitivity. �e Receiver Oper-

ating Characteristic (ROC) curve can also be used to 

assess the model performance specifically as a measure 

of class separability. It is most commonly used in binary 

outcome settings but can be used for multi-class out-

comes. In the latter, the AUC (Area Under the Curve) is 

more suitable and is employed in our study. �e F1-score 

[24] combines precision and recall in a weighted aver-

age. �is metric is the focus of our optimization efforts 

in order to guarantee the optimal sensitivity to every out-

put class, even in multi-class settings where this measure 

is macro averaged. Cohen’s Kappa [25] is also used as a 

chance corrected standardized measure of agreement. 

�is metric can be interpreted as follows: ≤ 0 less than 

chance agreement, 0.01–0.20 slight agreement, 0.21–0.40 

fair agreement, 0.41–0.60 moderate agreement, 0.61–

0.80 substantial agreement, 0.81–0.99 almost perfect 

agreement [26].

Regression evaluation metrics In contrast with previous 

confusion-based metrics, residue-based scores are used 

to assess the predictability of numeric outcomes. RMSE 

is a quadratic scoring rule that also measures the aver-

age magnitude of the error. Since the errors are squared 

before they are averaged RMSE gives a larger weight to 

larger errors. �e mean absolute error (MAE) measures 

the average magnitude of the errors on a set of predic-

tions, complementing RMSE. Apart from checking the 

absolute fitment of the model, the Coefficient of Deter-

mination, or R2 , is also used to assesses the fitness of the 

model to the available (training) data.

Model validation We applied ten-fold cross-validation 

(10 mutually exclusive test sets, each composed by 10% of 

the total patients) to assess the models’ ability to general-

ize into unseen data and also its performance variability, 

by testing in various sets of instances.

External validation �e models were validated on an 

independent cohort with 137 patients’ registries from the 

same hospital.

Results
In this study, we tested the predictive performance of ML 

models for four main postoperative outcomes derived 

from our cancer patient population, in order to to facil-

itate prehabilitation strategies and manage hospital 

resources more efficiently.

Data exploration

Figure  1 displays the summary of the cohort data. �e 

available cohort is constituted by four major surgical 

types: thoracic (13.91%), digestive (40.87%), head and 

neck (22.98%), and others (22.24%). Of all surgeries, 

43.83% are related to gastrointestinal cancers, 21.21% 

head/neck, 14.02% respiratory, 5.69% genitourinary, 

3.32% muscoloskeletal, 2.36% gynecologic, 2.23% endo-

crine, 1.99% skin, 1.61% breast, 1.36% neurologic, and 

1.24% were lymphomas. �e surgeries’ type was mainly 

elective and only 11% of the procedures correspond to 

emergency surgeries.

�e majority of patients in this cohort (49.57%) have 

primary malignant tumours and less than 1% have 

benign tumours. Considering metastization, 27.7% of 

the patients have malignant tumours with nodal metas-

tasis, and 20.87% have malignant tumours with distant 

metastasis.

�e therapeutic profiling of these patients can be 

detailed by analyzing neoadjuvant therapy options, such 

as chemotherapy. In our population, 27% of the patients 

have been subjected to this kind of treatment.

�ere are 11 types of cancer present and the incidence 

is mainly concentrated on older people, closer to the age 

of 65 (Fig. 1a). �ere are more men undergoing surgery 

and they are also more likely to develop postoperative 

complications than women (as shown in Fig.  1b). �ere 

are types of cancer more likely to complicate and more 

lethal than others (Fig. 1e), where Neurologic and Mus-

culoskeletal cancers are portrayed as the most lethal 

types. �e degree of Clavien-Dindo severity [19] associ-

ated to the postoperative complications is similar across 

the different types (shown in Fig. 1c), where Neurologic 

cancers are portrayed as the type with more severe com-

plications. �e days in the ICU rarely exceed 2 to 3 days 

but can stretch as far as 2 weeks or more (Fig. 1f ).

5 https:// plotly. com/.

https://github.com/danielmg97/cancer-prognostication-iposcore
https://github.com/danielmg97/cancer-prognostication-iposcore
https://github.com/danielmg97/iposcore_webapp
https://github.com/danielmg97/iposcore_webapp
https://plotly.com/
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Fig. 1 Cohort data overview: a cancer type density plot according to patient age b postoperative complications by gender c complications’ 

severity by cancer type d age distribution by gender and cancer type e percentage of complications/deaths by cancer type f distribution of days in 

the ICU by cancer type and gender
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Postoperative complications

Table  1 shows the performance of the top 5 models 

for the postoperative complication outcome. It can be 

observed that it is possible to predict the presence of 

postoperative complications with 65% accuracy and 0.69 

AUC by a Random Forest (RF) using 8 input variables 

(Addional file 1: Table S1—Supplementary Material) after 

the feature selection process: ASA score, ACS functional 

status, ACS systemic sepsis, ACS dyspnea, PP respiratory, 

PP hemoglobin, PP number of procedures, and PP peri-

toneal contamination. Other models are able to achieve 

similar predictive performance, but are outperformed by 

the RF that can be a more easily interpretable solution 

upon individual tree analysis, when compared with alter-

natives such as the MLP model.

Furthermore, as proposed in our methodology, the 

models were validated in an independent set of 137 

patients. �e RF achieved an accuracy of 67% and an 

AUC value of 0.71 , and the overall metrics achieve 

higher results, supporting the generalization ability of 

our solution.

Severity of complications

�e complications’ severity was the second outcome of 

interest. Table 2 compares the predictive performance of 

the top 5 models. Overall, the predictability is in line with 

expectations for a 4 degree scale in a very imbalanced 

setting, with underrepresented grades. Being a harder 

prediction task, the feature selection process considered 

a higher amount of variables when compared with other 

outcomes, using 15 of the total 20 inputs (Addional file 

1: Table  S1—Supplementary Material): ASA score, ACS 

functional status, ACS systemic sepsis, ACS dyspnea, 

ARISCAT preoperative anemia, ARISCAT emerging 

procedure, PP respiratory, PP ECG, PP arterial pulse, 

PP hemoglobin, PP leukocytes, PP urea, PP sodium, PP 

number of procedures, and PP peritoneal contamination. 

Of all the models tested, RF had higher predictive ability 

with an accuracy of 51% and 0.65 AUC, when compared 

to other models.

In the independent validation set, the RF model was 

able to predict the outcome with similar results (accuracy 

= 61% and AUC = 0.84).

Days in ICU

�e prediction of days spent in the ICU is a difficult task 

given the typical short stays of 1 or 2 days, contrasting 

with a small percentage of patients with longer stays. 

Although various transformations were used to attempt 

to minimize the effects of the imbalance in the data, the 

regressors predict lower values. Ridge regression showed 

superior performance (MAE of approximately 1 day) 

compared with the other models (Table 3).

After the independent validation, the results of the best 

model remained identical (MAE of 1.07, RMSE of 1.77 

and  R2 of 0.07).

�e feature selection process indicated 7 relevant input 

variables (Addional file 1: Table  S1—Supplementary 

Material), which might mean a reduced data extraction 

Table 1 Top 5 models for the postoperative complications outcome, obtained through cross-validation inside the primary 847 

patients dataset

The values are the mean ± standard deviation (SD)

Model Kappa Recall AUC F1-Score Accuracy

RF 0.293 ± 0.095 0.645 ± 0.081 0.691 ± 0.057 0.645 ± 0.046 0.652 ± 0.048

MLP 0.285 ± 0.096 0.642 ± 0.101 0.663 ± 0.053 0.641 ± 0.050 0.648 ± 0.048

SVM 0.282 ± 0.121 0.640 ± 0.098 0.676 ± 0.058 0.640 ± 0.060 0.646 ± 0.061

CBC 0.276 ± 0.109 0.636 ± 0.131 0.681 ± 0.064 0.635 ± 0.055 0.646 ± 0.053

LR 0.272 ± 0.086 0.634 ± 0.140 0.685 ± 0.056 0.632 ± 0.041 0.645 ± 0.044

Table 2 Top 5 models for the complication’s severity outcome, obtained through cross-validation inside the primary 847 patients 

dataset (mean ± SD)

Model Kappa Recall AUC F1-Score Accuracy

RF 0.225 ± 0.127 0.431 ± 0.164 0.651 ± 0.083 0.410 ± 0.093 0.506 ± 0.081

CBC 0.197 ± 0.098 0.430 ± 0.239 0.634 ± 0.089 0.377 ± 0.082 0.434 ± 0.071

DT 0.185 ± 0.118 0.388 ± 0.254 0.620 ± 0.094 0.368 ± 0.095 0.465 ± 0.083

SVM 0.157 ± 0.096 0.431 ± 0.243 0.642 ± 0.069 0.357 ± 0.062 0.393 ± 0.055

XGB 0.158 ± 0.128 0.424 ± 0.221 0.629 ± 0.062 0.354 ± 0.103 0.379 ± 0.091
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effort for the clinicians in the future: ACS systemic sep-

sis, ACS acute renal failure, ARISCAT respiratory infec-

tion, ARISCAT preoperative anemia, ARISCAT surgery 

duration, ARISCAT emerging procedure, PP number of 

procedures.

One-year mortality

�e results of the ML models for one-year mortality 

prediction are presented in Table 4. Overall, for the best 

mortality risk classifier the accuracy of prediction is 85% 

and the AUC value is 0.74, which outperforms other 

tested models.

�e data exploration process revealed the severe imbal-

ance of 1:8, towards the negative result for 1 year death. 

However, this imbalance was not critical since there were 

still close to 100 patients representing the minority class 

and resampling techniques were viable in this binary 

classification setting. �is outcome only makes use of 

7 input variables (Addional file 1: Table S1): ASA score, 

ACS functional status, ACS systemic sepsis, ACS weight, 

PP hemoglobin, PP peritoneal contamination, PP state of 

malignancy.

�e accuracy in the validation cohort was similar to 

that of the development cohort with an accuracy of 85% 

and an AUC of 0.74.

Knowledge extraction via associative models

Given the competitive results of associative models, 

together with their unique knowledge extraction capa-

bilities, further studies were conducted on these models. 

As an extension to the results obtained from this study, 

an improvement over traditional model representation is 

proposed.

�e test set error is calculated for each node individu-

ally and displayed at leaf level. Additionally, leaf nodes 

are colored, traducing the error degree associated to the 

validation process (Fig. 2).

�is specific type of visualization and can be further 

extended, allowing for a quick assessment of the decision 

process and improving interpretability. �is representa-

tion further helps doctors in the knowledge extraction 

process and in assessing the confidence level on the asso-

ciation rules captured by the models, and will eventually 

be implemented in tools used at the hospitals. An illus-

trative example is presented in Fig. 2, based on a Decision 

Tree used to predict the existence of complications. �e 

full results for all outcomes are given as supplementary 

material available in the GitHub repository.

Variables importance

Tree-based models not only stand out for their intuitive 

representation, but also for offering information about 

the importance of each feature in the prediction pro-

cess. �is information might be relevant for physicians in 

order to reduce the variable collection effort. Currently, 

IPO-Porto is collecting more than 60 pre-operative vari-

ables, but not all seem to be of importance for the pre-

dictions. �ese models can indicate the relative feature 

importance for each input variable when making a pre-

diction. A tool that is understandable and transparent 

contributes to an easier adoption and improved clinical 

decision confidence. Figure  3 shows the feature impor-

tance information for the Decision Trees (DT) and Ran-

dom Forest (RF) models.

For these models, the importance of a feature in the 

decision process directly traduces the utility of a vari-

able when branching a node. For instance, peritoneal 

Table 3 Top 5 models for the days in the ICU outcome, obtained 

through cross-validation inside the primary 847 patients dataset 

(mean ± SD)

Model MAE RMSE R2

Ridge 1.071 ± 0.161 1.724 ± 0.436 0.042 ± 0.105

Linear 1.080 ± 0.157 1.729 ± 0.424 0.030 ± 0.122

PLS 1.079 ± 0.153 1.730 ± 0.420 0.029 ± 0.116

MLPR 1.075 ± 0.157 1.732 ± 0.426 0.029 ± 0.104

RF 1.077 ± 0.151 1.735 ± 0.428 0.027 ± 0.099

Table 4 Top 5 models for the one-year death prediction outcome, obtained through cross-validation inside the primary 847 patients 

dataset (mean ± SD)

Model Kappa Recall AUC F1-Score Accuracy

RF 0.371 ± 0.09 0.649 ± 0.292 0.735 ± 0.07 0.683 ± 0.046 0.845 ± 0.026

CBC 0.364 ± 0.13 0.669 ± 0.265 0.727 ± 0.073 0.681 ± 0.066 0.837 ± 0.036

XGB 0.345 ± 0.088 0.652 ± 0.283 0.718 ± 0.059 0.67 ± 0.044 0.838 ± 0.032

SVM 0.313 ± 0.091 0.664 ± 0.221 0.746 ± 0.059 0.656 ± 0.046 0.803 ± 0.028

NB 0.296 ± 0.094 0.671 ± 0.165 0.744 ± 0.041 0.644 ± 0.049 0.772 ± 0.044
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contamination is seen as relevant indicator for the pre-

diction of postoperative complications (Fig. 3a). It is the 

first decision that will be made at the root of the Deci-

sion Tree and the split generated by this node will lead 

to 2 major groups of patients. One with more probability 

of complications than the other. Within these subgroups, 

there are other decisions to make, continuing the split-

ting process and increasing the detail level to a point 

where the model is more certain about the most probable 

outcome for a certain patient.

Clinical decision support system

Finally, we developed a web-based tool to facilitate the 

usability of the selected models. �e serialized predictive 

models can be used by clinicians in order to assess cancer 

patients in preoperative context, after adding the vari-

ables required for each outcome. �e user can then easily 

obtain the output of the models via a graphical interface 

using the ‘Result’ button. For the classification tasks, the 

predicted probabilities for the training set are plotted, as 

well as the probability for the current patient, to enable 

comparisons and further understand the confidence 

of the model. �e output is chosen based on the prob-

abilities dealt by the predictive model, by choosing the 

Fig. 2 Example of a Decision Tree for the “postoperative complication” outcome. The uncolored boxes indicate decision nodes. The colored boxes 

represent the the leaves, meaning the output (greener denotes smaller error)
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outcome with the highest probability among the range 

of possibilities. For the regression tasks, two graphs are 

plotted. One with the actual values versus the predicted 

values of the model, and a plot of the predictions’ residu-

als, both using the training data (see example in Fig. 4). 

�e web application is freely available at https:// iposc ore. 

herok uapp. com/.

Discussion
�e importance of surgical risk stratication to guide 

interventions is well known. In this study, we investigated 

the use of machine learning techniques in the surgical 

risk prediction of cancer patients.

Although the clinical application of ML to the postop-

erative complications domain has been relatively limited, 

in the last years, an increasing number of works have 

been proposed. For example, Bihorac et al. [27] predicted 

postoperative complications, with AUC values ranging 

from 0.82 to 0.94, in a cohort of 51,457 patients. Corey 

et al. [13] also employed ML methods to predict a similar 

outcome, using a cohort of 66,370 patients, obtaining 

AUC values ranging from 0.75 and 0.92, a sensitivity of 

0.78 and a specificity of 0.75. �is is similar to our best 

risk models, and will potentially be helpful to comple-

ment medical prognosis for cancer patients undergoing 

surgery in the Portuguese hospitals.

Furthermore, IPO-Porto previously developed a simple 

Logistic Regression model, MyIPOrisk-score [28], based 

on the Age, Gender, P-Possum (Physiological) score and 

ACS NSQIP (serious complications) score to predict the 

probability of developing postoperative complications. 

�is study was developed using 341 digestive cancer 

patients and obtained an AUC value of 0.808 for the same 

set of patients. While we could not calculate the AUC 

(due to only having the binary output available), this tra-

ditional score performed inferiorly to the RF model for 

the 137 independent evaluation patients (accuracy = 

0.613, F1-score = 0.101 and Cohen’s Kappa = 0.044).

For the complications’ severity prediction, Burke 

et al. [29] targeted only grades IV and V (life-threatening 

Fig. 3 The top 5 variables with the highest feature importance (according to Decision Trees and Random Forests) for: a existence of postoperative 

complications prediction b severity of complications prediction c days in the ICU prediction d 1-year death prediction

https://iposcore.herokuapp.com/
https://iposcore.herokuapp.com/
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and requiring intensive care unit management or death) 

of complications’ severity for 30 days after non-elective 

cholecystectomy. �is study uses Logistic Regression 

to predict the risk level (low, medium or high) of surgi-

cal complications resulting in Clavien-Dindo IV and 

V grades. �e results point to an AUC value of 0.87 in 

the validation set. �ese results can not be directly com-

pared, but can be considered to be in line with our study.

Predicting the days in the Intermediate Care Unit 

(ICU), can be an important part of predicting the 

length of hospital stays, allowing for better resource 

allocation. �e studies found are generally aimed at 

predicting the total hospital stay length (including the 

various units where a patient might be) or at predict-

ing the stays in Intensive Care Units. �e number of 

days in the ICU is typically short, but these stays can 

stretch as far as 2 weeks. Our best models are able to 

predict this duration with an error close to 24 hours 

which could constitute critical information either for 

clinical or management reasons, allowing for better 

resource allocation and to manage patient’s and doc-

tor’s expectations.

For the mortality prediction, previous studies have 

attempted to predict similar outcomes. Wang et al.  [12] 

Fig. 4 Screenshot example of the ’Existence of Complications’ tab from the web application. This outcome requires 8 input variables for a patient 

and predicts a probability
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predicted 5-year mortality in a bladder cancer cohort of 

117 patients with 0.8 accuracy, 0.86 sensitivity and 0.72 

precision. Similarly, Corey et  al.  [13] included the pre-

diction of 30-day mortality, with an AUC of 0.92, using 

information from 66,370 patients. Furthermore, Bihorac 

[27] predicted mortality for 1, 3, 6, 12 and 24 months 

after surgery with an AUC ranging from 0.83 for 1 month, 

to 0.77 for 24 months mortality. Although it is impossible 

to establish direct comparisons, due to cohorts and study 

characteristics, our model offers competitive and poten-

tially relevant results for the the Portuguese population.

Finally, the design of this study is conditioned by the 

quality of the data. �e available dataset is consider-

ably smaller when compared with studies such as Corey 

et  al.  [13]. To study the impact of the training set size, 

a simple Naive Bayes (for complications, severity and 

death prediction) and a Linear Regression (for the days 

in the ICU) were used to assess predictive performance 

according to the number of patients used in training. 

�e original dataset was used for training allowing only 

a predetermined percentage to be fed to the models. 

�e 137 patients in the independent dataset were used 

to maintain a stable testing process. Figure 5 shows how 

each model performed in the fixed test set, when trained 

with increasingly larger portions of the main dataset of 

847 patients. Even when considering the prediction of the 

complications’ severity - a harder task due to the cardi-

nality of the outcome - the performance (collected under 

a cross-validation scheme) stabilizes after observing 50% 

of the population. �is seems to indicate that the avail-

able dataset is sufficient.

Conclusions
In this work, we applied machine learning models for 

assessing the predictability of four major cancer surgi-

cal outcomes, with the goal of increasing the accuracy of 

previous traditional risk scores. We demonstrated that 

machine learning models derived from our single-center 

cohort were able to improve the accuracy of a previous 

traditional risk score. For these predictive models, we 

developed a web-based clinical decision support appli-

cation based on few variables as input, that can be used 

Fig. 5 Performance evolution according to training set size: a postoperative complications prediction b complications’ severity prediction c days in 

the ICU prediction d 1-year death prediction
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by physicians. Model interpretability is also enhanced, 

by offering new visualization options for tree-based 

models, in order to support medical decision processes. 

Additionally, information about relevant variables for the 

outcomes prediction is provided, contributing to more 

efficient data acquisition processes.

�e main limitations of the present work are: i) miss-

ing values in the dataset, requiring imputation, ii) 

possible difficulties on algorithms training due to the 

limited single-center cohort size, iii) the independent 

validation was performed in a local set of patients only 

and iv) the web tool was not tested with multi-center 

data.

With the ongoing monitoring of new patients, the 

cohort study will increase in size, which can contribute 

to improve the predictability of imbalanced outcomes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 

org/ 10. 1186/ s12911- 021- 01562-2.

Additional �le 1. Supplementary materials regarding the training and 
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