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On the pressure dependence of the rate factor in
Glen’s flow law

1. INTRODUCTION

Using the terminology and notation of Greve and Blatter
(2009), Glen’s flow law, which describes secondary creep of
polycrystalline glacier ice, reads

D ¼ AðT ,pÞ f ð�eÞ tD , ð1Þ
where D= symgrad v is the strain-rate or stretching tensor, v

is the three-dimensional velocity vector, tD is the deviatoric
part of the Cauchy stress tensor, T is the absolute tempera-

ture, p is the pressure, �e ¼ 1
2 tr tD

� �2h i1=2
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2 t
D
ij t

D
ij
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is

the effective stress, AðT , pÞ is the rate factor (softness) and
f ð�eÞ is the creep function. The latter is commonly expressed
as a power law,

f ð�eÞ ¼ �n�1e , ð2Þ
and for the stress exponent n most frequently the value n ¼ 3
is used (e.g. Hutter,1983; Cuffey and Paterson, 2010; Van
der Veen, 2013, and references therein).

As for the rate factor, it is usually expressed in the form of
an Arrhenius law,

AðT , pÞ ¼ A0 exp � Q þ pV

RT

� �
, ð3Þ

where A0 is the pre-exponential constant, Q is the activation
energy, V is the activation volume and R =8.314 Jmol–1 K–1

is the universal gas constant.
It has often been stated (e.g. Rigsby, 1958; Paterson,

1994; Hooke, 2005; Greve and Blatter, 2009; Cuffey and
Paterson, 2010) that the pressure dependence in Eqn (3) can
be properly accounted for by dropping the activation
volume V , while replacing the absolute temperature T by
the temperature relative to pressure melting T 0,

T 0 ¼ T � Tm þ T0: ð4Þ
In this expression, T0 = 273.15K, and Tm is the pressure-
dependent melting temperature of ice,

Tm ¼ T0 � �p, ð5Þ

where � = 7.42�10�8 K Pa�1 is the Clausius–Clapeyron
constant for pure ice (Hooke, 2005). Combining Eqns (4)
and (5) yields

T 0 ¼ T þ �p, ð6Þ
and the simplified rate factor with the dependence on T 0

takes the form

AðT 0Þ ¼ A0 exp
�
� Q

RT 0

�
: ð7Þ

2. CONSISTENCY OF COMPUTED AND MEASURED
ACTIVATION VOLUMES

We now investigate whether replacing the rate factor in the
form of Eqn (3) by that in the simplified form of Eqn (7) is
consistent with measured values of the activation volume V .
We start by demanding that Eqns (3) and (7) are equal, so

that their exponential arguments are equal,

Q þ pV

RT
¼! Q

RT 0
: ð8Þ

Using Eqn (6), this is equivalent to

Q þ pV

RT
¼ Q

RðT þ �pÞ ¼
Q

RT

1

1þ �p
T

: ð9Þ

A short scaling analysis with � = 7.42�10�8 K Pa�1,
p =400bar = 4�107 Pa (appropriate for the thickest ice in
recent ice sheets) and T �250K gives

� p

T
� 1:2� 10�2 � 1 , ð10Þ

so that, to a very good approximation (relative error

� ð�p=T Þ2 ¼ Oð10�4Þ), Eqn (9) simplifies to

Q þ pV

RT
¼ Q

RT
1� �p

T

� �
: ð11Þ

Solving this for the activation volume V yields

V ¼ � Q�

T
: ð12Þ

We compute numerical values of the activation volume
found in Eqn (12) for the temperature range 220–273K that
is relevant for ice in terrestrial ice sheets and glaciers. For the
activation energy Q, we follow Cuffey and Paterson (2010)

and use Q =6�104 Jmol�1 for temperatures below 263K,

and Q ¼ 1:15�105 Jmol�1 for temperatures above 263K.

This yields a range of activation volumes (units of m3 mol�1)

�2:02�10�5<V <�1:69�10�5 for 220K<T <263K,

ð13Þ
and

�3:24� 10�5<V <�3:13�10�5 for 263K<T< 273K .

ð14Þ
These results are illustrated in Figure 1.
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Fig. 1. Computed (Eqn (12), with both values of the Clausius–
Clapeyron constant � for pure and air-saturated ice) and experi-
mentally determined (Weertman, 1973; Durham and others, 1997;
error margins also shown) values of the activation volume V as a
function of the temperature T .
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Laboratory experiments on polycrystalline ice reported
by Durham and others (1997) for the temperature range
195–240K gave a value for the activation volume V of

(–1.3� 0.3)�10�5 m3 mol�1. Weertman (1973) analysed
experiments for the temperature range –8.18C to –5.98C
(265.05–267.25 K) and gave a value of (–2�0.5)�
10�5 m3 mol�1. Therefore, the computed values of Eqns (13)
and (14) are �50% larger than the experimentally deter-
mined values. When the computation is done with the

larger value � =9.8�10�8 K Pa�1 of the Clausius–Clapeyron
constant for air-saturated rather than pure ice (Hooke,
2005), this mismatch increases to about a factor 2 (see
also Fig. 1). Nevertheless, taking into account the great
difficulty in measuring this small effect, we consider this a
reasonable agreement.

3. CONCLUSION

We have demonstrated that expressing the pressure depend-
ence of the rate factor (Eqn (3)) of Glen’s flow law only by a
dependence on the temperature relative to pressure melting
is consistent, within the rather large uncertainties, with
measured values of the activation volume. Our findings
include the possibility that this very common practice may
over-predict the impact of pressure on ice deformability to
some degree. However, until more comprehensive experi-
mental data become available that will allow a more robust
assessment, we conclude that it is a valid assumption to
employ the rate factor in the simplified form of Eqn (7).
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