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Abstract 
 
The simultaneous existence of short- and long-range dependence in the network traffic has exposed the limita-
tions of conventional traffic models. In this paper, we suggest fractionally integrated autoregressive moving aver-
age process (FARIMA) to model the packet process observed in network traffic. We have used different levels of 
aggregations for computing differencing parameter ‘d’. We also give the complete procedure for modeling and 
obtaining the predictions for packet process in network traffic using the FARIMA (p, d, q) model. 
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1. Introduction 

The analyses of LAN traffic [1] and of wide area network traffic [2] have challenged the 
commonly used models like Poisson process for packet arrivals. Also it is shown that the 
traffic is bursty on many time scales and can be statistically described using the notion of 
self-similarity [1]. Another related notion that has been successfully used in describing real 
packet arrival process is that of long-range dependence (LRD). The importance of LRD in 
network traffic has been studied in detail [2–4]. We believe that the use of sophisticated 
analytical models for packet traffic will help improve the design, analysis and control of 
real networks. LRD [1], in network traffic, challenges the traffic models such as Markov 
processes and autoregressive moving average (ARMA) models that are suitable for short-
range dependence (SRD) processes. However, SRD cannot be completely ruled out. On the 
contrary, we need a model which is equally good for capturing SRD and LRD processes. 
We will explore FARIMA time-series model for capturing LRD as well as SRD [5, 6] and 
forecast the process N(t) which is described below. 

 In this paper, we deal with continuous time, non-negative integer-valued process; for ex-
ample, the number of packet arrivals in an interval (t1, t2). Specifically, we will construct 
forecasting models for a process N(t)∞   

t = 0  where, N(t) = number of instances of the event  
in the interval (0, t]. In Section 3, we define the concept of LRD and in Section 4, we de-
velop the fractional ARIMA (FARIMA) time-series model as a means of modeling network 
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traffic and apply it to some real network traffic. Section 5 presents the results and conclu-
sions. 
 
2. Related work 

Similar studies were carried by Liu et al. [7], Shu et al. [8], Basu [9] and Ilow [10]. How-
ever, our study is different with respect to certain points. For example, Liu et al. [7] and 
Shu et al. [8] have estimated the Hurst parameter using periodogram-based analysis while 
we have used log–log correlogram. None of the above studies has reported diagnostic 
checks, while we have included Q–Q plot and ACF (autocorrelation function) plot of resi-
dues. These studies do not develop understanding about packet time process N(t) generated 
from the real traces, which we have described in this study. Also we have used different 
levels of aggregations for generating such processes and have demonstrated that the differ-
encing parameter d does not change with the change in aggregation scale (Table I). 
 
3. Background: Long-range dependence 

Traffic models traditionally used to analyze telephone networks exhibit a correlation struc-
ture characterized by an exponential decay. Recent analysis of the packet traffic suggests 
that the autocorrelations decay at a rate slower than the exponential. Long-memory proc-
esses have been discussed in detail by Beran [11] and time-series models that can be used to 
model such processes by Brockwell and Davis [12]. We summarize the relevant details 
from these sources. X1, X2, …, Xn are sampled observations of the given process X(t) if 
population mean and variance are µ = E(Xi) and σ 2 = var(Xi), respectively. Then we have 
autocorrelation between Xi and Xj as shown below, 

  
2
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where ν(i, j) = E[(Xi – µ)(Xj – µ)] is the autocovariance between Xi and Xj. 

 Now, if the following equation is true, 

 ( ) ,
k

kρ
∞

=−∞

= ∞∑  (2) 

the correlations decay to zero so slowly that they are not summable. We interpret it as the 
process having long memory or existence of the long-range dependence in a given station-
ary process. More formally, long-range dependence is defined as given in the following 
definition. 

Definition 2.1: Let Xt be a stationary time series with autocorrelation function ρ(k), for 
which the following holds. There exists a real number α ∈ (0, 1) and a constant c > 0 such 
that 

  lim ( )/ 1; 1, 2, ...
k

k ck kαρ −

→∞
= = . (3) 

Then Xt is called a stationary process with long memory or LRD. 
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 LRD has a number of implications [13]. First, the variance of n samples from such a  
series does not decrease as a function of n (as predicted by basic statistics for uncorrelated 
data sets). Second, the power spectrum of such a series is hyperbolic, rising to infinity at 
zero frequency reflecting the ‘infinite’ influence of the LRD in the data. Typical sample 
paths of such processes appear qualitatively the same, irrespective of the scale of observa-
tion. 
 For historical reasons, parameter H is called Hurst parameter [1]. Using the parameter, 
for a self-similar process, the autocorrelation is expressed as follows. 

 ρ(k) ~ ck2H–2, (4) 

where c is a non-negative constant. The parameter H relates to α given above as H = 1–α /2 
[11]. Thus, in terms of H, long-memory occurs for 1/2 < H < 1. 
 
4. Time-series models 

As demonstrated by You and Chandra [14], we model the Internet data traffic using time-
series models. Literature shows that many other models like fractional Brownian and Gaus-
sian noise capture the long-range behavior of packet network traffic. The reader is encour-
aged to refer Beran [11] for a detailed discussion on these models. Here we are interested in 
modeling the LRD behavior of packet traffic and also in predicting the general traffic pat-
tern. In this section, we give the complete procedure for modeling and obtaining predictions 
using the FARIMA models. 
 
4.1. Fractional ARIMA 

An autoregressive moving average model of order (p, q), denoted as ARMA (p, q) has the 
form: 
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,
p q
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which can equivalently be represented as φ(B)Xt = θ(B)Zt, where B is the backward differ-
ence operator and φ and θ are polynomials of orders p and q, respectively. If the above 
equation holds for dth difference (1–B)dXt, then Xt is called an ARIMA (p, d, q) process. 
FARIMA generalizes this notion by allowing d to be fractional. For stationarity and LRD 
we get 0 < d < 1/2. The parameter d determines the long-term behavior, whereas p, q and 
the corresponding parameters in φ(B) and θ(B) allow for more flexible modeling of short-
range properties [11]. The process is formally defined as, 
 

Definition 3.2: The ARIMA (p, d, q) process with d ∈ (–0.5, 0.5) is said to be a fraction-
ally integrated ARMA (p, q) process if Xt is stationary and satisfies the difference equation, 

 φ(B)∇dX(t) = θ(B)Zt, (6) 

where {Zt} is white noise process (0, σ2) and φ, θ are polynomials in B of degree p, q, re-
spectively. FARIMA processes are asymptotically self-similar with parameter d–1/2, where 
d = H–1/2. The ACF for FARIMA(0, d, 0) is given by, ρ(k) = ck2d–1. 
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4.2. Preliminaries 

Following conventions are commonly followed in time-series literature: B is the backward-
shift operator such that BXt = Xt–1. ∇ is the difference operator such that ∇Xt = Xt – Xt–1 or 
in terms of B, ∇ = (1 – B). p, q are non-negative integers and φ(B) and θ(B) are given by 

  φ(B) = 1 – φ1B – φ2B
2 – L – φpB

p, (7) 

and 

  θ(B) = 1 + θ1B + θ2B
2 + L + θqB

q. (8) 

θ(B) has no zeros in the unit disk {B:|B| ≤ 1} and θ(B) and φ(B) have no common zeros. 
Note that for an ARMA (p, q) process (p + q + 2) parameters, (φ1, … ,φp, θ1, … ,θq, µ, σ2

z) 
need to be estimated. For 0 ≤ d ≤ 1/2, ∇d = (1 – B)d is defined by means of binomial expansion, 
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and Γ(.) is the gamma function 
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and ∇–d is obtained similarly by replacing d in eqn (6) by –d. 
 
4.3. Estimation of Hurst parameter (H) 

The value of H for any given series Xt can be estimated using any of the methods given in 
Beran [11]. More importantly, Karagiannis et al. [15] have shown that no single method can 
be trusted to find the LRD in a given time series. However, they do not talk about log–log 
correlogram plot which we have exploited in this study for estimating the value of H. Im-
portantly, the suitability of log–log correlogram for detecting LRD in the given process is 
described in Berac [11]. Also our study differs from that of Shu et al. [8] who estimate pa-
rameter H using periodogram-based analysis. The log–log correlogram is a natural and sim-
ple diagnostic tool for estimating H. The log of the estimated ACF against the log of the lag 
is used for estimating H as follows: 

 The estimates of the ACVF, γ 
∧
(k) of the series Xt are estimated as 
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where X1, X2, … , Xn are elements of the series {Xt}, µ = (1/n)∑n  
t=1Xt, is the estimated mean 

and n, the total number of elements in the series. From the ACVF as defined above, the 
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ACF are estimated as ρ ∧(k) = γ 
∧
(k) γ 

∧
(0). The points in the plot of log|ρ(k)| against log k 

should be scattered around the straight line with negative slope approximately equal to  
2H–2. This can be easily derived from eqn (4). Thus, from the slope of the best fit line, b, 
we get H as H = 1 + b/2. d of the FARIMA process is then obtained as d = H–1/2 or in 
terms of b, d = (b +1)/2. Note that d lies in the interval (–0.5, 0.5) and LRD is defined for 
0 < d < 0.5. Processes for which d lies in the range –0.5 < d < 0 are termed intermediate 
memory processes, the practical implications of which are still not understood. We,  
however, restrict ourselves to only LRD processes. Thus, if the estimate of d lies in the in-
terval (0, 0.5), we say that the series exhibits LRD else we consider it as a short-memory 
process. 
 
4.4. Model identification and initial estimation of model parameters 

The value p is obtained by observing the partial autocorrelation functions (PACF) and the 
value of q is obtained by observing the ACF of the series Xt. As a simple rule of thumb [12] 
one draws two horizontal lines at the levels 2/ ,N± N being the total number of the terms 
in the series. Correlations outside this band are considered significant. We do not suggest 
that p and q obtained using the above method give the best possible model for the data. The 
final model is chosen according to the model selection criterion known as the Akaike In-
formation Criterion (AICC). Interestingly, the previous studies of Shu et al. [8] and Ilow 
[10] do not refer AICC for model selection. More information on AICC and its computation 
can be found in Brockwell and Davis [12]. The pair (p, q) which gives minimum AICC 
value is chosen and the estimates thus obtained are used as initial estimates for the MLE. 
 
4.5. Diagnostic checking 

Typically, the goodness of fit of a statistical model to a set of data is judged by comparing 
the observed values with the corresponding predicted values obtained from the fitted model. 
If the fitted model is appropriate, then the residuals should behave in a manner that is con-
sistent with the model. The maximum likelihood estimates 2ˆ ˆ ˆ, andφ θ σ  of the parameters 
φ, θ and σ2 are obtained. The predicted values ˆ ˆˆ ( , )tX φ θ  of Xt based on X1, …, Xt–1 are com-
puted for the fitted model. The residuals are then defined by 
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where 2 2
1 1

ˆ( ) / .t t tr E X X σ− −= −  If we were to assume that the maximum likelihood ARMA 
(p, q) model is the true process generating Xt, then we could say that 2ˆ ˆ~ (0, ).tW WN σ  The 
properties of the residuals ˆ{ }tW  should reflect those of white noise sequence Zt generating 
underlying ARMA (p, q) process. In particular, the sequence }ˆ{ tW  should be approximately 
(i) uncorrelated if Zt ~ WN(0, σ2), (ii) independent if Zt ~ IID (0, σ2), and (iii) normally dis-
tributed if Zt ~ N(0, σ2). 

 The rescaled residuals, ˆ
tR  are obtained by dividing ˆ

tW  by the estimated white noise 
standard deviations as ˆ ˆ ˆ/ .t tR W σ=  If the fitted model is appropriate, then the tR̂  will have 
properties similar to those of a WN (0, 1) sequence or of an IID (0, 1) sequence, if we make 
stronger assumption that the white noise (Zt) driving the ARMA process is independent. 
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FIG. 1. ACF of residues. FIG. 2. Q–Q plot of residues. 
 

 We have used the following diagnostic checks: 

• The sample ACF test: For large n, sample autocorrelation of an IID sequence Y1, 
Y2, …, Yn is a realization of such an IID sequence. About 95% of the sample autocorre-
lations should fall between the bounds 1.96/ ( ).n±  If we compute the sample autocorre-
lations up to lag 40 and find that more than two or three values fall outside the bounds, 
we reject the IID hypothesis (Fig. 1). 

• The Q–Q plot: Let ˆ ,tZ t = 1, …, n be the order of statistics of the rescaled residuals ˆ ,tR  
t = 1, …, n. A simple way to make a Q–Q plot is to simulate n independent realization Yt 
from the standard normal distribution. Let Yt be the corresponding order statistics. Plot 

),ˆ,ˆ( tt YZ  t = 1, …, n. Gaussianity of the rescaled residuals would lead to the plot being 
approximately linear (Fig. 2). 

 
4.6. Forecasting using FARIMA 

Numerous prediction algorithms exist for obtaining the forecasts for an ARIMA process 
[12]. Obtaining the h-step forecast for a FARIMA model is an extension of the forecasting 
method used to obtain h-step forecasts for an ARIMA model. We however use the follow-
ing approach to obtain forecasts for a FARIMA model. 

 Recall that a FARIMA (p, d, q) model is given by φ(B)∇dXt = θ(B)Zt. Denote X~  
n+h as the 

best linear predictor of Xn+h in terms of X1, …, Xn, which is also called the h-step predictor 
of Xn. Since we are assuming causality and invertibility we can write Xt as, 

  
0

,t j t j
j

X Zψ
∞
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and 

  
0

,t j t j
j

Z Xπ
∞

−
=

= ∑  (15) 

where ∑∞  
j=0 ψjB

j = θ(B)φ–1(B)(1 – z)–d. Then extending the prediction algorithm for a ARIMA 
process we can write hnX +

ˆ  as 
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are the mean squared errors of the predictors. For the purpose of computation, πjs are com-
puted by equating coefficients of same degree on either side of the equation θ(B)π(B) = 
φ(B)(1 – x)d. Similarly, the coefficients ψjs are computed from equation θ(B)ψ(B) = 
φ(B)(1 – z)–d. The upper and lower probability limits of the forecasts are: 

  2ˆ ˆ( ) ,n h n n h n hX X u E x X+ + += + −  (18) 

where u = 0.68, 1.65, 1.96 or 2.58 depending on the probability that a future value lies in 
the interval is 0.50, 0.90, 0.95 or 0.99, respectively. 
 
5. Results and conclusions 

We use the above techniques to obtain models for the publicly available Bellcore network 
traffic traces [16]. We first obtain the values of d for different aggregations of the packet ar-
rival process for the trace pAug.TL (Table I). 

 We see that there is little change in the value of d for various aggregations of the trace. 
We then form the data set of time length 100 s, with 10,000 samples, each representing 
packet arrivals during 0.01 s (Table II). The estimated model parameters for the traces 
pAug1, pAug2, pAug4 and pAug5 are shown in Tables III and IV. We illustrate the detailed 
analysis of the modeling procedure for the trace pAug1 in Figs 1 to 9. 

 Figure 3 is a plot of the trace of 200 samples. Figure 4 is a plot of ACF of the data set 
and we see that the ACF is significant for large lags. The limit 2/ ( )n is also shown in the  
plot. Figure 5 is the log–log plot of the ACF of the data. A straight line is fit to Fig. 5 and 
the slope b of the line is used in calculating the value of d. Figure 6 is a plot of the differ- 
 

    

FIG. 3. PAug4 trace. FIG. 4. ACF of data. 

Table I 
Values of d for different 
aggregations 

Aggregation d 
 

0.1 0.289860 
1.0 0.289732 
10.0 0.282991 
100.0 0.270460 

 

Table II 
Values of d for traces 
pAug1 to pAug5 

Data set d 
 

pAug1 0.247660 
pAug2 0.231502 
pAug3 0.251495 
pAug4 0.259395 
pAug5 0.286913 

 

Table III 
Model parameters for traces pAug1 to 
pAug5 (except pAug3) 

Data set (p, q) Level of φs 
   differencing 
 

pAug1 (0, 1) 0 – 
pAug2 (0, 1) 0 – 
pAug4 (0, 1) 0 – 
pAug5 (0, 2) 0 – 
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FIG. 5. Log–log plot of ACF. FIG. 6. Trace of the differenced data. 
 

    

FIG. 7. ACF of differenced data. FIG. 8. PACF of the differenced data. 
 

    

FIG. 9. h-step forecasts for (a) pAug1 and pAug2, and (b) pAug4 and pAug5, h = 100. 
 

enced series obtained after fractional differencing of the data set. Figure 7 is the plot of 
ACF of the differenced series and Fig. 8 is a plot of the PACF. We observe that ACF is sig-
nificant up to lag 2 compared to data set of the ACF plot of the samples. Figure 2, a Q–Q 
plot of the data set, shows that the plot is approximately a straight line confirming our as-
sumption that the residues tẐ  are derived from a WN (0, σ2) distribution. Figure 1 clearly 
shows that the ACF of the residues dies down rapidly. As mentioned earlier, we are inter-
ested in forecasting the general behavior of the packet arrival process. Once the FARIMA 
model has been fit to data as described in the previous sections, the h-step forecasts can be 
obtained. Figure 9 shows the forecasts obtained for the trace files pAug1, 2, 4 and 5. The 
 
 
 
 
 
 
 

(a) (b) 

Table IV 
Model parameters for traces pAug1 to pAug5 
(except pAug3) 

Data set θ s AICC µx σ2
z 

 

pAug1 0.335 4459.158 3.899 21.958 
pAug2 0.232 4494.183 3.769 23.957 
pAug4 0.259 4610.653 3.948 24.953 
pAug5 0.148 4368.004 3.271 19.940 

 



PACKET PROCESS IN NETWORK TRAFFIC USING FARIMA TIME-SERIES MODEL 39

forecasts are obtained with 90% upper and lower confidence limits. These slowly die down 
to the mean of the series indicating LRD nature. Another important conclusion is the over-
estimation in the variance of the forecasts. This is clearly seen in the large difference be-
tween the lower and upper bounds of 90% confidence and also because the values of most 
in the series lie within this bound. We may also say that the 90% confidence intervals form 
an envelope for the series being modeled. 
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