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Abstract

A pressure counterpart of the Vogel–Fulcher–Tammann (VFT) equation for representing the

evolution of dielectric relaxation times or related dynamic properties is discussed:

τ (P) = τ P
0 exp[DP�P(P0 − �P)], where �P = P − PSL, P0 is the ideal glass pressure

estimation, DP is the pressure fragility strength coefficient, and the prefactor τ P
0 is related to the

relaxation time at the stability limit (PSL) in the negative pressure domain. The discussion is

extended to the Avramov model (AvM) relation τ (T, P) = τ0 exp[ε(Tg(P)/T )D],

supplemented with a modified Simon–Glatzel-type equation for the pressure dependence of the

glass temperature (Tg(P)), enabling an insight into the negative pressure region. A recently

postulated (Dyre 2006 Rev. Mod. Phys. 78 953) comparison between the VFT and the

AvM-type descriptions is examined, for both the temperature and the pressure paths. Finally,

we address the question ‘Does fragility depend on pressure?’ from the title of Paluch M et al

(2001 J. Chem. Phys. 114 8048) and propose a pressure counterpart for the ‘Angell plot’.

1. Introduction

On cooling a liquid to the glass transition a tremendous

change in dynamic properties occurs [1–6]. A decade ago it

was postulated that [3] ‘determining the general behavior of

liquids near glass temperature (Tg) at high pressures is the key

problem in the challenging field of viscous liquids and the

glass transition’. Indeed, in subsequent years it was shown

that many phenomenological and theoretical predictions can

be verified only by means of comprehensive temperature and

pressure investigations [1, 4–50]. A fundamental prerequisite

in such studies is a reliable parameterization of the pressure

evolution of the dynamic properties. For their temperature

dependence under atmospheric pressure, the Vogel–Fulcher–

Tammann (VFT) relation is most often used [1–6, 51]:

τ (T ) = τ T
0 exp

(

B

T − T0

)

= τ T
0 exp

(

DT T0

T − T0

)

(1)

where DT is the fragility strength coefficient and T0 is the

VFT-based estimate of the ideal glass temperature. Similar

dependences can be written for the dielectric (structural)

relaxation time τ (T ), viscosity η(T ), DC conductivity σ(T ),

and diffusion coefficient d(T ) [1, 4–10].

It is noteworthy that Johari [52] questioned the validity of

the substitution B = DT T0, since ‘this form does not yield the

Arrhenius equation for T = 0 K’. Despite this objection, the

coefficient DT estimated via equation (1) remains one of basic

parameters characterizing the fragility of glassy systems [1–6].

The validity of the VFT equation (1) for non-atmospheric

isobars (P ≫ 0.1 MPa) has also been tested ([4, 5] and

references therein).

A simple extension of equation (1) for portraying both the

temperature and the pressure (P) behavior was used by several

groups [10, 53–57]:

τ (T, P) = τ T
0 exp

(

B ′ + a P

T − (T0 + bP)

)

. (2)

However, the linear pressure dependences of T0(P) and

B(P), assumed in equation (2), are valid only over a narrow

range of pressures, mainly for so-called ‘strong’ glass formers.

It is worth recalling that in 1967, Greet and Turnbull [58]

introduced the following relation for portraying the isothermal

pressure behavior of the viscosity of supercooled o-terphenyl:

η (T ) = ηP
0 exp

(

B

P0 − P

)

. (3)
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Turnbull et al [58, 59] also showed that the VFT

expression can be derived from the Doolittle expression [1, 60],

namely,

η (T, P) , τ (T, P) ∝ exp

[

B ′

f

]

(4)

where f = vg/vf is the fractional free volume, vg denotes

the volume at the glass transition, and vf is the free volume.

The universal value of the coefficient B ′ = 0.9 ± 0.3 was

suggested [58, 59].

The VFT equation (1) can be obtained assuming

f (T, P = const) = χT (T − T0) [58] and equation (3) taking

f (P, T = const) = αP (P0 − P) [59], where χT and αP

denote the isothermal compressibility and thermal expansion

coefficient, respectively. In subsequent years, equation (3) was

used occasionally, first by Johari and Whalley [61] for glycerol,

and much later by Paluch et al [62] for supercooled dibutyl

phthalate. However, in 1998 it was noted that it can yield

a reliable parameterization only for fragile glass formers [7].

Consequently, a new pressure counterpart of the VFT relation

(referred to herein as the PVFT), which introduced the pressure

fragility strength coefficient DP , was proposed [7]:

τ (P) = τ P
0 exp

(

DP P

P0 − P

)

. (5)

This expression can be used for strong glass formers,

because it smoothly approaches the Arrhenius pattern if P0 is

well above the moderate pressure domain, usually available

in experiments. For fragile glass formers the value of P0

can approach this range of pressures and then equation (5)

coincides with the Turnbull–Johari equation (3). Over the

last decade the PVFT equation (5) has become a key tool

for portraying the pressure evolution of dynamic properties,

including both fundamental and practical issues [4–50].

In the recent review [2] on the glass transition the

following expression was promoted as a particularly promising

alternative to the VFT equation:

τ (T ) = τ0 exp
(

C/T D
)

. (6)

This dependence was first proposed in 1931 [63], revisited

in 1976 [64] and 1987 [65], and recently obtained as the output

of models by Avramov (1998, [66]) and Zhang (2003, [67]).

The Avramov model (AvM) made it possible to include both

the temperature and the pressure behavior [66, 68, 69]:

τ (T, P) = τ0 exp

[

ε

(

Tg (P)

T

)α]

(7)

where ε = Emax/σr, σr is a dispersion of the reference state

with the related entropy, Emax is the maximum allowed energy,

α = 2CP/Z R = D is a measure of the fragility, Z is the

degeneracy of the system, CP the specific heat.

The AvM assumes that the configurational entropy is the

control parameter for the structural relaxation and thus can

account for the recently discovered thermodynamic scaling

of τ (T, P) data [34, 35]. However, it was pointed out

that equation (7) incorrectly implies that the fragility is

independent of pressure [10]. It was also found that

the temperature dependence of the half-width of the loss

peak as predicted from the Avramov model is at odds

with experimental observations [70]. Notwithstanding these

problems, the Avramov model [68, 69] yields pressure

dependences of the glass temperature which coincide with the

empirical expression of Andersson and Andersson (AA) [8],

namely [68, 69],

Tg (P) = T 0
g

(

1 +
P

	

)β/α

(8)

where β = 2α0Vm	/Z R and Vm is the molar volume. The

constant 	 describes the pressure dependence of the thermal

expansion coefficient αP = V −1(∂V /∂T )P = α0	/(	 + P).

T 0
g and α0 are the reference temperature and thermal expansion

coefficient at zero pressure.

It is noteworthy that the AA relation has become

perhaps the most popular tool for Tg(P) parameteriza-

tion [3, 5, 12–15, 17–23, 25–35, 37]. In fact, it parallels

the Simon–Glatzel (SG) equation, the key expression used

for describing the pressure evolution of the melting tempera-

ture (Tm(P)) ([71] and references therein). The ability of the

Avramov model to portray τ (T, P) or η(T, P) has been shown

in many papers [10, 47, 66, 68–70, 72–74]. Nevertheless, when

discussing the VFT and AvM descriptions of experimental data

it is worth recalling the statement from the recent review [2]:

‘no systematic analysis has investigated which of [these equa-

tions] generally give the best fit of data’.

Herein we present such a comparison, for both the

temperature and the pressure paths to the glass transition.

Modified forms of the PVFT and AvM relations are proposed,

for removing some inherent inconsistencies as well as enabling

extension into the negative pressures (isotropically stretched

liquid) domain [75–81]. All of this led to a revised answer

to the question ‘Does fragility depend on pressure?’ from the

title of [13] and to a proposal of a pressure counterpart of the

‘Angell plot’ [1–6, 82, 83].

The discussion is based on τ (T ) and τ (P) experimental

data for low molecular weight, van der Waals-type, glass-

forming liquids: diethyl phthalate [23, 41], propylene

carbonate [29] and salol [19]. We do not consider the volume-

related (τ (V )) behavior, for which an extensive discussion can

be found in a series of recent papers [34, 35, 84–86].

2. A pressure counterpart of the VFT relation

The VFT equation (1) is probably the most commonly used

expression for portraying the temperature evolution of the

structural (α-, primary, main) relaxation times τ (T ) as well as

related dynamic properties [1–6]. The linearized, derivative-

based transformation of τ (T ) data makes it possible to identify

the range of its validity, namely [41],
[

d ln τ

d (1/T )

]−1/2

=

[

Ha (T )

R

]−1/2

=
(

H ′
a

)−1/2

=
[

(DT T0)
−1/2

]

−

[

T0 (DT T0)
−1/2

]

T
= A −

B

T
(9)

where Ha(T ) denotes the apparent activation enthalpy and R is

the gas constant.

2
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A plot of (H ′
a)

−1/2 versus 1/T can yield optimal values

of parameters, namely T0 = B/A and DT = 1/AB, and can

identify the domain of validity of the VFT equation (1) prior to

the final fitting of τ (T ) data. In fact, equation (9) recalls the

so-called ‘Stickel plot’, d log10 τ/d(1/T ) versus 1/T [87, 88],

introduced to estimate the dynamic crossover temperature

(TB) between ‘dynamical domains’, i.e. temperature regions

described with different sets of parameters in the VFT relation.

The universality of the timescale at the dynamic crossover

τ (TB, PB) = 10−7±1 s is empirically supported [89].

A similar analysis can also support the PVFT (equa-

tion (5)) fit of τ (P) data, namely [41],
[

d ln τ

dP

]−1/2

=

[

Va

R

]−1/2

=
[

V ′
a

]−1/2

= (DP P0)
−1/2 P0 − (DP P0)

−1/2 P = A − B P (10)

where Va is the apparent activation volume.

A plot of (V ′
a)

−1/2 versus P can show the range of validity

of equation (5) and yield optimal values of the coefficients

P0 = A/B and DP = 1/AB prior to the final fitting of τ (P)

data [41–43]. For plots employing equations (9) and (10) the

non-sloping lines indicate the Arrhenius behavior [41].

There is a significant difference between the PVFT

equation (5) and the VFT equation (1). For the latter the

prefactor τ T
0 ranges from ∼10−12 s for molecular liquids

([1, 2, 4, 6, 41] and references therein) to ∼10−16 s

for vitrifying, orientationally disordered crystals [42, 43].

Generally, the thermodynamic domain of the liquid state

is limited by a spinodal, defining the stability limits for

homogeneous nucleation [75–81]. Hence, one may expect

the τ T
0 prefactor to be related to the relaxation time at the

high temperature liquid–gas stability limit. However, for

the PVFT equation (5) the prefactor τ P
0 is linked to the

relaxation time at the atmospheric pressure, or any pressure

P > 0.1 MPa at which measurements started for a given

isotherm. Consequently, it can take on arbitrary values ranging

from picoseconds to even seconds [4, 5, 7, 9–14, 16–46].

We suggest that prefactors for the isobaric VFT

equation (1) and a pressure counterpart should be linked to

the appropriate stability limit (spinodal) and hence approach a

similar timescale, namely τ0, τ
P

0 ∼ 10−12 s for low molecular

weight liquids. This condition can be attained with a modified

pressure counterpart of the VFT relation [49, 71]:

τ (P) = τ P
0 exp

[

DP�P

P0 − P

]

= τ P
0 exp

[

DP P − DP PSL

P0 − P

]

,

T = const (11)

where �P = P − PSL, and the prefactor τ P
0 is associated

with the relaxation time at the liquid–gas stability limit at

P = PSL < 0.

Also for this equation, a derivative-based plot of (V ′
a)

−1/2

versus P yields a linear dependence, namely [49, 71],
[

d ln τ

dP

]

=
[

V ′
a

]−1/2
= [DP (P0 − PSL)]−1/2 P0

− [DP (P0 − PSL)]−1/2 P = A + B P. (12)

In this case, P0 = A/B as for equation (10), but

1/AB = DP P0/(P0 − PSL). The comparison of the ‘new’

PVFT equations (11) and the ‘old’ PVFT equation (5) shows

that the latter is associated with unphysical loci of the gas–

liquid stability limit at PSL(T ) = 0 for arbitrary temperature.

This artifact leads to significantly different values of fragility

strength coefficients for these expressions, namely,

D‘old’
P

D‘new’
P

=
P0

P0 − PSL

. (13)

Practical possibilities for equation (11) for portraying

τ (P) data were recently shown for glycerol [49] and epoxy

resin EPON 828 [71]. It is worth stressing that the modified

PVFT equation (11) seems to be more self-consistent than

the basic VFT equation (1). First, the τ P
0 prefactor is clearly

linked to the stability limit (‘homogeneous breaking’) loci at

P = PSL. Second, equation (11) can be smoothly transformed

into an Arrhenius-type pressure dependence.

The novel PVFT equation (11) offers a possibility hardly,

if at all, formulated so far, namely, the extrapolation of

τ (P) evolution into the negative pressure domain. The

significance of the negative pressures concept for resolving

the glass transition puzzle has been pointed out several

times [1, 49, 71, 75–81]. It is noteworthy that for many

physical properties of liquids there is clear evidence for

continuous evolution from the stable hydrostatic (‘positive’)

pressures region to the inherently metastable negative pressures

(P < 0) domain. There are no hallmarks of passing

through P = 0 ([75, 76, 80, 90, 91] and references

therein). Unfortunately, determining the loci of the stability

limit (spinodal) as well as making direct measurements in

the negative pressures domain remain extremely challenging

experimental problems [76].

3. The Avramov-model-based description

When portraying τ (T ), τ (P) or η(T ), η(P) experimental

data with a given relation the question of the domain of its

validity always arises. Its inappropriate estimation can lead

to erroneous values of parameters in fitting. For instance,

this may occur if a single VFT equation is used to describe

experimental data also beyond the given dynamical domain.

However, for VFT and PVFT equations the derivative-based

analysis, discussed above, can show the domains of their

validity and yield optimal values of relevant parameters

prior to the final fitting of τ (T ) or τ (P) data. A similar

distortion-sensitive analysis can be proposed for the AvM-type

equations (6) and (7), namely,

log

[

d (ln τ )

d (1/T )

]

= log H ′
a = log (C D) + (1 − D) log T,

for P = const (14)

where C = ε(Tg)
D and D = α for the Avramov model.

The AvM equation (7) offers the possibility of describing

both the temperature and pressure dependences of dynamic

properties. Originally, the pressure behavior in equation (7)

was introduced via the Tg(P) dependence in the form of the

AA equation (8) [68, 69]. However, this expression cannot

be extended into the negative pressures region. Additionally,

3
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for the AA equation (8) values of Tg can only increase on

compressing whereas under extreme pressures the asymptotic

behavior or a maximum of Tg(P) is anticipated ([1, 49, 71] and

references therein). It also seems that the ultimate relation for

describing Tg(P) behavior should exhibit a negative pressure

asymptote ([1] and references therein). It is noteworthy that

the reference temperature T 0
g in the AA equation (8) is related

to P = 0, but in practice it is linked to the atmospheric

pressure value, to reduce the number of fitted parameters. This

has some importance for researchers on our planet, Earth.

However, for hypothetical research on Jupiter or Saturn such

estimation of T 0
g would lead to significant distortions when

using equation (8). In fact, all of these comments are valid also

for the pressure evolution of the melting temperature described

via the basic Simon–Glatzel equation ([71] and references

therein). These parasitic artifacts are absent for the recently

proposed extension of equation (8), namely [49, 71],

Tg (P) = F (P) D (P) = T 0
g

(

1 +
�P

π + P0
g

)1/b

exp

(

−
�P

c

)

(15)

where F(P) is the rising function and D(P) the damping

function; �P = P − P0
g ; P0

g and T 0
g are the reference pressure

(Pref) and temperature (Tref) from which the Tg(P) estimation

begins; c denotes the damping pressure coefficient; −π is

the negative pressure asymptote for T → 0; the coefficient

	 = π + P0
g .

For moderate pressures, Tg(P) is governed solely by the

F(P) term, whereby [49]

[

d
(

ln Tg

)

dP

]−1

= bπ + bP. (16)

The application of equation (16) can indicate the domain

of validity of equation (15) as well as the possible significance

of the damping term. It also shows that equation (15)

is governed by the pressure-invariant coefficients π and

b, estimated via a linear regression fit. On the basis of

equations (15) and (16), a form of the AvM relations with

pressure-invariant coefficients can be proposed, namely,

ln τscaled = ln

[

τ (P)

τ0

]

=
ε

T D
ref

[

Tref

(

1 +
�P

π + Pref

)1/b
]D

. (17)

The modified AvM dependence can be extended into

the negative pressures domain, in contrast to the ‘basic’

equation (7). To identify the range of its validity and to

estimate optimal values of parameters, again a derivative-based

analysis can be proposed:
[

d [ln (ln τscaled)]

dP

]−1

= D−1

[

d ln Tg

dP

]−1

= D−1 (πb + bP) = A + B P. (18)

For glass-forming materials or for extreme ranges of pressures,

the damping term (D(P)) in equation (15) may be significant.

In such a case, the following transformation of experimental

data for the modified AvM expression can be proposed:

[

d [ln (ln τscaled)]

dP
+ Dc−1

]−1

= D−1 (πb + bP) = A+ B P.

(19)

For the optimal selection of the damping coefficient c the

plot based on equation (19) should yield a linear dependence.

Subsequently, optimal values of b and π coefficients can be

estimated via the subsequent linear regression fit.

4. The comparison of VFT- and AvM-based
descriptions

In this section temperature and pressure dependences of

structural (dielectric) relaxation times (τ (T ) and τ (P)) for

diethyl phthalate (DEP) and propylene carbonate (PC) are

tested using VFT, PVFT and AvM relations, supported by the

derivative-based analysis. It is worth recalling that pressure

measurements of the dielectric relaxation time are limited to

frequencies f < 10 MHz [4, 5, 7–50], due to still existing

technical restrictions. Hence, usually τ (P) experimental data

cannot cover the timescale τ < τ(PB) ∼ 10−7 s [28, 75].

However, for DEP and PC it was possible to estimate τ (P)

behavior both above and below the crossover pressure (PB ),

due to the scaling of τ (T ) and σ(T ) data. These estimations

were based on data from [23, 41] for DEP and [29] for

PC. The analysis presented also employs Tg(P) dependences,

recalling data from [23] for DEP and [39] for PC. The latter

data have to be supplemented with the authors’ measurements

to enable a reliable derivative-based analysis to be made.

The experimental set-up, based on the BDS 80 Novocontrol

impedance analyzer, is described in [5, 49]. The glass

transition was determined by reaching the temperature at which

τ (Tg, Pg) = 100 s, where τ = 1/2π fP and fP is the peak

frequency of the dielectric loss curve. Values of Tg(P) for P =

0.14, 0.29, 0.41, 0.41, 0.72 GPa for DEP and for P = 0.6,

0.7 and 0.8 GPa for PC were determined. Values of all fitted

parameters are always given in figures presented below.

Figure 1 shows τ (T ) data for DEP portrayed using the

VFT equation (1) and the AvM-type equation (7). The

VFT parameterization invokes results of the derivative-based

analysis (equation (9)) from [41]. This parameterization led

to two sets of τ T
0 , DT and T0, associated with subsequent

dynamical domains and the crossover at τB(TB ≈ 220 K) ≈

0.7 µs. It is noteworthy that using the condition τ (Tg) = 100 s

one can estimate the ‘real’ glass transition just on the basis of

the low temperature dynamical domain (Tg < T < TB). For

the high temperature domain (T > TB) the virtual glass (Tg)

and ‘VFT ideal glass’ (T0) temperatures appear.

The inset in figure 1 present results of the derivative-based

analysis (equation (18)) focusing on the AvM-type description

(equations (6) and (7)). The parameterization obtained in this

way is shown by the dotted curve in the main part of figure 1.

The lack of dynamic crossover for the AvM-type description is

noteworthy.

Figure 2 presents results of VFT (equations (1)) and

AvM (equations (6) and (7)) parameterizations of τ (T ) data

4
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Figure 1. The Arrhenius plot of the structural relaxation times for
diethyl phthalate [23, 41] under atmospheric pressure. The solid and
the dashed curves are for the VFT description (equation (1)) in
subsequent dynamical domains T > TB and T < TB, respectively.
Values DT and T0 for these domains were obtained via the linearized,
derivative-based analysis (equation (9)) [41]. The dotted curve is
linked to AvM equations (6) and (7). Optimal values of C and D
parameters were estimated via the derivative-based analysis
(equations (14)), whose results are shown in the inset.

Figure 2. The Arrhenius plot of the structural relaxation times for
propylene carbonate [29] under atmospheric pressure. The solid and
the dashed curves are for the VFT description (equation (1)) in
subsequent dynamical domains T > TB and T < TB, respectively.
Values DT and T0 for these domains were obtained via the linearized,
derivative-based analysis (equation (9)), as shown in figure 3. The
dotted curve is linked to equation (6) and the equivalent AvM
equation (7). Optimal values of C and D parameters were estimated
via the derivative-based analysis (equation (14)), whose results are
given in figure 3.

for PC. They are based on the derivative-based analyses

whose results are given in figure 3. For the VFT description

also, two dynamical domains are visible, with the dynamical

crossover at τB(TB ≈ 195K ) ≈ 0.4 × 10−7 s. Both for

DEP and for PC the value of DT is significantly larger for

the dynamical domain Tg < T < TB than for the high

Figure 3. The derivative-based analysis of τ(T ) data for propylene
carbonate from figure 2, focusing on the validity of the VFT
description (equation (9)). A similar analysis linked to the AvM type
via equation (14) is shown in the inset. Values of parameters, relevant
for the final fits via equations (1) and (6), are given in the figure.
H ′

a = d ln τ/d(1/T ) is related to the apparent activation enthalpy.

Figure 4. The Arrhenius plot for the isothermal (T = 293 K)
pressure evolution of structural relaxation times for diethyl
phthalate [23, 41]. The solid, thick, gray curve shows the ‘old’ PVFT
equation (5). The solid ‘thin’ and the dashed curves are for the ‘new’
PVFT equation (11) in following dynamical domains. Values of DP

and P0 were estimated via the derivative-based plot (V ′
a )

−1/2 versus
P (see equations (10) and (12)). The dotted curve is related to the
AvM-type equation (17). Values of parameters C and D were
estimated using the derivative-based analysis introduced by
equation (18). Their results are shown in the inset.

temperature domain T > TB. The inset in figure 3 shows

results of the derivative-based analysis related to the AvM-type

parameterization (equation (18)).

On the basis of optimal values of D and C coefficients

obtained in the inset in figure 3, one can reduce the fitting of

τ (T ) data via equations (6) or (7) in figure 2 solely to that of

the prefactor. The resulting curve can portray the whole set of

tested experimental data, although some distortions appear.

Figure 4 shows the Arrhenius plot for the isothermal,

pressure dependence of the primary relaxation time in DEP.
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Figure 5. The Arrhenius plot for the isothermal (T ≈ 273 K)
pressure evolution of structural relaxation times for propylene
carbonate [29]. The solid and the dotted curves are for the ‘new’
PVFT equation (8), valid within dynamical domains P < PB and
P > PB . Values of P0, DP and PS were supported by the
derivative-based analysis given in figure 6. The dotted curve is
associated with the AvM equation (17), linked to the modified
SG-type equation (15) for Tg(P) evolution.

The derivative-based analysis, associated with equations (10)

and (12), yielded the following values of coefficients [34]:

A = 0.39 and B = 0.35 (for τ (s) and P (GPa)) below

the dynamic crossover pressure PB . For P > PB the

Arrhenius dependence was suggested in [34]. However, our

revised derivative-based analysis indicated the possibility of

a ‘very strong-type’ VFT behavior in this domain. Results

of parameterizations employing these results and based on

the ‘new’ PVFT equation (11) are shown by the solid and

the dashed curves in figure 4, respectively, for subsequent

dynamical domains. The ‘thick’ gray curve recalls results

from [41]: it is linked to the ‘old’ PVFT equation (5). The

difference in values of the fragility strength coefficients when

using equations (5) and (11) is noteworthy: Dold
P = 7.5 and

Dnew
P = 2.8. Only equation (11) enables an extension of τ (P)

evolution into the negative pressures domain to be made.

The inset in figure 4 shows results of the derivative-

based analysis focused on the AvM-type equation (17). The

parameters obtained in this way can be used to portray τ (P)

dependence for the entire range of pressures (figure 4), without

any hallmark when passing the dynamic crossover, clearly

manifested for the PVFT description.

Figure 5 presents the pressure behavior of dielectric

relaxation times for propylene carbonate, for a selected

isotherm. The parameterization of experimental data is

supported by values of parameters obtained using linearized,

derivative-based transformation of τ (P) whose results are

given in figure 6, both for the PVFT (equations (11) and (12))

and for the AvM-type (equations (17) and (18)) descriptions.

The behavior obtained is analogous to the one discussed

above for DEP. Also in this case the parameterization using

the modified PVFT (equation (11)) and AvM (equation (17))

expressions can be extended into the negative pressures

domain.

Figure 6. The linearized, derivative-based analysis of τ(P) data for
propylene carbonate (figure 5) focused on the validity of PVFT
equations (5) and (11). A similar analysis focused on the AvM
equation (7) supplemented with the modified SG-type equation (15)
is shown in the inset. Values of parameters obtained by the linear
regression fit, via equations (10), (12) and (18), are given in the
figure. V ′

a = d ln τ(P)/dP is related to the apparent activation
volume.

Figure 7. Pressure dependence of the glass temperature for diethyl
phthalate ([23] supplemented with the authors’ measurements)
portrayed by the modified SG-type equation (15). Values of all
relevant parameters, namely the negative pressure asymptote π and
the power exponent b, were estimated via the derivative-based
analysis shown in the inset; equation (16).

Figures 7 and 8 present the pressure evolution of the glass

temperature for DEP and for PC, respectively. The solid curves

in figures 7 and 8 show the description via the modified SG-

type equation (15). For both glass formers the estimates of π

and b values were taken from the supplementary derivative-

based analysis via equation (16). This is shown in the inset

in figure 7. We noted the negligible influence of the damping

term for the range of pressures tested. Such behavior agrees

with results obtained for di-isooctyl phthalate, for which the

D(P) term in equation (15) was significant only for P >

15 GPa [41].

6
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Figure 8. Pressure dependence of the glass temperature Tg(P) and
the VFT-based estimation of the ideal glass temperature T0(P) for
propylene carbonate, based on data from [39] supplemented with the
authors’ measurements. The solid curve is related to the modified
SG-type equation (15). Values of Tg(P) for P � 600 MPa were
determined by the authors via reaching the τ(Tg, Pg) = 100 s
condition in BDS measurements. The solid vertical arrows show
T0/Tg values on pressurizing. The dashed horizontal arrows indicate
values of �Pg/�P0 for the following isotherms, taking the values of
the negative pressure asymptotes (π) given in the figures as the
reference.

The derivative analysis yielded: (i) −π = −0.55 GPa and

b = 2.5 for DEP and (ii) −π ≈ −0.3 GPa and b = 3.6 for PC.

These results are in fair agreement with values estimated

via the AvM-based equation (17): (i) −π = −0.6 GPa and

b/D = −0.41 and hence b = 2.5 for D = 6.2 (DEP: figures 1

and 4), (ii) −π = −0.28 GPa and b/D = −0.5 which yields

b = 3.5 for D = 6.9 (PC: figures 2 and 5).

For PC the evolution of both Tg(P) and T0(P) is shown

in figure 8. The changes of the ratios Tg/T0 and �Pg/�P0

on pressurizing are noteworthy. On the basis of the SG-type

equation (15) it was possible to estimate their values, even

taking P = 0 as the reference.

Direct determination of Tg(P) dependence is a challeng-

ing experimental task associated with significant experimen-

tal problems, particularly when covering extreme pressure do-

mains. However, results presented above show that the estima-

tion of Tg(P) evolution is possible just on the basis of a single

set of τ (T ) and τ (P). Moreover, Tg(P) behavior predicted in

this way may be valid even well above the range of pressures

used in τ (P) measurements, due to the pressure-invariant char-

acter of key parameters in the SG-type equation (15). One may

expect such analysis to be applicable also for η(T ) and η(P)

or σ(T ) and σ(P) sets of data. We would like to stress the

possible significance of Tg(P) estimations as regards both fun-

damental and technological issues. The latter can be related to

the pressure induced amorphization (PIA) [92] or applications

in the pharmaceutical industry [93, 94].

5. Pressure dependence of fragility

A metric for the evolution of the structural relaxation time or

viscosity is called fragility. It was introduced via the so-called

‘Angell plot’ [82, 83], log10 η or log10 τ versus Tg/T , enabling

a common, ‘universal’ presentation of ‘dynamic’ data for

different glass-forming materials [1, 6, 82, 83]. For such plots,

so-called ‘strong’ liquids exhibit an almost linear, Arrhenius-

like, behavior. ‘Fragile’ liquids exhibit a strong nonlinearity of

the plot, showing clearly non-Arrhenius evolution of viscosity

or relaxation times. The fragility can be quantified by the

steepness index (m) which is just the slope in the Angell plot

evaluated at Tg [1, 82, 83]. The relationship between m and DT

dates to the paper of Böhmer et al [83], who noted that m =

mmin + m2
min/DT = 16 + 590/DT (mmin = log10 τ (Tg)/τ

T
0 ,

assuming τ T
0 = 10−14 s and τ (Tg) = 100 s). For m > 80

and DT < 10, liquids are considered fragile, whereas m < 30

and DT > 10 give a description of strong glass formers. All

of this can suggest the equivalence of m and DT as metrics of

the fragility [1–6, 73, 83]. It is noteworthy that the fragility

is considered one of key characteristics of glassy materials.

Several other metrics for fragility were also proposed [1, 6, 73].

One of the most important problems associated with the

concept of fragility is the question ‘Does fragility depend on

pressure?’ from the title of [13], in which consequences of the

aforementioned definition of the fragility for the description of

τ (T ) and τ (P) data via the VFT equation (1) and the PVFT

equation (5) were considered, namely,

m P(T → Tg) =

[

∂ log τ

∂
(

Tg/T
)

]P=const

T →Tg

=
1

log10 (e)

DT

(

T0/Tg

)

(

1 − T0/Tg

)2
= A +

A′2

DT

, (20)

mT

(

P → Pg

)

=

[

∂ log τ

∂
(

P/Pg

)

]T =const

P→Pg

=
1

log10 (e)

DP

(

Pg/P0

)

(

1 − Pg/P0

)2
= B +

B ′2

DP

, (21)

where A = log τ (Tg) − log τ T
0 = 2 − log τ T

0 and B =

log τ (Tg) − log τ P
0 = 2 − log τ P

0 , with τ (Tg, Pg) = 100 s,

A′ = A/ln 10, and B ′ = B/ln 10. For tests under atmospheric

pressure, m P(T → Tg) = m.

Equations (20) and (21) were obtained using the VFT

equation (1) and the PVFT equation (5), respectively.

It was concluded in [13] that: (i) ‘m P and DT are

equivalent measures of fragility if A is pressure invariant, and

thus relaxation times for different isotherms will fall on a single

master curve when plotted versus Tg/T ’ and (ii) ‘since the pre-

exponential factor in equation (5) (which is just the ambient

pressure value of τ ) varies with temperature, m P will always

decrease with decreasing temperature, so that isotherms of

τ (P) will not collapse onto a single master curve.’

Probably the fundamental the non-equivalence of m P and

mT can be recognized as the key reason for the very limited

application of the isothermal, pressure-related fragility mT in

the last few years.

As regards the isobaric fragility m P (equation (20)), the

comments recalled from [13] can be associated with changes

of T0/Tg on pressurizing (equation (20)), particularly assuming

DT ≈ const. The analysis of the behavior of m P , employing

7
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Tg(P) and T0(P) parameterizations via equation (15), is

possible for propylene carbonate (figure 8) and DGEBA

(EPON 828; see the results given in [71]).

As regards DGEBA, the value of T0/Tg changes from (a)

0.89 at P = 0.1 MPa to (b) 0.875 at P = 2 GPa [71],

which yields ma
P/mb

P ≈ 1.1 according to equation (20).

For PC, from results given in figure 8 one can estimate: (a)

T0/Tg ≈ 0.81 at P = 0.1 MPa and (b) T0/Tg ≈ 0.823

at P = 0.5 GPa, which yields m
(a)
P /m

(b)
P ≈ 0.9. Then, a

weak pressure dependence of the temperature-related, isobaric

fragility appears. However, the last term in equation (20)

can suggest the lack of a pressure dependence of m P , if the

assumption A = mmin = log10 τ T
0 = 10−14 s for T ≫

Tg is recalled [13, 83]. In the opinion of the authors the

universality of mmin, linked to the τ T
0 = 10−14 s prefactor,

may be questioned. First, different prefactors are obtained

in VFT/PVFT equations for the dynamical domains close to

and remote from the glass transition (TB, PB ) [41]. Second,

the analysis of available experimental data seems to indicate

that for Tg/T → 0 prefactors can change from ∼10−11 s for

some molecular fragile glass formers [41, 71] to ∼10−16 s for

plastic crystals [42, 43]. We wish to indicate that the pressure

dependence of τ T
0 may appear if this prefactor is linked to the

high temperature liquid–gas stability limit. It is noteworthy

that the pressure independence of the fragility m P was recently

suggested in [39], recalling the defect diffusion model [54] and

assuming the hypothetical pressure independence of the Tg/Tm

ratio. In this respect the clear decrease of the Tg/Tm ratio on

pressurizing in selenium is noteworthy: from about 0.67 to 0.5,

reported in [71] recently.

For the isothermic, pressure-related, fragility mT (equa-

tion (21)) a similar analysis can lead to confusing results, par-

ticularly when taking the atmospheric pressure P = 0.1 MPa

as the reference. This is possible when portraying Tg(P) and

T0(P) behavior via the modified SG-type equation (15), which

includes the negative pressure domain.

For PC one can estimate (figure 8):

(a) P(a)
g /P

(a)
0 ≈ 0.1 MPa/160 MPa ≈ 3 × 10−4 for T =

Tg(P = 0.1 MPa).

(b) P(b)
g /P

(b)

0 ≈ 300 MPa/903 MPa ≈ 0.33 for T =

Tg(P = 0.3 GPa).

Consequently, equation (21) yields m
(a)

T /m
(b)

T ≈ 1/100 (!)

for DP ≈ const.

For DGEBA one can conclude from results shown in [71]:

(a) P(a)
g /P

(a)

0 = 0.1 MPa/2.27 GPa ≈ 4.4 × 10−5 for T =

Tg(0.1 MPa) ≈ 256 K.

(b) P(b)
g /P

(b)
0 = 2.7 GPa/7.9 GPa ≈ 0.34 for T ≈ 292 K.

These values give m
(a)
T /m

(b)
T ≈ 3 × 10−3 (!).

Hence, both for PC and for DGEBA, the ‘anomaly’ in the

evolution of mT for P → 0 appears (!). This ‘singularity’

is the consequence of the middle term in equation (21).

A discussion of the pressure or temperature dependence of

mT via the last term in equation (21), B = log τ (Tg) −

log τ P
0 = 2 − log τ P

0 , is meaningless due the arbitrariness of

τ P
0 (T = const) values, as mentioned above.

The non-physical pressure behavior of the isothermal

fragility mT and the non-equivalence of mT and m P [13] may

be considered as consequences of the ill-defined ‘old’ PVFT

equation (5), because of the non-physical loci of the stability

limit at PSL = 0. To avoid these parasitic artifacts we propose

to correct the definition of the isothermic, pressure-related

steepness index and fragility, on the basis of the novel PVFT

equation (11), namely,

mT =

[

d log10 τ

d�P/�Pg

]T =const.

P→Pg

=
1

ln 10

DP

(

�Pg/�P0

)

(

1 − �Pg/�P0

)2

= B +
B ′2

DP

(22)

where �P = P − PSL for the given isotherm, �Pg = Pg − π ,

�P0 = P0 − π

Its application yields m
(a)
T /m

(b)
T ≈ 0.89 for PC and

ma
T /mb

T ≈ 0.86 for DGEBA, for the same isotherms as above.

For the isothermic fragility defined by equation (22) there is

no ‘singularity’ for P → 0. The weak pressure dependence of

mT along Tg(P) is seen to be consistent with the last term in

equation (22) if the link of τ P
0 to the gas–liquid stability limit

in equation (11) is recalled.

Hence, for the novel PVFT equation (11) and the modified

isothermic fragility (equation (22)) the total equivalence of mT

and m P and then the possibility of scaling τ (T ) and τ (P) data

appears. This resolves the puzzling disagreement between mT

and m P stated in [13].

Please note that in first studies on the ‘fragility under

pressure’ issue, the isothermic, pressure-related fragility was

denoted as m P and the isobaric, temperature-related fragility

as mT [10, 13, 14, 16–23]. Recently, the opposite symbols

have been used, namely mT for the isothermic steepness index

and fragility and m P for the isobaric steepness index (fragility).

Equations (20) and (21) follow this notation. Unfortunately,

a similar change can be noted also for fragility strength

coefficients DT and DP . For instance in [95] the symbol

DP was linked to the VFT equation (1) and DT to the PVFT

equation (5), contrary to the case for earlier studies. Hence, to

avoid confusion the meaning of the given set of symbols related

to the fragility should always be tested.

6. A pressure counterpart of the ‘Angell plot’

The Angell plot is probably one of the most often invoked

hallmarks of the glass transition [1–6, 73, 82, 83]. This plot

also enables a comparison of the dynamics of different glass-

forming systems to be made, irrespective of their microscopic

bases. Hence, in a natural way the question of a pressure

counterpart of the Angell plot arises. Surprisingly, there

seems to be no consistent proposal for such a plot given so

far. The simple parallel of the basic Angell plot, ln η or ln τ

versus P/Pg [96], cannot be considered as a real pressure

counterpart, for reasons indicated in the preceding section

when discussing the non-equivalence of mT and m P steepness

indexes (fragilities).

Figure 9 presents a novel proposal for a pressure

counterpart of the Angell plot which is based on the

modified PVFT equation (11) and the definition of the

8
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Figure 9. A possible pressure counterpart of the Angell plot, based
on experimental data for the isothermic, pressure evolution of
dielectric relaxation time for diethyl phthalate (T ≈ 293 K [23, 41]),
propylene carbonate (T ≈ 273 K [29]) and salol (T ≈ 343 K [19]);
�P = P − PS , �Pg = Pg − PS and PS < 0 are estimates for the
stability limit for the given liquid. Solid and dashed curves are for
PVFT (equation (11)), portraying experimental data in subsequent
dynamical domains. The experimental data presented are for
P > 0.1 MPa but the novel PVFT-based parameterizations
(equation (11), the solid curve) make an extension into the negative
pressures domain possible. The inset shows the pressure evolution of
the modified steepness index mT (P) = d log10 τ/d(�P/�Pg), for
experimental data and curves given from the main part of the plot.

steepness index introduced by equation (22): mT (P) =

log10 �P/�Pg = log10[(P − PSL)/(Pg − π)]. It collects

τ (P) data for DEP, PC, and salol. For the latter, data

were obtained via the scaling of τ (P) and η(P) dependences

reported in [19]. For salol the analysis via the PVFT

equation (11) yielded: DP = 4.5, P0 = 0.84 GPa, τ P
0 = 5 ps

for P < PB and DP = 90, P0 = 2.9 GPa, τ P
0 = 0.5 µs for

P > PB .

The inset in figure 9 shows the derivative of scaled data

from the main part of the plot, i.e. for the pressure evolution of

the steepness index mT (P) linked to equation (22): the solid

and the dashed curves are for subsequent dynamical domains,

in agreement with the main part of figure 9. When discussing

results presented in figure 9 we would like to indicate the

following issues.

(i) The derivative-based plot of scaled experimental data,

mT = dlog10 τ/d(�P/�Pg) versus �P/�Pg, shows

clear hallmarks of a change in dynamics at τ (PB) ∼

10−7 s. This may suggest that the dynamic crossover

is not an artifact associated with using VFT or PVFT

parameterization of data but a general feature of vitrifying

systems.

(ii) Although all compounds in figure 9 exhibit a nonlinear

(non-Arrhenius) evolution of relaxation times, for selected

ranges of pressures the almost Arrhenius description

seems to offer a reasonable description. This may be

the case for the high pressure dynamical domain (PB <

P < Pg), where large values of the steepness index mT

are associated with relatively large values of the fragility

strength coefficient DP . Such a situation may occur also

far away from the vitrification point, for �P/�Pg → 0,

where very small values of mT are linked to small or

relatively small values of DP . The latter may be expected

in the negative pressures domain.

(iii) A marked non-Arrhenius behavior occurs for P → PB .

(iv) One may expect all issues indicated above to be valid

also for the basic (temperature-related) Angell plot, when

recalling the equivalence of mT and m P steepness indexes

obtained above.

Both DT and DP values are constant in the given

dynamical domain and seem to increase when shifting into

the dynamical domain in the immediate vicinity of the glass

transition point (Tg, Pg) [5, 9–14, 17–26, 41–45]. Large values

of DT and DP reflect relatively small increases of m P and mT

steepness indexes on cooling or pressurizing and, vice versa,

small values DT and DP reflect significant increases of m P

and mT on cooling or pressurizing.

7. Conclusions

Herein we have analyzed the pressure evolution of dynamic

properties of supercooled liquids, using VFT-type and

Avramov-model-type expressions. A modified pressure

counterpart of the VFT expression (equation (8)) yields more

reliable determinations of the fragility strength coefficient DP ,

and also makes it possible to estimate the loci of the stability

limit at negative pressures. Estimations of this coefficient,

so far based on direct measurements, are extremely difficult

experimental tasks [75–81]. The novel PVFT equation enabled

a qualitatively revised answer to the question ‘Does fragility

depend on pressure?’ [13] to be obtained; namely it leads

to the equivalence of m P and mT steepness indexes and

related fragilities. All of this led to a proposal for a pressure

counterpart of the Angell plot, in the opinion of the authors

totally isomorphic to the basic, temperature-related Angell

plot.

The comparison of the Avramov-type (AvM) and

VFT/PVFT descriptions led to the conclusion that the latter

seems to offer a better parameterization of experimental

data. However, only for the AvM-type equation does a

single set of parameters seem to be sufficient for portraying

the extensive set of τ (T ) or τ (P) data. This can

be associated with the lack of hallmarks of dynamical

crossover for such parameterization. Nevertheless, small but

permanent distortions between the AvM parameterization and

experimental data seem to occur. They are particularly visible

for the derivative-based, distortion-sensitive analysis shown

in the insets in figures 1, 3, 4 and 6. Notwithstanding

this, the analysis of a single set of (τ (T ), τ (P)) via the

AvM-type description (equation (16)), supported by derivative

analysis (equation (17)), can yield reliable estimates of π and b

coefficients, enabling the reproducing of the Tg(P) evolution.

All of this can indicate the AvM-based description to be

interesting tool for practical and technological applications.

In conclusion, this paper has presented the discussion

of a judicious selection of formulations used to describe the

9
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evolution of dynamic properties as a function of temperature

and pressure, supported by derivative-based and distortion-

sensitive analysis. Particularly worth stressing is the inclusion

of the negative pressure domain, hardly discussed in such

contexts so far.
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