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Abstract
Informally, ‘information inconsistency’ is the property that has been observed in some
Bayesian hypothesis testing and model selection scenarios whereby the Bayesian con-
clusion does not become definitive when the data seem to become definitive. An
example is that, when performing a t test using standard conjugate priors, the Bayes
factor of the alternative hypothesis to the null hypothesis remains bounded as the t
statistic grows to infinity. The goal of this paper is to thoroughly investigate information
inconsistency in various Bayesian testing problems. We consider precise hypothesis
tests, one-sided hypothesis tests, and multiple hypothesis tests under normal linear
models with dependent observations. Standard priors are considered, such as conju-
gate and semi-conjugate priors, as well as variations of Zellner’s g prior (e.g., fixed
g priors, mixtures of g priors, and adaptive (data-based) g priors). It is shown that
information inconsistency is a widespread problem using standard priors while cer-
tain theoretically recommended priors, including scale mixtures of conjugate priors
and adaptive priors, are information consistent.
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1 Introduction

When testing a hypothesis H0 against an alternative hypothesis H1, a common
Bayesian tool is the Bayes factor, B10, which quantifies the relative evidence (or odds)
from the data for H1 against H0. A Bayes factor is called information inconsistent
if, when the evidence for the alternative hypothesis appears to be overwhelming (in
the sense that the observed effect under the alternative hypothesis becomes arbitrarily
large), the Bayes factor converges to a constant B∗ < ∞. This conflicting behavior,
which already dates back to Jeffreys (1961), is also referred to as the information
paradox (Liang et al. 2008). Note that we utilize the language of Bayes factors simply
for convenience; everything could equivalently be stated in terms of posterior prob-
abilities, e.g., there is information inconsistency if the posterior probability of H1 is
bounded away from 1 as the evidence for H1 appears to be overwhelming.

Example 1 A typical example of an information inconsistent Bayes factor is when
using Zellner’s (1986) g prior for testing the regression coefficients in a linear regres-
sion model y = γ 1n +X1θ + ε, with ε ∼ Nn(0, σ 2In), where y is a vector containing
the n responses, γ is the intercept,X1 is a n×r1 matrix containing the explanatory vari-
ables, θ is a vector with the r1 unknown coefficients that are tested, σ 2 is the unknown
error variance, 1n is a vector of length n with ones, 0 is a vector of zeros,1 In is the
identity matrix of size n, and Nn denotes a n-dimensional normal (or Gaussian) distri-
bution.When testing H0 : θ = 0 versus H1 : θ �= 0with the g prior, π0(γ, σ 2) ∝ σ−2

and π1(θ | γ, σ 2) = Nr1(θ |0, gσ 2(X′
1X1)

−1) and π1(γ, σ 2) ∝ σ−2, for some fixed
g > 0, the Bayes factor goes to (1 + g)(n−r1−1)/2 < ∞ as the evidence against H0

accumulates in the sense that |θ̂ | → ∞, where θ̂ denotes the least squares estimate of
θ and | · | denotes Euclidean norm of a vector (see also, Berger and Pericchi 2001).
Furthermore, it has also been reported that the g prior is information inconsistent when
testing one-sided hypotheses (Mulder 2014a).

In comparison with large sample inconsistency, which occurs when the evidence
for the true hypothesis against another hypothesis does not go to infinity as the sample
size grows, information inconsistency has not received much attention in the litera-
ture. In our view, both types of inconsistency are undesirable and should be avoided in
general testing procedures. The goal of this paper is therefore to explore information
inconsistency in the general setting of testing in the normal linearmodel with unknown
variance. We will consider improper as well as proper priors; conjugate priors, scale
mixtures of conjugate priors, independent priors, and adaptive priors; and precise
null hypothesis testing, one-sided hypothesis testing, and multiple hypothesis testing.
Throughout the paper, we also consider variations of Zellner’s g prior (e.g., fixed g
priors, mixtures of g priors, and adaptive (data-based) g priors) as this class of priors
is commonly observed in the literature. We show that information inconsistency typ-
ically results when using ‘standard’ conjugate or independent semi-conjugate priors,
while information consistency typically results when using more sophisticated scale
mixture or adaptive priors. We also explore the practical consequences of information

1 Throughout this paper, the symbol for the vector of zeros, 0, only receives an index to reflect its length
when its length is not directly clear from the context.
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On the prevalence of information inconsistency in normal… 105

consistency, by investigating when information inconsistency starts to manifest itself
and finding the limiting value of the Bayes factor. Note that having an unknown vari-
ance is crucial; we are not aware of any information inconsistency results for testing
in the normal linear model with known variance.

The paper is organized as follows. First the linear regression model with depen-
dent errors and some notation are introduced (Sect. 2). Subsequently, Sect. 3 explores
information consistency when testing a precise hypothesis using various prior specifi-
cations, followed by one-sided hypothesis tests in Sect. 4 and amultiple hypothesis test
in Sect. 5. We end the paper with some conclusions and recommendations in Sect. 6.

2 The linear regressionmodel with dependent errors

Throughout this paper, the focus shall be on the linear regressionmodelwith dependent
errors,

y = Xβ + ε, with ε ∼ Nn(0, σ 2Σ), (1)

where the vector y of length n contains the responses, X = [x1 . . . xK ] is an n × K
matrix containing the K predictor variables which are regressed on the K unknown
regression coefficients in β (n > K ), ε is a normally distributed error vector, σ 2 is an
unknown common variance, and Σ is a known positive definite matrix.

Three different types of hypothesis tests will be considered. First, we consider the
classical null hypothesis test of a set of linear restrictions on β against an unrestricted
alternative, i.e., H0 : Rβ = 0r1 versus H1 : Rβ �= 0r1 , where R is an r1 × K
matrix with known constants (r1 ≤ K ). Second, we consider the equivalent one-sided
hypothesis test of H0 : Rβ ≤ 0r1 versus H1 : Rβ �≤ 0r1 , where “�≤” implies that at
least one inequality goes to the other direction. Third, we briefly consider the multiple
hypothesis test H0 : Rβ = 0r1 versus H1 : Rβ ≤ 0r1 (withRβ = 0r1 excluded) versus
H2 : Rβ �≤ 0r1 . The precise Bayesian hypothesis test of a set of linear restrictions was
also investigated by Bayarri and García-Donato (2007). A Bayesian hypothesis test
with combinations of equality and one-sided constraints was, for instance, considered
by Mulder et al. (2010).

The model is reparametrized so that the linear combination of the parameters of
interest, i.e., θ = Rβ, is perpendicular to the nuisance parameters, i.e., γ = Dβ, i.e.,

[
θ

γ

]
=
[
R
D

]
β = Tβ,

where the r2 × K matrix D contains r2 = K − r1 independent rows of P⊥
RX

′Σ−1X,

where the orthogonal projection matrix is given by P⊥
R = IK −R′ (RR′)−1 R. Subse-

quently, the model can be written as

y = X1θ + X0γ + ε,

where X1 contains the first r1 columns of XT−1 that are regressed on θ and X0
contains the remaining r2 columns of XT−1 that are regressed on γ . The null hypoth-
esis can then be written as H0 : θ = 0 versus H1 : θ ∈ R

r1 , and the one-sided
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hypothesis test can be written as H0 : θ ≤ 0 versus H1 : θ �≤ 0. Thus, the
design matrix under the precise null hypothesis H0 is denoted by X0, and under
the unconstrained alternative hypothesis H1 in the precise test, it is denoted by
[X0 X1]. Further note that the ML estimates of θ and γ are independent because([XT−1]′Σ−1[XT−1])−1 = diag

((
X′
1Σ

−1X1
)−1

,
(
X′
0Σ

−1X0
)−1
)
which is a direct

consequence of the choice of D.
Throughout this paper, the free parameters under a hypothesis have a hypothesis

index to make it explicit that the parameters under different hypotheses have different
interpretations and therefore different priors. For example, the population variances
under H0 and H1 are denoted by σ 2

0 and σ 2
1 , respectively. Also, θ̂ will denote the

maximum likelihood estimate of θ .

3 Testing a precise hypothesis

The following definition will be used for information inconsistency when testing a
precise hypothesis.

Definition 1 A Bayes factor, B10, is called information inconsistent for testing H0 :
θ = 0 versus H1 : θ �= 0 if there exists a sequence {θ̂ i , i = 1, 2, . . .} that satisfies
|θ̂ i | → ∞ as i → ∞, for which the Bayes factor B10 ≤ B∗

10 < ∞.

For normal linear models, this definition is equivalent to the more general formula-
tion using the likelihood ratioΛ10, as proposed by Bayarri et al. (2012). The definition
implies that an information consistent Bayes factor and the classical likelihood ratio
test (using the usual F or t statistic) result in identical conclusions as Λ10 → ∞.

3.1 Conjugate priors

In the conjugate case, the conditional prior of θ | σ 2
1 under H1 has a multivariate

normal distribution and the marginal prior of σ 2
t , for t = 0 or 1, has a scaled inverse

Chi-squared distribution, resulting in

π1(θ , γ 1, σ
2
1 ) = π1(θ | σ 2

1 ) × π1(γ 1) × π1(σ
2
1 )

∝ Nr1(θ |0, σ 2
1 Ω) × 1 × inv-χ2(σ 2

1 |s21 , ν1) (2)

π0(γ 0, σ
2
0 ) = π0(γ 0) × π0(σ

2
0 )

∝ 1 × inv-χ2(σ 2
0 |s20 , ν0), (3)

where s20 and s
2
1 are prior scale parameters and ν0 and ν1 are prior degrees of freedom

for the error variance under the two different hypotheses H0 and H1, respectively.
The scaled inverse Chi-squared distribution is used (instead of the inverse gamma
distribution) because of the natural relation between the prior degrees of freedom νt
and the sample size n (Gelman et al. 2004). When setting the prior degrees of freedom
equal to νt = 0, we obtain the objective improper prior, πt (σ

2
t ) ∝ σ−2

t , for t = 0 or

1, and when additionally setting Ω = g
(
X′
1Σ

−1X1
)−1

, we obtain Zellner’s g prior.
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The use of improper priors in testing for common “group invariant” parameters, such
as the variances, is justified in Berger et al. (1998) and further discussed in the current
testing problem in Bayarri et al. (2012). The conditional prior for θ is centered at the
null value of 0, as is common in testing and model uncertainty, but any other (fixed)
centering could be used without affecting the results that follow.

Denoting the ML estimates by θ̂ = (X′
1Σ

−1X1
)−1

X′
1Σ

−1y and γ̂ = (X′
0Σ

−1

X0
)−1X′

0Σ
−1y and the sums of squares by s2y = (y − X1θ̂ − X0γ̂ )′Σ−1(y − X1θ̂ −

X0γ̂ ), a standard calculation yields that the Bayes factor of H1 against H0, based on
the conjugate priors in (2) and (3), is

B10 = C1 ×

(
s21ν1 + s2y + θ̂

′ ((
X′
1Σ

−1X1
)−1 + Ω

)−1
θ̂

)−(n+ν1−r2)/2

(
s20ν0 + s2y + θ̂

′
X′
1Σ

−1X1θ̂
)−(n+ν0−r2)/2

, (4)

where the constant is

C1 = (ν1/2)ν1/2s
ν1
1 �
(

ν0
2

)
�
( n+ν1−r2

2

)
(ν0/2)ν0/2s

ν0
0 �
(

ν1
2

)
�
( n+ν0−r2

2

)2(ν1−ν0)/2|Ω

+(X′
1Σ

−1X1)
−1|− 1

2 |X′
1Σ

−1X1|− 1
2 .

The Bayes factor depends on both θ̂ and s2y , which are independent. We will thus
assume that s2y is fixed. The following result is immediate.

Lemma 1 As |θ̂ | → ∞, theBayes factor in (4) satisfies B10 → 0 if ν0 < ν1; B10 → ∞
if ν0 > ν1; and if ν0 = ν1,

B10 ≤ C1

⎛
⎜⎝lim sup

|θ̂ |→∞

θ̂
′
X′
1Σ

−1X1θ̂

θ̂
′ ((

X′
1Σ

−1X1
)−1 + Ω

)−1
θ̂

⎞
⎟⎠

(n+ν−r2)

2

= C1 (1 + λmax)
(n+ν−r2)/2 < ∞,

where λmax is the largest eigenvalue of X′
1Σ

−1X1Ω .

Remark 1 Setting ν0 < ν1 seems logical because it implies that the prior for σ 2
1 is

more concentrated than the prior for σ 2
0 (consistent with a nonzero mean explaining

some of the variation compared to a zero mean). This choice, however, results in a
disastrously information inconsistent Bayes factor, with the conclusion being that the
null hypothesis is certainly true when |θ̂ | → ∞.

Remark 2 Setting ν0 = ν1 is the usual choice, which still results in an information
inconsistent Bayes factor. Note that the prior degrees of freedom would be set to 0 in
the objective Bayesian approach. The impact of this inconsistency will be discussed
below for the special case of the univariate t test.
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Remark 3 Setting ν0 > ν1 would not be a logical choice because the prior for σ 2
0 is

then more concentrated in the tails than the prior for σ 2
1 , even though the regression

coefficient θ under H1 can explain some of the variation in the data. The resulting
Bayes factor, however, is information consistent. A special case of this choice arises
from setting the prior for the variance under H0 to be proportional to the conditional
prior of the variance given θ = 0 under H1, i.e., π0(σ

2) = π1(σ
2 | θ = 0) =

inv-χ2(σ 2| ν1
ν1+r1

s21 , ν1 + r1), so that ν0 = ν1 + r1. The Bayes factor can then be

expressed as the Savage–Dickey density ratio (Dickey 1971), B10 = π1(θ=0|y)
π1(θ=0) , where

the marginal prior and the posterior of θ have a multivariate Student t distribution.

Remark 4 The definition of information inconsistency in this paper is a purely analytic
definition; how does the function B10 behave as |θ̂ | → ∞, while s2y > 0 remains
fixed. The statistical scenario in which this will most commonly arise is when θ

itself grows increasingly large, with σ 2 staying constant, consistent with the notion
that there should then be overwhelming evidence against H0. Indeed, the definition
of conditional Lindley’s paradox in Som et al. (2016), which is closely related to
information consistency, is formally based on the limiting behavior of parameters.
We utilize the analytic version of information inconsistency because it captures the
essential behavior without having to deal with probabilistic issues, and also because
it is remarkably general in certain situations. For instance, with the standard objective
prior having ν0 = ν1 = 0, one can divide through by s2y in (4), and state information

inconsistency in terms of the statistic |θ̂ |/sy → ∞, which covers many possible
situations in terms of the true parameters.

3.1.1 Practical implications for a univariate test under dependence

The practical importance of information inconsistency is explored for the objective
prior with ν1 = ν0 = 0 for a univariate t test of H0 : θ = 0 versus H1 : θ �= 0
with correlated data. Specifically, consider r1 = 1, r2 = 0, X1 = 1n , and Ω = 1,
with Σ being the correlation matrix with identical correlations ρ in the off-diagonal

elements. The t-statistic, t = θ̂
√

1′
nΣ

−11n
sy/

√
n−1

, then has a t-distribution with n − 1 degrees

of freedom under H0. The Bayes factor in (4) can then be expressed as a function of
the t-statistic, namely

B10(ρ) =
(
1 + n

1 + (n − 1)ρ

)−1/2 (
1 − nt2

[t2 + n − 1][n + 1 + (n − 1)ρ]
)−n/2

.

(5)
The limiting value of the Bayes factor, as |t | goes to infinity, is

lim|t |→∞ B10(ρ) =
(
1 + n

1 + (n − 1)ρ

)−1/2 (
1 − n

n + 1 + (n − 1)ρ

)−n/2

=

⎧⎪⎨
⎪⎩

(1 + n)(n−1)/2, if ρ = 0;(
1 + 2n

n+1

)−1/2 (
3n+1
n+1

)n/2 ≈ 3(n−1)/2, if ρ = 0.5;
2(n−1)/2, if ρ = 1.
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Table 1 Limiting values of the Bayes factor for a univariate t test as |t | → ∞ for different choices of the
sample size n and the correlation ρ

n 2 5 7 10 20

ρ = 0

Limit 1.73 36 512 4.85 × 104 1.79 × 1011

B10 for t = 4 1.55 6.36 12.21 23.61 66.20

ρ = 0.5

Limit 1.53 7.10 20.8 106 2.01 × 104

B10 for t = 4 1.42 3.46 5.31 8.54 20.71

ρ ≈ 1

Limit 1.41 4 8 22.6 724

B10 for t = 4 1.34 2.76 3.44 4.86 9.47

p value for t = 4 0.156 0.016 0.0071 0.0031 0.00077

1/[−ep log p] 2.25 7.81 13.47 24.40 72.01

Additionally, Bayes factors and two-sided p values are givenwhen t = 4. The approximation 1/[−ep log p]
is an upper bound of the evidence against H0 (Sellke et al. 2001)

Hence, the correlation can dramatically affect the situation. Table 1 provides the lim-
iting value of the Bayes factor as |t | goes to ∞ for different choices of the correlation
ρ and different sample sizes varying from n = 2 to a sample size of n = 20. The
table also provides the Bayes factor when t = 4 to check whether inconsistency starts
coming into play for a large t value. As comparisons, the corresponding two-sided p
values are also provided, as well as the upper bound B10 < 1/[−ep log p], which is a
bound over a large nonparametric class of priors [derived in Sellke et al. (2001)].

When there is zero correlation, the limit (n+1)(n−1)/2 is large for sample sizes larger
than 6, so that information inconsistency is not problematical from a practical point of
view. For large correlations on the other hand, and especially when ρ is close to 1, the
limiting values can be quite small, arguing against the use of objective conjugate priors.

Figure 1 displays the logarithm of the Bayes factor as a function of log10(t) when
using conjugate priors (solid lines) and n = 7, ρ = .5, s2y = n − 1 = 6, s20 = s21 = 1,
and different choices for the prior degrees of freedom, namely (ν0, ν1) = (0, 0), (1, 2)
or (2, 1). As can be seen, if ν0 = ν1 = 0, the logarithm of the Bayes factor converges
to log10(20.8) = 1.32 (Table 1). Furthermore, if ν0 < ν1 (or ν0 > ν1), the evidence
goes to ∞ for H0 (or H1) as t → ∞ implying information inconsistency (or infor-
mation consistency). The results are qualitatively similar when using other values for
the prior scales.

It is natural to ask if information inconsistency also occurs if ρ is unknown. The
answer is yes, as shown in the following lemma.

Lemma 2 If ρ > 0 is unknown with prior density π(ρ), and the same priors are
assumed for the other parameters, then, for t2 > n − 1,

B10(ρ) ≤ (1 + n)−1/2
(
1 − nt2

(t2 + n − 1)(n + 1)

)−n/2

which converges to (1 + n)(n−1)/2 as |t | → ∞, implying information inconsistency.
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Fig. 1 The Bayes factor B10 based on the conjugate prior (solid line) and independence prior (dashed line)

as a function of t values when n = 7, ρ = .5, s2y = n − 1 = 6, s20 = s21 = 1, and different choices for the
prior degrees of freedom ν0 and ν1

Proof Calculus shows that, for t2 > n − 1, (5) is a decreasing function of ρ on [0, 1]
and hence is maximized at

B10(0) = (1 + n)−1/2
(
1 − nt2

(t2 + n − 1)(n + 1)

)−n/2

.

We complete the proof by showing that

B10(ρ) =
∫
p1(y|ρ)π(ρ)dρ∫
p0(y|ρ)π(ρ)dρ

≤ B10(0). (6)

Indeed, (6) is equivalent to

∫
[p1(y|ρ) − B10(0)p0(y|ρ)]π(ρ)dρ ≤ 0,

which is true because [p1(y|ρ) − B10(0)p0(y|ρ)] ≤ 0 is equivalent to B10(ρ) ≤
B10(0), ending the proof. ��

The restriction to ρ > 0 is not necessary, but simplifies the proof.

3.2 Mixtures of conjugate priors

Although use of conjugate priors in testing is common, it has long been argued [starting
with Jeffreys (1961)] that fatter-tailed prior distributions should be used.One such class
that is increasingly popular is the class of scale mixtures of conjugate priors. This class
results in information consistent Bayes factors if the prior on g is thick enough, as
shown by the following lemmas which generalize the result in Liang et al. (2008) for
ν0 = ν1 = 0, Σ = I, and Ω = g(X′

θΣ
−1Xθ )

−1.

Lemma 3 Let θ | g, γ 1, σ
2
1 ∼ Nr1(0, gσ

2
1 Ω), where σ 2

1 has the prior specified in (2)
and g has a prior with density π(g). If ν0 > ν1, any π(g) with positive support yields
an information consistent B10. The condition
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∫ ∞

0
(g + 1)(n−r1−r2+ν1)/2π(g)dg = ∞

is necessary and sufficient for information consistency whenever ν0 = ν1, and neces-
sary whenever ν0 < ν1.

Proof See “Appendix A”.
The maximum number of finite moments that the prior on g can have to achieve

information consistency increases with the sample size n and decreases with the num-
ber of predictors K = r1 + r2. Lemma 3 gives us a complete description for all scale
mixtures of conjugate priors whenever ν0 ≥ ν1, but only gives us a necessary con-
dition for information consistency for ν0 < ν1. The lemma below characterizes the
behavior of polynomial-tailed priors on g in this latter case and provides partial results
for priors with thinner- and thicker-than-polynomial priors on g. ��
Lemma 4 Suppose ν0 < ν1 and let θ | g, γ 1, σ

2
1 ∼ Nr1(0, gσ

2
1 Ω), where σ 2

1 has the
prior specified in (2) and g has a prior with density π(g). Then, the following are true:

1. If there exist 0 < M < ∞ and 0 < K < ∞ such that for all g ≥ M,π(g) ≥ Kg−α

for α > 1, B10 is information consistent whenever α < (n − r1 − r2 + ν0)/2+ 1.
2. If there exist 0 < M ′ < ∞ and 0 < K ′ < ∞ such that for all g ≥ M ′,

π(g) ≤ K ′g−α for α > 1, B10 is information inconsistent whenever α ≥ (n −
r1 − r2 + ν0)/2 + 1.

[NB: All of the priors on g considered in Liang et al. (2008) satisfy both conditions.]

Proof See “Appendix B”.
Note that the Zellner and Siow prior (1980) (which was the first proposed informa-

tion consistent prior for this situation) and the hyper-g prior (Liang et al. 2008) satisfy
both conditions because they have polynomial tails. ��

3.3 Independence priors

3.3.1 Semi-conjugate prior

Afeature of the conjugate prior that is sometimes questioned is the dependence induced
between θ and σ 2; in objective Bayesian analysis, this is hard to avoid (only σ is
available to provide an objective scale for θ), but it does seem rather arbitrary. For
example, Moran et al. (2018) advocated the use of independent priors as dependent
conjugate priors may result in severe underestimation of the error variance in variable
selection problems. Hence, it is of interest to also investigate information consistency
using independent semi-conjugate priors of the form

π1(θ , γ 1, σ
2
1 ) = π1(θ) × π1(γ 1) × π1(σ

2
1 )

∝ N (θ |0,Ω) × 1 × inv-χ2(σ 2
1 |s21 , ν1)

π0(γ 0, σ
2
0 ) = π0(γ 0) × π0(σ

2
0 )
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∝ 1 × inv-χ2(σ 2
0 |s20 , ν0).

With these semi-conjugate priors, the Bayes factor becomes

B10 = C2 ×
∫ (

ν1s21 + s2y + (θ − θ̂)′X′
θΣ

−1X1(θ − θ̂)
)− n−r2+ν1

2
N (θ |0,Ω)dθ

(
ν0s20 + s2y + θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν0

2

,

(7)

where

C2 = (ν1/2)ν1/2s
ν1
1 �
(

ν0
2

)
�
( n+ν1−r2

2

)
(ν0/2)ν0/2s

ν0
0 �
(

ν1
2

)
�
( n+ν0−r2

2

)2(ν1−ν0)/2.

Lemma 5 As |θ̂ | → ∞, the Bayes factor in (7), based on the independent semi-
conjugate prior, behaves as follows:

B10 →
⎧⎨
⎩
0 if ν0 < ν1;
1 if ν0 = ν1;
∞ if ν0 > ν1.

Proof See “Appendix C”. ��
Note that, in the typical case of ν0 = ν1, we observe an even worse case of informa-

tion inconsistency than for the conjugate prior because the relative evidence between
H1 and H0 goes to 1 when there appears to be overwhelming evidence for H1; in
contrast, for the conjugate prior case, the limiting Bayes factor—while nonzero—was
at least exponentially small in n.

The intuition behind this result is that very large θ̂ is equally unlikely under H1 and
H0, due to the light-tailed normal prior for θ under H1. Furthermore, the limits are
the same as in the conjugate case if ν0 �= ν1. Hence, the choice of the prior degrees of
freedom plays a crucial role in information inconsistency, even when the variance is
a priori independent of θ .

Figure 1 also displays the Bayes factor, based on the independence prior, as a
function of log10(t) for the univariate t test when the data correlation is ρ = .5
(dashed line). As can be seen, the Bayes factor based on the independence prior and
the conjugate prior with the same hyperparameters is approximately equal for absolute
t values smaller than approximately log10(.5). For larger t values, the flatter tails of
the independence priors start to have an effect resulting in a decrease in the Bayes
factor, relative to the Bayes factor based on the conjugate priors.

3.3.2 Fatter-tailed independence priors

It is somewhat unfair to use an independent normal prior for model comparison here
since, from Jeffreys (1961), the use of fatter-tailed priors has been recommended. To
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keep the discussion of fatter-tailed priors simple,we consider only the one-dimensional
case (i.e., r2 = 0) and restrict the prior π1(θ) to be a t-distribution with mean 0, scale
τ (fixed) and degrees of freedom ν, i.e.,

π1(θ) = �((ν + 1)/2)√
νπ �(ν/2)τ

(
1 + θ2

ντ 2

)− ν+1
2

.

Then Theorem 3.3 in Fan and Berger (1992) shows that, as |θ̂ | → ∞,

B10 = C

�((n∗+1)/2)√
n∗π �(n∗/2)

√
V

(
1 + θ̂2

n∗V

)− n∗+1
2 + �((ν+1)/2)√

νπ �(ν/2)τ

(
1 + θ̂2

ντ 2

)− ν+1
2

(
ν0s20 + s2y + θ̂ ′X′

θΣ
−1Xθ θ̂
)− n+ν0

2

×(1 + o(1)),

where n∗ = n + ν1 − 1, V = (ν1s21 + s2y )/[n∗X′
θΣ

−1Xθ ] and

C = (ν1/2)ν1/2s
ν1
1

√
n∗π �(n∗/2)

√
V

� (ν1/2) (ν1s21 + s2y )
(n+ν1)/2

.

Thus, as |θ̂ | → ∞,

B10 →
⎧⎨
⎩
0 if n + ν0 < min{n − 1 + ν1, ν + 1};
constant if n + ν0 = min{n − 1 + ν1, ν + 1};
∞ if n + ν0 > min{n − 1 + ν1, ν + 1}.

Since n ≥ 2, if 0 < ν < 1 it will be true that n + ν0 > min{n − 1 + ν1, ν + 1} so
that B10 will be information consistent. For the commonly used Cauchy prior (ν = 1),
information consistency also holds, except for the case when n = 2 and ν0 = 0
(this last corresponding to the objective prior for σ 2

0 ). It is interesting that information
consistency does hold for this last case when π1(θ) is chosen to be Cauchy(0, σ1) (cf.
Liang et al. 2008) and ν1 = 0; thus, once again, insisting on prior independence of σ 2

1
and θ only appears to worsen the problem of information inconsistency.

3.4 Adaptive priors

Another approach to Bayesian hypothesis testing is to let the prior under H1 adapt to
the likelihood, as in George and Foster (2000) and Hansen and Yu (2001).

Example 2 For the g prior in the t test, when the t-statistic t =
√

θ̂
′
X′
1Σ

−1X1θ̂

s2y/(n−1)
> 1, the

marginal likelihood under H1 is maximized for the choice g = n−r2−r1
r1(n−1) t

2 − 1. The
Bayes factor for this choice equals
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B10 =
(

r1(n − 1)

t2(n − r1 − r2)

) r1
2
(

(n − 1 + t2)(n − r1 − r2)

(n − 1)(n − r2)

) n−r2
2

,

which is information consistent. For a univariate t test, with r1 = 1 and r2 = 0, the

resulting Bayes factor can be expressed as B10 = 1
|t |
(
n−1+t2

n

) n
2
.

The following lemma generalizes the result in Liang et al. (2008) for ν0 = ν1 = 0,
Σ = I, and Ω = g(X′

θΣ
−1Xθ )

−1.

Lemma 6 Let θ | g, γ 1, σ
2
1 ∼ Nr1(0, gσ

2
1 Ω), where σ 2

1 has the prior specified in (2).
If g > 0 is set by maximizing B10, information consistency holds.

Proof See “Appendix D”. ��
Lemma 6 establishes information consistency for all ν0 and ν1. This is in contrast to

the results in previous sections, where the behavior of B10 depends (sometimes rather
strongly) on ν0 and ν1.

4 One-sided hypothesis testing

The following definition will be used for information consistency for a one-sided
testing problem.

Definition 2 A Bayes factor is information consistent, for a one-sided hypothesis test
of H0 : θ ≤ 0 versus H1 : θ �≤ 0, if B10 → ∞ as |θ̂ | → ∞ with at least one
coordinate of θ̂ going to ∞, and B10 → 0, as all coordinates of θ̂ go to −∞. If this
does not hold, the Bayes factor is called information inconsistent.

We shall denote the subspaces under H0 and H1 as Θ0 = {θ | θ ≤ 0} and
Θ1 = {θ | θ �≤ 0}, respectively.

4.1 Conjugate prior

When testing nonnested hypotheses, it is common to formulate an encompassing prior
π on the joint space Θ = Θ0 ∪ Θ1 and specify truncations of this prior under H0
and H1 (e.g., Berger and Mortera 1999; Klugkist and Hoijtink 2007). As in the null
hypothesis test, the encompassing conjugate prior is centered on the boundary of the
subspaces under investigation, i.e.,

π(θ , γ , σ 2) ∝ N (θ |0, σ 2Ω) × inv-χ2(σ 2|s2, ν), (8)

with a flat improper prior for γ . The priors under the nonnested hypotheses Ht , for
t = 0 or 1, can then be expressed as

πt (θ | σ 2) = π(θ | σ 2)IΘ t (θ)/Pπ (θ ∈ Θ t | σ 2), (9)
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πt (σ
2) = π(σ 2), and πt (γ ) = π(γ ), with the denominator in (9) being equal to

the conditional prior probability of Θ t under the joint prior on Θ , i.e., Pπ (θ ∈ Θ t |
σ 2) = ∫Θ t

N (θ |0, σ 2Ω)dθ > 0.
The Bayes factor for the one-sided hypothesis test based on the conjugate priors

can then be expressed as

B10 =
(
Pπ (θ ≤ 0 | σ 2 = 1)−1 − 1

)−1 (
Pπ (θ ≤ 0 | y)−1 − 1

)
. (10)

The derivation is similar to that in Mulder (2014a). The prior and posterior proba-
bilities that the constraints hold under the encompassing model can be computed as
the proportion of draws satisfying the constraints. Also note that the conditional prior
probability of θ ≤ 0 is completely determined by the prior covariance matrix Ω and
is independent of σ 2 [therefore, we can set σ 2 = 1 in (10)]. This is a direct result of
centering the encompassing prior on the point of interest 0. For example, if Ω = Ir1 ,
then Pπ (θ ≤ 0 | σ 2) = 2−r1 , ∀σ 2 > 0. In the g prior with Ω = gσ 2(X1Σ

−1X1)
−1,

the prior probability is completely determined by the covariance structure of the pre-
dictors.

As can be concluded from (10), a Bayes factor for a one-sided hypothesis test is
information consistent if Pπ (θ ≤ 0 | y) → 0 as |θ̂ | → ∞ with at least one coordinate
of θ̂ going to ∞, and Pπ (θ ≤ 0 | y) → 1 as all coordinates of θ̂ go to −∞.

Lemma 7 Pπ (θ ≤ 0 | y) is bounded away from 0 and 1 for all y. Hence B10 is
information inconsistent.

If θ̂ = cv and c → ∞, then

Pπ (θ ≤ 0 | y) → Pπ (ξ ≤ 0 | y),

where ξ has a multivariate t distribution with mean

v∗ = (X′
1Σ

−1X1 + Ω−1)−1X′
1Σ

−1X1v

(n + ν − r2)−1/2(v′((X′
1Σ

−1X1)−1 + Ω)−1v)1/2
,

scale matrix (X′
1Σ

−1X1 + Ω−1)−1, and n + ν − r2 degrees of freedom.

Proof See “Appendix E”. The same result can be shown to hold (by essentially the
same argument) if a proper conjugate prior is used for γ . ��

4.1.1 Practical implications for a univariate one-sided test under dependence

We investigate the practical importance of information inconsistency for a univariate
one-sided t test under dependence of H0 : θ ≤ 0 versus H1 : θ > 0, with ν = 0, r1 =
1, r2 = 0, X1 = 1, Ω = 1, and Σ = ρJn + (1 − ρ)In , so that Pπ

(
θ ≤ 0 | σ 2

) = 1
2 .

Based on Lemma 7, the Bayes factor is then given by
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Table 2 Limiting values of the Bayes factor for a one-sided univariate t test as t → ∞ for different choices
of the sample size n and the correlation ρ

n 2 5 7 10 20

ρ = 0

Limit 9.90 486 9.45 × 103 1.26 × 106 1.85 × 1014

B10 for t = 4 8.62 78.9 199 510 2.40 × 103

ρ = 0.5

Limit 7.19 57.2 199 1.21 × 103 4.02 × 105

B10 for t = 4 6.50 25.5 44.7 81.5 238

ρ ≈ 1

Limit 5.83 25.5 59.3 197 8.57 × 104

B10 for t = 4 5.37 14.7 22.4 35.2 80.9

One-sided

p value for t = 4 0.078 0.008 0.0036 0.0016 0.0038

Additionally, Bayes factors and one-sided p values are given when t = 4

Fig. 2 The Bayes factor B10 for
the one-sided hypothesis test
based on the conjugate prior
(solid line) and independence
prior (dashed line) as a function
of t values when n = 7, ρ = .5,
s2y = n − 1 = 6, and setting the
objective prior to be improper
via ν = 0

B10 = Tn

⎛
⎝−
√

n2

1 + (n − 1)ρ + t−2(n − 1)(1 + n + (n − 1)ρ)

⎞
⎠

−1

− 1

→ Tn
(
−n(1 + (n − 1)ρ)−

1
2

)−1 − 1, (11)

as t → ∞, where Tν(·) denotes the cdf of a univariate Student t distribution with ν

degrees of freedom. Note that as t → −∞, B10 converges to the reciprocal of (11).
Table 2 provides the limiting values of the Bayes factors and Bayes factors in

the case of a relatively large t value of 4 for different sample sizes and correlations.
When comparing Table 2 with Table 1, we can conclude that the practical importance
of information inconsistency for one-sided hypothesis testing is considerably less
problematic in comparison with the null hypothesis test. Finally, Fig. 2 (solid line)
displays the Bayes factor for the one-sided hypothesis test as a function of the t value
based on n = 7, ρ = .5, s2y = n − 1 = 6, and setting the objective improper based on
ν = 0.
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4.2 Mixtures of conjugate priors

We provide the following necessary and sufficient condition for information consis-
tency for a scale mixture of conjugate normal priors in a one-sided hypothesis test.

Lemma 8 Let θ | g, σ 2 ∼ Nr1(0, gσ
2Ω), where σ 2 has the prior specified in (8) and

g has a prior with density π(g), and let w = E(θ | g, y). Assume that if there exists
i such that θ̂i → +∞, there exists j such that w j > 0. Alternatively, assume that if
θ̂i → −∞ for all i , then wi < 0 for all i . [For instance, this condition is satisfied if θ
is univariate or Ω ∝ (X ′

θΣ
−1Xθ )

−1]. Then, the condition

∫ ∞

0
(g + 1)(n−r1−r2+ν)/2π(g)dg = ∞

is necessary and sufficient for information consistency.

Proof See “Appendix F”. ��

4.3 Independence prior

The independence semi-conjugate encompassing prior is given by

π(θ , γ , σ 2) ∝ N (θ |0,Ω) × inv-χ2(σ 2|s2, ν). (12)

The truncated priors of θ under the nonnested hypotheses are as in (9), except that the
normalizing constant Pπ (θ ∈ Θ t ) is the marginal prior probability of Θ t .

The Bayes factor for the one-sided hypothesis test based on the independence prior
can again be expressed as

B10 =
(
Pπ (θ ≤ 0)−1 − 1

)−1 (
Pπ (θ ≤ 0 | y)−1 − 1

)
, (13)

but note that the posterior probability is no longer available in closed form.

Lemma 9 As |θ̂ | → ∞ and at least one coordinate of θ̂ goes to ∞, the Bayes factor
of H1 : θ �≤ 0 versus H0 : θ ≤ 0 based on the independence encompassing prior in
(12) satisfies

B10 →
(
Pπ (θ ≤ 0)−1 − 1

)−1
.

Proof See “Appendix G”. ��
Thus, as in null hypothesis testing, the independence prior results in a serious

violation of information consistency because the evidence in the data of H1 relative
to H0 goes to 1 when the evidence against H0 appears to be overwhelming. For
completeness, the Bayes factor for the one-sided hypothesis test is also displayed in
Fig. 2 (dashed line), illustrating the extreme form of information inconsistency.
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4.4 Adaptive priors

An adaptive prior can be specified where the prior covariance matrix of θ is adapted
to the likelihood such that the Bayes factor is maximized for the hypothesis that is
supported by the data (i.e., maximize B01 if θ̂ ≤ 0, andmaximize B10 elsewhere). Here
we show that an adaptive g prior results in an information consistent Bayes factor.

Lemma 10 The Bayes factor based on the g prior, with gmax = argmaxg{B01} if

θ̂ ≤ 0 and gmax = argmaxg{B10} if θ̂ �≤ 0, is information consistent for one-sided
hypothesis testing.

Proof A proof is given in “Appendix H”. ��
As shown in the proof, the choice for g that maximizes the Bayes factor is obtained

by letting g go to∞ (see also, Mulder 2014a). As a result of letting the prior variances
go to infinity, the posterior is not shrunk toward the prior mean, which is sufficient
to establish information consistency. Therefore, the methods of Mulder (2014b) and
Gu et al. (2014) are also information consistent. A potential issue of letting g go
to infinity is that the marginal likelihoods under H0 and H1 go to 0 in the limit.
However because the Bayes factor in (10) converges to a limit where the posterior
probabilities are computed using flat priors and the prior probabilities are based on
the prior covariance structure, the outcome seems a reasonable default quantification
of the relative evidence for a one-sided test.

5 Multiple hypothesis testing

Below we consider the definition for information (in)consistency in a multiple testing
problem. The definition implies that a Bayes factor needs to be information consistent
for both a precise test and a one-sided test. A graphical representation for the bivariate
case can be found in Fig. 3.

Definition 3 A Bayes factor is information consistent, for a multiple hypothesis test
of H0 : θ = 0 versus H1 : θ ∈ Θ1 = {θ | θ ≤ 0 and θ �= 0} versus H2 : θ ∈ Θ2 =
{θ | θ �≤ 0}, if B20, B21 → ∞ as |θ̂ | → ∞ with at least one coordinate of θ̂ going to
∞, and B10, B12 → ∞, as all coordinates of θ̂ go to −∞. If this does not hold, the
Bayes factor is called information inconsistent.

As the conjugate and independent semi-conjugate priors resulted in information
inconsistent Bayes factors for the one-sided hypothesis test, this automatically implies
that these priors result in information inconsistency for the multiple hypothesis test. A
specific case when using conjugate priors that is interesting to mention is when setting
the prior degrees of freedom for σ 2 under H0 larger than the prior degrees of freedom
for σ 2 under the encompassing prior to construct truncated priors under H1 and H2,
i.e., ν0 > ν. This results in information consistency for the precise hypothesis test
(a consequence of Lemma 1) and information inconsistency for the one-sided test (a
consequence of Lemma 7). To see that this results in undesirable behavior consider a
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Fig. 3 Graphical representation
of the definition of an
information consistent Bayes
factor in a multiple testing
problem of H0 : θ = 0 versus
H1 : θ ≤ 0 and θ �= 0 (gray
quadrant) versus H2 : θ �≤ 0
(white quadrants). The
directions of the arrows reflect
directions of the limits. The
evidence for H1 against H0 and
H2 should go to ∞ for limits in
the lower left quadrant, and the
evidence for H2 against H0 and
H1 should go to ∞ for the limits
in the white quadrants, in order
for the Bayes factor to be
information consistent

univariate multiple t test of H0 : θ = 0 versus H1 : θ < 0 versus H2 : θ > 0. If we let
t → ∞, the support for H1 against H0 would go to ∞. Thus as the effect goes to plus
infinity, the evidence for the existence of a negative effect against no effect diverges.

Finally, note that Lemmas 3 and 8 give the necessary and sufficient conditions
for the mixing distribution of the scale mixture of conjugate priors to be information
consistent in the multiple testing problem.

6 Conclusions

This paper explored the existence of information inconsistency when using conjugate
priors, mixtures of g priors, independence priors, and adaptive g priors for precise
testing, one-sided testing, andmultiple hypothesis testing. An overview of our findings
can be found in Table 3.

Table 3 Severity of information inconsistency of various priors for different hypothesis tests

Prior properties Precise testing One-sided testing Multiple testing

Conjugate priors ν0 < ν1 Disastrous Disastrous

ν0 = ν1 Normal Normal Normal

ν0 > ν1 No Normal

Mixtures of g priors Thick-tailed mixture No No No

Independence priors ν0 < ν1 Disastrous Disastrous

ν0 = ν1 Severe Severe Severe

ν0 > ν1 No Severe

Adaptive g prior Any ν0, ν1 No No

“Normal” information inconsistency refers to a (typically large) limiting bound B of the evidence against
the null (i.e., B10 → B)
“Severe” refers to a limiting bound that is close to 1 (i.e., B10 � 1). “Disastrous” refers to infinite evidence
in the opposite direction (i.e., B10 → 0). “No” refers to no information inconsistency; thus, information
consistency (i.e., B10 → ∞)

123



120 J. Mulder et al.

The first major conclusion is that information inconsistency is ubiquitous when
typical conjugate priors are used in hypothesis testing and model selection in the nor-
mal linear model with unknown variance. (Again, the problem does not seem to arise
in normal linear models with known variance.) It happens in standard null hypothesis
testing and one-sided testing; it happens with proper and improper conjugate priors;
and it happens with almost all independence conjugate priors. The practical impor-
tance of the problem varies over different situations; it will primarily be a practical
problemwhen the sample is small relative to the number of free parameters and there is
high correlation between the observations. But, even in other cases, we consider infor-
mation inconsistency to be highlighting a logical flaw that might have other serious
consequences and is, hence, something to be avoided.

The second major conclusion is that use of either fatter-tailed priors (including
appropriate mixtures of g-priors) or adaptive priors typically results in information
consistency. This is not as surprising as the almost complete lack of information con-
sistency for conjugate priors, in that previous particular fatter-tailed priors (such as the
Zellner–Siow prior) had been shown to be information consistent. Still, the generality
in which such priors can be shown to be information consistent is highly comforting.

It should be noted that, when proper priors yield information inconsistency, a logical
flaw in Bayesian analysis is not being discovered; if one truly believed the priors were
correct, then one should behave in an information inconsistent manner. But one rarely
accurately knows features of the priors—such as their tail behaviors—that determine
information inconsistency. Thus the intuitive appeal of information consistency can
be used as a significant aid to selection of such prior features.

Finally, information inconsistency is not limited to the normal linear model with
unknown variance, as shown in the following example.

Example 3 Let y | θ ∼ Cauchy(θ, 1) and suppose that we want to test H0 : θ = 0
against H1 : θ �= 0. Under H1, assume that θ ∼ Cauchy(0, ψ). Then, the Bayes factor
in favor of H1 to H0 is

BF10 = (1 + ψ)(1 + y2)

(1 + ψ)2 + y2
.

As y → ∞, BF10 → ψ(1+ψ) < ∞, so the Bayes factor is information inconsistent.

This example also shows that information consistency is not dependent, in general,
on having an unknown scale parameter; here the scale parameter of the observation is
known.
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A Proof of Lemma 3

Denote:

θ̂ =
(
X′
1Σ

−1X1

)−1
X′
1Σ

−1y

s2y = (y − X1θ̂ − X0γ̂ )′Σ−1(y − X1θ̂ − X0γ̂ )

SSE0 = s20ν0 + s2y

SSE1 = s21ν1 + s2y

SSR = θ̂
′
X′
1Σ

−1X1θ̂

Iθ = X′
θΣ

−1Xθ

p0 = r2 − ν0

p1 = r2 − ν1

Throughout, we use the following notation for functions a, b:

– a(g, θ̂) � b(g, θ̂) if and only if there exists 0 < M < ∞ which does not depend

on g or θ̂ such that a(g, θ̂) ≤ Mb(g, θ̂).

– a(g, θ̂) � b(g, θ̂) if and only if there exists 0 < M < ∞ which doesn’t depend

on g or θ̂ such that a(g, θ̂) ≥ Mb(g, θ̂).

– a(g, θ̂) � b(g, θ̂) if and only if a(g, θ̂) � b(g, θ̂) and a(g, θ̂) � b(g, θ̂).

Before we prove Lemma 3, we prove an auxiliary result

Lemma 11 Let

h(g) = |gΩ + I−1
θ |−1/2[SSE1 + θ̂

′
(gΩ + I−1

θ )−1θ̂ ]−(n−p1)/2,

then, there exist 0 < dl < du < ∞ such that

(g + dl)(n−p1−r1)/2

[(g + dl)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

� h(g) � (g + du)(n−p1−r1)/2

[(g + du)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

Proof Consider the matrix factorization

I−1
θ + gΩ = Ω1/2[Ω−1/2I−1

θ Ω−1/2 + gIr1]Ω1/2,

and take the eigendecomposition Ω−1/2I−1
θ Ω−1/2 = ODO ′, where O is orthogonal

and D diagonal with elements 0 < dl < di < du < ∞. Then, we can rewrite

I−1
θ + gΩ = Ω1/2O[D + gIr1]O ′Ω1/2.

��
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We can bound

θ̂
′
Ω−1θ̂/(du + g) ≤ θ̂

′
(gΩ + I−1

θ )−1θ̂ ≤ θ̂
′
Ω−1θ̂/(dl + g)

and

|gΩ + I−1
θ |−1/2 ∝ |D + gIr1 |−1/2 ∈ [(g + du)

−r1/2, (g + dl)
−r1/2],

so

h(g) � (du + g)(n−p1)/2(dl + g)−r1/2

[(du + g)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

� (du + g)(n−p1−r1)/2

[(du + g)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

.

Similarly, we can find the lower bound

h(g) � (g + dl)(n−p1−r1)/2

[(g + dl)SSE1 + θ̂
′
Ω−1θ̂](n−p1)/2

.

Now, we prove Lemma 3 arguing by cases.
Case ν0 > ν1 Applying the lower bound in Lemma 11,

B10 � [SSE0 + SSR](n−p0)/2

(̂θ
′
Ω−1θ̂)(n−p1)/2

∫ ∞

0

(g + dl)(n−p1−r1)/2

[(g + dl)
SSE1

θ̂
′
Ω−1θ̂

+ 1](n−p1)/2
π(dg).

Since p0 < p1, the term outside the integral goes to infinity as ‖̂θ‖2 → ∞, and by
Fatou’s lemma,

lim inf
‖̂θ‖2→∞

∫ ∞

0

(g + dl)(n−p1−r1)/2

[(g + dl)
SSE1

θ̂
′
Ω−1θ̂

+ 1](n−p1)/2
π(dg)

≥
∫ ∞

0
(g + dl)

(n−p1−r1)/2π(dg),

which is clearly bounded away from 0 for any prior on g with positive support, so any
such prior yields an information consistent B10 whenever ν0 > ν1.

Case ν0 = ν1 Applying the lower bound in Lemma 11 and Fatou’s lemma as we did
for the case ν0 > ν1:

lim
‖̂θ‖2→∞

B10 �
∫ ∞

0
(g + dl)

(n−p1−r1)/2π(dg) lim
‖̂θ‖2→∞

[SSE0 + SSR](n−p0)/2

[̂θ ′
Ω−1θ̂ ](n−p1)/2

.

The limit is O(1), so a sufficient condition for information consistency is

∫ ∞

0
(g + dl)

(n−p1−r1)/2π(dg) �
∫ ∞

0
(g + 1)(n−p1−r1)/2π(dg) = ∞,
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as required.
Case ν0 < ν1 In this case, we apply the upper bound in Lemma 11:

B10 � [SSE0 + SSR](n−p0)/2

(̂θ
′
Ω−1θ̂)(n−p1)/2

∫ ∞

0

(g + du)(n−p1−r1)/2

[(g + du)
SSE1

θ̂
′
Ω−1 θ̂

+ 1](n−p1)/2
π(dg).

The term outside the integral goes to 0, so a necessary condition for information
consistency is that the integral be infinite. We can bound the integral:

∫ ∞

0

(g + du)(n−p1−r1)/2

[(g + du)
SSE1

θ̂
′
Ω−1 θ̂

+ 1](n−p1)/2
π(dg) ≤

∫ ∞

0
(g + du)

(n−p1−r1)/2 π(dg),

so a necessary condition for information consistency is

∫ ∞

0
(g + du)

(n−p1−r1)/2 π(dg) �
∫ ∞

0
(g + 1)(n−p1−r1)/2π(dg) = ∞,

as required.

B Proof of Lemma 4

Throughout, we use the notation in “Appendix A”.

Case 1. Suppose there exists M < ∞ such that for all g ≥ M , π(g) � g−α for α > 1
and p0 > p1. Then, we apply the lower bound in Lemma 11:

B10 � [SSE0 + SSR](n−p0)/2
∫ ∞

M

(g + dl)(n−p1−r1)/2−α

[(g + dl)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

dg.

Now, note that for any K , d > 0 with 1 − d < K ,

0 ≤ lim
‖̂θ‖2→∞

∫ K

min(0,1−d)

(g + d)(n−p1−r1)/2−α

[(g + d)SSE1 + θ̂
′
Ω−1θ̂](n−p1)/2

dg

� lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ]−(n−p1)/2 = 0,

so

lim
‖̂θ‖2→∞

∫ ∞

M

(g + dl)(n−p1−r1)/2−α

[(g + dl)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

dg

= lim
‖̂θ‖2→∞

∫ ∞

1−dl

(g + dl)(n−p1−r1)/2−α

[(g + dl)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

dg.
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Plugging in:

lim
‖̂θ‖2→∞

B10 � lim
‖̂θ‖2→∞

[SSE0 + SSR](n−p0)/2
∫ ∞

1−dl

(g + dl)(n−p1−r1)/2−α

[(g + dl )SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

dg

∝ lim
‖̂θ‖2→∞

(SSE0 + SSR)(n−p0)/2

SSE(n−p1)/2
1

2F1

(
n − p1

2
,
r1
2

+ α − 1; r1
2

+ α; −θ̂
′
Ω−1θ̂

SSE1

)
.

Using the identity

2F1(a, b; c; z) = (1 − z)−b
2F1
(
b, c − a; c; z

z−1

)
,

we have

lim
‖̂θ‖2→∞

B10 � lim
‖̂θ‖2→∞

(SSE0 + SSR)(n−p0)/22F1
(
r1
2 + α − 1, r1−(n−p1)

2 + α; r1
2 + α; R2

)

SSE(n−p1)/2
1

[
1 + θ̂

′
Ω−1 θ̂
SSE1

](r1/2)+α−1
,

where R2 = θ̂
′
Ω−1θ̂/(̂θ

′
Ω−1θ̂+SSE1) → 1 as ‖̂θ‖2 → ∞. Ifα < (n−p1−r1)/2+1

(which is satisfied because α < (n − p0 − r1)/2 and p0 > p1 by assumption), the
limit of the hypergeometric function as R2 → 1 is a constant (by Gauss’ theorem).
From here, it is immediate to conclude that B10 is information consistent whenever
the lower bound is infinite, which occurs for α < (n − p0 − r1)/2 + 1, as required.

Case 2. Suppose there exists M ′ < ∞ such that for all g ≥ M ′, π(g) � g−α for
α > 1 and p0 > p1. Then, by Lemma 11:

B10 � [SSE0 + SSR](n−p0)/2
∫ ∞

M

(g + du)(n−p1−r1)/2−α

[(g + du)SSE1 + θ̂
′
Ω−1θ̂](n−p1)/2

dg.

As argued in Case 1,

lim
‖̂θ‖2→∞

∫ ∞

M

(g + du)(n−p1−r1)/2−α

[(g + du)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

dg

= lim
‖̂θ‖2→∞

∫ ∞

1−du

(g + du)(n−p1−r1)/2−α

[(g + du)SSE1 + θ̂
′
Ω−1θ̂ ](n−p1)/2

dg,

and carrying out the same computations as in Case 1:

lim
‖̂θ‖2→∞

B10 � lim‖̂θ‖2→∞
(SSE0+SSR)(n−p0)/2

2F1
(
r1
2 +α−1, r1−(n−p1)

2 +α; r12 +α;R2
)

SSE
(n−p1)/2
1

[
1+ θ̂

′
Ω−1 θ̂
SSE1

](r1/2)+α−1 .

If (n − p0 − r1)/2 + 1 ≤ α < (n − p1 − r1)/2 + 1, the limit of the hypergeometric
function is O(1) and B10 is information inconsistent. If α ≥ (n − p1 − r1)/2 + 1,
the necessary condition of Lemma 3 implies that B10 is information inconsistent.
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Therefore, B10 is information inconsistent whenever α ≥ (n − p0 − r1)/2 + 1, as
required.

C Proof of Lemma 5

Break the integral in B10 into the two regions R1 = {θ : |θ |2 ≤ |θ̂ |} and R2 = {θ :
|θ |2 > |θ̂ |}. It is easy to see that, for any fixed ε > 0, there is a Kε such that, for
|θ̂ | > Kε and θ ∈ R1,

(1 − ε)
(
θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν1

2
<
(
ν1s

2
1 + s2y + (θ − θ̂)′X′

θΣ
−1X1(θ − θ̂)

)− n−r2+ν1
2

< (1 + ε)
(
θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν1

2
.

Thus, letting P(R1) denote the probability of R1 under the N (θ |0,Ω) density, it
follows that, for |θ̂ | > Kε ,

(1 − ε)
(
θ̂

′
X′

θΣ
−1P(X1θ̂

)− n−r2+ν1
2

P(R1)

<

∫
R1

(
ν1s

2
1 + s2y + (θ − θ̂)′X′

θΣ
−1X1(θ − θ̂)

)− n−r2+ν1
2

N (θ |0,Ω)dθ

< (1 + ε)
(
θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν1

2
P(R1).

As |θ̂ | → ∞, the integral over R2 is clearly going to zero exponentially fast, while
P(R1) → 1. Since ε can be chosen arbitrarily small, it follows that, as |θ̂ | → ∞,

∫ (
ν1s21 + s2y + (θ − θ̂)′X′

θΣ
−1X1(θ − θ̂)

)− n−r2+ν1
2

N (θ |0,Ω)dθ

(
θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν1

2

→ 1.

Thus, as |θ̂ | → ∞,

B10 → lim
|θ̂ |→∞

C2

(
θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν1

2

(
ν0s20 + s2y + θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν0

2

,

from which the results stated in the lemma follow directly.
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D Proof of Lemma 6

Using the notation in “Appendix A” and applying Lemma 11:

B10 � (SSE0 + SSR)(n−p0)/2

[̂θ ′
Ω−1θ̂]n−p1/2

(g + dl)(n−p1−r1)/2

[(g + dl)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p1)/2

For g > 0, the right-hand side is maximized at ĝ = max(0, (n − p1 −
r1)̂θ

′
Ω−1θ̂/(r1SSE) − dl). Then,

lim
‖̂θ‖2→∞

max
g≥0

B10 � (SSE0 + SSR)(n−p0)/2

[̂θ ′
Ω−1θ̂ ](n−p1)/2

(ĝ + dl)(n−p1−r1)/2

[(ĝ + dl)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p1)/2

∝ lim
‖̂θ‖2→∞

(SSE0 + SSR)(n−p0)/2

[̂θ ′
Ω−1θ̂ ]r1/2SSE(n−p1−r1)/2

= ∞,

so the adaptive prior is information consistent.

E Proof of Lemma 7

The marginal posterior of θ in the joint space has a multivariate Student t distribution
with mean (X′

1Σ
−1X1 + Ω−1)−1X′

1Σ
−1X1θ̂ , scale matrix (n + ν − r2)−1(s2ν +

s2y + θ̂
′
((X′

1Σ
−1X1)

−1 + Ω)−1θ̂)(X′
1Σ

−1X1 + Ω−1)−1, and n + ν − r2 degrees of
freedom. Change variables to

ξ = (n + ν − r2)
1/2(s2ν + s2y + θ̂

′
((X′

1Σ
−1X1)

−1 + Ω)−1θ̂)−1/2θ ,

which has a multivariate Student t distribution with mean

ξ∗ = (X′
1Σ

−1X1 + Ω−1)−1X′
1Σ

−1X1θ̂

(n + ν − r2)−1/2(s2ν + s2y + θ̂
′
((X′

1Σ
−1X1)−1 + Ω)−1θ̂)1/2

,

scale matrix (X′
1Σ

−1X1 + Ω−1)−1, and n + ν − r2 degrees of freedom. Note that

Pπ (θ ≤ 0 | y) = Pπ (ξ ≤ 0 | y).

It is easy to see that ξ∗ lies in a fixed compact set C for any θ̂ , from which it is
immediate that Pπ (ξ ≤ 0 | y) is bounded away from 0 and 1.

The second part of the lemma follows immediately from letting c → ∞ in the
expression for ξ∗.
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F Proof of Lemma 8

Throughout, we use the notation in “Appendix A”.
Sufficient condition:

We start with the case where there exists θ̂i → +∞; we treat the case where all
θ̂i → −∞ later.

We can write:

lim
‖̂θ‖2→∞

P(θ ≤ 0 | y) = lim
‖̂θ‖2→∞

∫ ∞

0
P(θ ≤ 0 | g, y)p(g | y)dg

= lim
‖̂θ‖2→∞

1

p( y)

∫ ∞

0
P(θ ≤ 0 | g, y)p( y | g)π(dg)

∝ lim
‖̂θ‖2→∞

1

p( y)

∫ ∞

0
P(θ ≤ 0 | g, y)h(g) π(dg),

with h as defined in Lemma 11 (but noting that, in this case, the notation is ν1 = ν).
Letting p = ν − r2 and using the upper bound in Lemma 11, we obtain

lim
‖̂θ‖2→∞

P(θ ≤ 0 | y)

� lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ]−(n−p)/2

p( y)

∫ ∞

0

P(θ ≤ 0 | g, y) (g + du)(n−p−r1)/2

[(g + du)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg)

From Lemma 7, we know that

P(θ ≤ 0 | g, y) = P(ξ ≤ 0 | g, y),

where ξ has a multivariate Student t distribution, with location and scale

m = (n+ν−r2)1/2 w

[SSE1+θ̂
′
(I−1

θ +gΩ)−1θ̂]1/2

S = (Iθ + Ω−1/g)−1,

where

w = (Iθ + Ω−1/g)−1Iθ θ̂ .

We factor

S = Ω1/2(Ω1/2IθΩ
1/2 + Ir1/g)

−1Ω1/2 = Ω1/2O ′(D−1 + Ir1/g)
−1OΩ1/2,

where O is orthogonal and D is diagonal (with positive entries) as defined in
Lemma 11. Therefore, for a fixed coordinate j ,

S j j ∈
[

g

g/dl + 1
Ω j j ,

g

g/du + 1
Ω j j

]
,
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so 0 < S j j < ∞ for g > 0. Using the same factorizations, we obtain ‖w‖2 ∝ θ̂
′
ΩΩθ̂

for g > 0. Plugging this in and factorizing the denominator in m in a similar manner,
we obtain

m = (n+ν−r2)1/2 ‖w‖
[SSE1+θ̂

′
(I−1

θ +gΩ)−1 θ̂]1/2
w

‖w‖

∝ (̂θ
′
ΩΩθ̂)1/2

[SSE1+θ̂
′
(I−1

θ +gΩ)−1θ̂ ]1/2
w

‖w‖ .

If we choose a coordinate j such that w j > 0 (which exists by assumption), using the
lower bound in Lemma 11, we obtain

m j � (g + dl)1/2(̂θ
′
ΩΩθ̂)1/2[

(g + dl)SSE1 + θ̂Ω−1θ̂
]1/2 � (g + dl)1/2[

(g + dl)SSE1/̂θ
′
Ω−1θ̂ + 1

]1/2

Now,

lim
‖̂θ‖2→∞

P(θ ≤ 0 | y) � lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ]−(n−p)/2

p( y)∫ ∞

0

P(Tn−p ≥ m j/
√
S j j ) (g + du)(n−p−r1)/2

[(g + du)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg)

where Tn−p is a central Student t with n − p degrees of freedom. Let ε > 0, then

∫ ε

0

P(Tn−p ≥ m j/
√
S j j ) (g + du)(n−p−r1)/2

[(g + du)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg) ≤ (ε + du)
(n−p−r1)/2,

so

lim
‖̂θ‖2→∞

P(θ ≤ 0 | y) � lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ]−(n−p)/2

p( y)∫ ∞

ε

P(Tn−p ≥ m j/
√
S j j ) (g + du)(n−p−r1)/2

[(g + du)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg).

Therefore, we can plug in our bounds for m j and S j j , which are bounded away from
0 whenever g > 0. Using the tail bound

P(Tn−p ≥ x) � 1

x(1 + x2/ν)(n−p−1)/2
� x−(n−p)

and our previous work, we obtain

lim
‖̂θ‖2→∞

P(θ ≤ 0 | y) � lim‖̂θ‖2→∞
[̂θ ′

Ω−1θ̂]−(n−p)/2

p( y)

∫ ∞

ε

(g + du)
−r1/2 π(dg)

∝ lim‖̂θ‖2→∞
[̂θ ′

Ω−1θ̂ ]−(n−p)/2

p( y) .
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Clearly

lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ]−(n−p)/2

p( y)
= 0 ⇔ lim

‖̂θ‖2→∞
[̂θ ′

Ω−1θ̂ ](n−p)/2 p( y) = ∞

and

lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ](n−p)/2 p( y) = lim

‖̂θ‖2→∞
[̂θ ′

Ω−1θ̂](n−p)/2
∫ ∞

0
p( y | g) π(dg)

∝ lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂](n−p)/2

∫ ∞

0
h(g) π(dg)

� lim
‖̂θ‖2→∞

∫ ∞

0

(g + dl )(n−p−r1)/2

[(g + dl )SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg)

�
∫ ∞

0
lim inf

‖̂θ‖2→∞
(g + dl )(n−p−r1)/2

[(g + dl )SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg)

=
∫ ∞

0
(g + dl )

(n−p−r1)/2π(dg)

�
∫ ∞

0
(g + 1)(n−p−r1)/2π(dg).

Therefore, if the integral above is infinite, lim‖̂θ‖2→∞ P(θ ≤ 0 | y) = 0, as required.

Now we turn to the case where θ̂i → −∞ for all i , in which case we assume that
wi < 0 for all i . Then, a Fréchet bound ensures that

P(θ ≤ 0 | y) = P(θ1 ≤ 0, θ2 ≤ 0, ... , θr1 ≤ 0 | y) ≥
r1∑
i=1

P(θi ≤ 0 | y) − (r1 − 1).

Therefore,

lim
‖̂θ‖2→∞

P(θi ≥ 0 | y) = 0, 1 ≤ i ≤ r1 ⇒ lim
‖̂θ‖2→∞

P(θ ≤ 0 | y) = 1.

Then, we canworkwith the conditional probabilities exactly as we did for the previous
case:

lim
‖̂θ‖2→∞

P(θi ≥ 0 | y)

= lim
‖̂θ‖2→∞

∫ ∞

0
P(θi ≥ 0 | g, y)p(g | y) dg

� lim
‖̂θ‖2→∞

[̂θ ′
Ω−1θ̂ ]−(n−p)/2

p( y)

∫ ∞

ε

P(Tn−p ≥ −m j/
√
S j j ) (g + du)(n−p−r1)/2

[(g + du)SSE1/̂θ
′
Ω−1θ̂ + 1](n−p)/2

π(dg).

Since −m j is positive, the subsequent steps in the proof for the previous case allow
us to conclude that lim‖̂θ‖2→∞ P(θi ≥ 0 | y) = 0, as required.
Necessary condition:
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In the sequel, we assume that there is at least one i such that θ̂i → +∞. The
case where all coordinates go to −∞ can be dealt with the same way we did for the
sufficient condition. We can write:

lim
‖̂θ‖2→∞

P(θ ≤ 0 | y) = lim‖̂θ‖2→∞
[̂θ ′

Ω−1 θ̂](n−p)/2
∫∞
0 P(θ≤0|g, y)p( y|g)π(dg)

[̂θ ′
Ω−1θ̂](n−p)/2 p( y)

.

First, we show that the limit of the numerator is bounded away from 0. Applying
Fatou’s lemma and one of the bounds in Lemma 11, we obtain

lim
‖̂θ‖2→∞

∫∞
0 P(θ ≤ 0 | g, y)p( y | g)π(dg)

[̂θ ′
Ω−1θ̂ ]−(n−p)/2

≥
∫ ∞

0
lim inf

‖̂θ‖2→∞
P(θ ≤ 0 | g, y) h(g)

[̂θ ′
Ω−1θ̂](n−p)/2

π(dg)

�
∫ ∞

0
(g + dl)

(n−p−r1)/2 lim inf
‖̂θ‖2→∞

P(θ ≤ 0 | g, y)π(dg),

and for any g,

lim inf
‖̂θ‖2→∞

P(θ ≤ 0 | g, y) = lim inf
‖̂θ‖2→∞

P(ξ ≤ 0 | g, y)

where ξ is amultivariate Student t as inLemma7. Lemma7 shows that P(ξ ≤ 0 | g, y)
is bounded away from 0, which implies that the numerator is bounded away from
0, as claimed. A necessary condition for lim‖̂θ‖2→∞ P(θ ≤ 0 | y) = 0 is that

lim‖̂θ‖2→∞[̂θ ′
Ω−1θ̂ ](n−p)/2 p( y) = ∞which, as we saw in the proof of the sufficient

condition, is equivalent to

∫ ∞

0
(g + 1)(n−p−r1)/2π(dg) = ∞,

as required.

G Proof of Lemma 9

The second part of the Bayes factor in (13) can be expressed as
(
Pπ (θ ≤ 0 | y)−1 − 1

)
= k(Θ1)

k(Θ0)
, where

k(Θ t ) =
∫

θ∈Θ t

(
νs2 + s2y +

(
θ − θ̂
)′
X′
1Σ

−1X1

(
θ − θ̂
))− n−r2+ν

2

N (θ |0,Ω,Θ t )dθ ,

and N (θ |0,Ω,Θ t ) denotes a truncated multivariate normal density for θ with
mean 0 and covariance matrix Ω , truncated in the subspace Θ t for t = 0
or 1. Exactly as in the proof of Lemma 5 it can be shown that k(Θ t ) =
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(
νs2 + s2y + θ̂

′
X′

θΣ
−1X1θ̂
)− n−r2+ν

2
(1+ o(1)) in the limit, so that

(
Pπ (θ ≤ 0 | y)−1

− 1
)→ 1.

H Proof of Lemma 10

The marginal posterior of θ in the joint space has a multivariate Student t distribution

with mean g
g+1 θ̂ , scale matrix (n−r2)−1(s2y +(g+1)−1θ̂

′
(X′

1Σ
−1X1)θ̂)

g
g+1 (X

′
1Σ

−1

X1)
−1, and n − r2 degrees of freedom. A change of variables to ξ = g+1

g θ results

in a multivariate Student t distribution with mean θ̂ , scale matrix (n − r2)−1((1 +
g−1)s2y+g−1θ̂

′
(X′

1Σ
−1X1)θ̂)(X′

1Σ
−1X1)

−1, and degrees of freedom n−r2. Note that
the posterior probability is invariant under this transformation, i.e., Pπ (θ ≤ 0|y) =
Pπ (ξ ≤ 0|y). Furthermore, it is important to note that the factor (1 + g−1)s2y +
g−1θ̂

′
(X′

1Σ
−1X1)θ̂ in the scale matrix of ξ is a monotonically decreasing function

of g. Now it is easy to see that if θ̂ ≤ 0, Pπ (ξ ≤ 0|y) monotonically increases as
the scales decrease, and if θ̂ �≤ 0, Pπ (ξ ≤ 0|y) monotonically decreases as the scales
decrease. Thus, in order to maximize B01 if θ̂ ≤ 0, and maximize B10 if θ̂ �≤ 0,
we have to let g go to ∞. For completeness, note the marginal posterior of θ in
the joint space with a multivariate Student t distribution with mean θ̂ , scale matrix
(n − r2)−1s2y (X

′
1Σ

−1X1)
−1, and n − r2 degrees of freedom, in the limit as g → ∞.

Thus, even though a (data-based) adaptive prior is considered, the choice of g that
maximizes the Bayes factor does not depend on the data. Note that taking the limit
g → ∞ was already considered by Mulder (2014a) but not in the context of an
adaptive prior.
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