ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

UDC 519.21

A. V. MELNIKOV AND M. L. NECHAEV

Abstract

The paper deals with the problem of pricing an equity-linked insurance contract based on stock prices. The stock prices are supposed to follow a stochastic exponent model with respect to a given Gaussian martingale. The model gives a possibility to obtain unified formulas for "mean-variance" hedging and the corresponding premium for both natural cases: Black-Scholes and Gaussian discrete time models.

1. Introduction

Suppose that an insurance company has a portfolio of l insurance contracts. Any contract is associated with a random time $\tau_{i}, i=1, \ldots, l$, which indicates the time of incident occurrence. The corresponding premiums should be distributed between financial assets to guarantee the best correspondence between liabilities of the company and its capital V^{π}. As a criterion of the quality of a financial portfolio π we shall use the mean variance distance

$$
\mathrm{E}\left[\left(V_{T}^{\pi}-f_{T}\right)^{2}\right]
$$

where f_{T} represents the claim that should be paid by the company at the terminal time T.
The insurance contract based on the market's price of a given asset S_{t} is called an equity-linked life insurance contract. An appropriate description of such a contract was given, for instance, in 3, in the framework of the Black-Scholes model for S. This paper is devoted to the pricing of such insurance contracts and in a more general case of a financial market driven by Gaussian martingale.

2. Financial market and insurance portfolio

Suppose the company invests in the (B, S)-market with two traded assets: bank account $B_{t} \equiv 1$ and stock S_{t},

$$
S_{t}=S_{0} \exp \left\{Y_{t}-\frac{1}{2}\langle Y\rangle_{t}\right\}
$$

where Y_{t} is the right continuous Gaussian martingale (see [2]) on a given stochastic basis

$$
\left(\Omega^{1}, \mathcal{F}^{1}, P^{1}, F^{1}\right)
$$

with filtration F^{1} generated by Y.

[^0]Any self-financing trading strategy $\pi=(\beta, \gamma)$ can be determined by its capital

$$
V_{t}^{\pi}=V_{0}^{\pi}+\int_{0}^{t} \gamma_{u} d S_{u}
$$

where γ_{t} is the number of stocks in the portfolio at time t (see [4]). The number of bank account units β can be identified from the balance equation

$$
V_{t}=\gamma_{t} S_{t}+\beta_{t}
$$

Using the explicit form of S and the Kolmogorov-Itô formula [2], we can derive the following expression for the capital V_{t}^{π} :

$$
\begin{equation*}
V_{t}^{\pi}=V_{0}^{\pi}+\int_{0}^{t} \gamma_{u} S_{u^{-}} d Y_{u}+\sum_{u \leq t} \gamma_{u} S_{u^{-}}\left(\exp \left\{\Delta Y_{u}-\frac{1}{2} \Delta\langle Y\rangle_{u}\right\}-1-\Delta Y_{u}\right) \tag{1}
\end{equation*}
$$

The maturity time of this contract will be denoted by T. We also assume a pure technical condition: $\Delta Y_{T}=0$. The corresponding contingent claim has the form $f_{T}=f\left(S_{T}\right)$, where the Borel function f satisfies the following condition:

$$
f(x) \leq c\left(1+x^{p^{1}}\right) x^{-p^{2}}, \quad c \geq 0, p^{1} \geq 0, p^{2} \geq 0, x \geq 0
$$

In this case (see [1]) we can define the function

$$
F(u, x)=\frac{1}{\sqrt{2 \pi\langle Y\rangle_{T}-u}} \int_{\mathbf{R}^{+}} \frac{f(z)}{z} \exp \left\{-\frac{\left(\ln (x / z)+\frac{1}{2}\left(\langle Y\rangle_{T}-u\right)\right)^{2}}{2\left(\langle Y\rangle_{T}-u\right)}\right\} d z
$$

It is easy to prove that this function is twice continuously differentiable with respect to both argument u and x and admits the representation

$$
\begin{equation*}
F\left(\langle Y\rangle_{t}, S_{t}\right)=\mathrm{E}\left[f\left(S_{T}\right) \mid \mathcal{F}_{t}^{1}\right] \quad \text { for any } t<T \tag{2}
\end{equation*}
$$

Using the martingale convergence theorem [2] we can conclude that

$$
F\left(\langle Y\rangle_{T}, S_{T}\right)=f\left(S_{T}\right)
$$

The Kolmogorov-Itô formula gives directly that

$$
\begin{align*}
F\left(\langle Y\rangle_{t}, S_{t}\right)= & F\left(0, S_{0}\right)+\int_{0}^{t} F_{x}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}} d Y_{u} \\
& +\int_{0}^{t} F_{u}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}} d\langle Y\rangle_{u} \\
& +\frac{1}{2} \int_{0}^{t} F_{x x}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}}^{2} d\left\langle Y^{c}\right\rangle_{u} \tag{3}\\
& +\sum_{u \leq t}\left\{F\left(\langle Y\rangle_{u}, S_{u}\right)-F\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right)-F_{x}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}} \Delta Y_{u}\right. \\
& \left.-F_{u}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}} \Delta Y_{u}\right\}
\end{align*}
$$

where F_{x}, F_{u}, and $F_{x x}$ are the corresponding derivatives. Taking into account that the process $F\left(\langle Y\rangle_{t}, S_{t}\right)$ should be a martingale, we can reduce (3) to the equality

$$
\begin{align*}
F\left(\langle Y\rangle_{t}, S_{t}\right)= & F\left(0, S_{0}\right)+\int_{0}^{t} F_{x}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}} d Y_{u} \tag{4}\\
& +\sum_{\{u \leq t\}}\left\{F\left(\langle Y\rangle_{u}, S_{u}\right)-F\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right)-F_{x}\left(\langle Y\rangle_{u^{-}}, S_{u^{-}}\right) S_{u^{-}} \Delta Y_{u}\right\}
\end{align*}
$$

The insurance portfolio of l contracts can be characterized by random times

$$
\tau_{i}, \quad i=1, \ldots, l,
$$

of incident occurrence and claim payment values. We shall assume that τ_{i} are i.i.d. random variables on some probability space $\left(\Omega^{2}, \mathcal{F}^{2}, P^{2}\right)$. The payment function $g(\cdot)$ for the contract indicates the value $g\left(S_{T}\right)$ which should be paid if no incident occurs during the insured period.

Suppose that the distribution of τ_{i} admits the following representation:

$$
P^{2}(\tau \leq t)=1-\exp \left\{-\int_{0}^{t} \mu_{s} d s\right\}
$$

where μ is called a force of mortality. Denote $I_{t}^{k}=I_{\left\{\tau_{k} \leq t\right\}}$, and $N_{t}=I_{t}^{1}+\cdots+I_{t}^{l}$. The counting process N_{t} indicates the number of incidents on $[0, t]$. We shall equip $\left(\Omega^{2}, \mathcal{F}^{2}, P^{2}\right)$ with a filtration $F^{2}=\left(\mathcal{F}_{t}^{2}\right)_{t \geq 0}$ generated by $\left(N_{t}\right)_{t \geq 0}$. The process

$$
\int_{0}^{t}\left(l-N_{s^{-}}\right) \mu_{s} d s
$$

is a compensator of N_{t} and

$$
M_{t}=N_{t}-\int_{0}^{t}\left(l-N_{s^{-}}\right) \mu_{s} d s
$$

is a martingale with respect to F^{2}.

3. Main results and examples

It is quite natural to think that the financial market and the lives of insured are independent. Hence the general probability space for the model can be defined as a product of $\left(\Omega^{1}, \mathcal{F}^{1}, F^{1}, P^{1}\right)$ and $\left(\Omega^{2}, \mathcal{F}^{2}, F^{2}, P^{2}\right)$ with the general filtration F generated by F^{1} and F^{2} :

$$
\begin{aligned}
\Omega=\Omega^{1} \times \Omega^{2}, \quad \mathcal{F} & =\mathcal{F}^{1} \times \mathcal{F}^{2}, \quad \mathrm{P}=P^{1} \times P^{2}, \\
F=F^{1} \times F^{2} & =\left\{\mathcal{F}_{t}=\mathcal{F}_{t}^{1} \times \mathcal{F}_{t}^{2}\right\}_{t \geq 0}
\end{aligned}
$$

The payment function of such a contract has the form

$$
f_{T}=g\left(S_{T}\right)\left(l-N_{T}\right)
$$

where the Borel function $g(\cdot)$ satisfies the conditions mentioned above,

$$
g(x) \leq c\left(1+x^{p^{1}}\right) x^{-p^{2}}, \quad c \geq 0, p^{1} \geq 0, p^{2} \geq 0, x>0
$$

To optimize its liabilities the company should choose an initial capital \hat{v} and a selffinancing trading strategy $\hat{\pi}$ such that

$$
\mathrm{E}\left[\left(V_{T}^{\hat{\pi}}(\hat{v})-f_{T}\right)^{2}\right] \leq \mathrm{E}\left[\left(V_{T}^{\pi}(v)-f_{T}\right)^{2}\right]
$$

for any v and any self-financing strategy π.
Denote by

$$
V_{t}^{*}=\mathrm{E}\left[f_{T} \mid \mathcal{F}_{t}\right]=\mathrm{E}\left[g\left(S_{T}\right)\left(l-N_{T}\right) \mid \mathcal{F}_{t}\right]
$$

the so-called "tracking process" V_{t}^{*}; using the independence of S and N we get

$$
V_{t}^{*}=E^{1}\left[g\left(S_{T}\right) \mid \mathcal{F}_{t}^{1}\right] E^{2}\left[\left(l-N_{T}\right) \mid \mathcal{F}_{t}^{2}\right]
$$

It is easy to check that

$$
\begin{equation*}
E^{2}\left[\left(l-N_{T}\right) \mid \mathcal{F}_{t}^{2}\right]=E^{2}\left[\sum_{i=1}^{l}\left(1-I_{\left\{\tau_{i} \leq T\right\}}\right) \mid \mathcal{F}_{t}^{2}\right]=\left(l-N_{t}\right)_{t} p_{T} \tag{5}
\end{equation*}
$$

where ${ }_{t} p_{T}=E^{2}\left[1-I_{\left\{t<\tau_{i} \leq T\right\}} \mid \mathcal{F}_{t}\right]=\exp \left\{-\int_{t}^{T} \mu_{s} d s\right\}$ is the probability of incident occurrence after expiration date T. Using the representation (2) we have

$$
V_{t}^{*}=F\left(\langle Y\rangle_{t}, S_{t}\right)\left(l-N_{t}\right)_{t} p_{T}
$$

Applying the Kolmogorov-Itô formula to the process V_{t}^{*} we obtain the integral representation

$$
\begin{align*}
V_{t}^{*}= & V_{0}^{*}+\int_{0}^{t}\left(l-N_{u_{-}}\right)_{u} p_{T} d F\left(\langle Y\rangle_{u}, S_{u}\right)+\int_{0}^{t} F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)\left(l-N_{u_{-}}\right)_{u} p_{T} \mu_{u} d u \\
& -\int_{0}^{t} F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} d N_{u} \tag{6}\\
& +\sum_{u \leq t}\left[F\left(\langle Y\rangle_{u}, S_{u}\right)\left(l-N_{u}\right)_{u} p_{T}-F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)\left(l-N_{u_{-}}\right)_{u} p_{T}\right. \\
& \left.\quad-\left(l-N_{u_{-}}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)+F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} \Delta N_{u}\right]
\end{align*}
$$

The equality (6) can be rewritten as

$$
\begin{align*}
V_{t}^{*}= & V_{0}^{*}+\int_{0}^{t}\left(l-N_{u_{-}}\right)_{u} p_{T} d F\left(\langle Y\rangle_{u}, S_{u}\right)-\int_{0}^{t} F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} d M_{u} \\
& +\sum_{u \leq t}\left[F\left(\langle Y\rangle_{u}, S_{u}\right)\left(l-N_{u}\right)_{u} p_{T}-F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)\left(l-N_{u_{-}}\right)_{u} p_{T}\right. \tag{7}\\
& \left.\quad-\left(l-N_{u_{-}}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)+F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} \Delta N_{u}\right]
\end{align*}
$$

where

$$
M_{t}=N_{t}-\int_{0}^{t}\left(l-N_{u_{-}}\right) \mu_{u} d u
$$

Taking into account the representation (41) for $F\left(\langle Y\rangle_{t}, S_{t}\right)$ we have from (17) that

$$
\begin{aligned}
V_{t}^{*}= & V_{0}^{*}+\int_{0}^{t}\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right) S_{u_{-}} d Y_{u_{-}-} \int_{0}^{t} F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} d M_{u} \\
& +\sum_{u \leq t}\left[F\left(\langle Y\rangle_{u}, S_{u}\right)\left(l-N_{u}\right)_{u} p_{T}-F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)\left(l-N_{u_{-}}\right)_{u} p_{T}\right. \\
& \left.+F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} \Delta N_{u}-\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right) \Delta Y_{u}\right]
\end{aligned}
$$

Note that any capital V_{t}^{π} controlled by a self-financing strategy can be represented in the form (1). Consider the mean variance distance between V_{T}^{π} and $V_{T}^{*}=f_{T}$:

$$
R(\pi, v)=\mathrm{E}\left[\left(V_{T}^{\pi}-V_{T}^{*}\right)^{2}\right]
$$

Because of the martingale properties of V_{t}^{π} and V_{t}^{*}, it is clear that the initial capital \hat{v} for the optimal trading strategy should be equal to V_{0}^{*} :

$$
\hat{v}=l E^{1}\left[g\left(S_{T}\right)\right] p(0, T)=l F\left(0, S_{0}\right) \mathrm{P}(\{\tau>T\})
$$

Let the initial capital v of the self-financing strategy π be equal to \hat{v}; then

$$
\begin{align*}
& R(\pi, v)=\mathrm{E}[(\int_{0}^{t}\left(\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)-\gamma_{u}\right) S_{u_{-}} d Y_{u} \\
& \quad-\int_{0}^{t} F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} d M_{u} \\
&+\sum_{u \leq t}\left[\left(l-N_{u}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)\right. \tag{8}\\
& \quad-\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right) S_{u_{-}} \Delta Y_{u_{-}} \\
&\left.\left.\left.\quad-\gamma_{u} \Delta S_{u}+\gamma_{u} S_{u_{-}} \Delta Y_{u}\right]\right)^{2}\right]
\end{align*}
$$

Since the difference

$$
\mathcal{M}_{t}=V_{t}^{*}-V_{t}^{\pi}
$$

is a martingale with respect to F, there is a unique representation of the form

$$
\mathcal{M}^{c}+\mathcal{M}^{d}
$$

where \mathcal{M}^{c} and \mathcal{M}^{d} are respectively the purely continuous and discontinuous parts of \mathcal{M}_{t}, which are orthogonal. Consequently

$$
\mathrm{E}\left[\mathcal{M}^{2}\right]=\mathrm{E}\left[\left(\mathcal{M}^{c}\right)^{2}\right]+\mathrm{E}\left[\left(\mathcal{M}^{d}\right)^{2}\right]
$$

Let us rewrite \mathcal{M}^{c} in the form

$$
\mathcal{M}^{c}=\int_{0}^{t}\left(\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)-\gamma_{u}\right) S_{u_{-}} d Y_{u}^{c}-\int_{0}^{t} F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T} d M_{u}^{c}
$$

Since Y_{u} and M_{u} are independent, we get

$$
\begin{aligned}
\mathrm{E}\left[\left(\mathcal{M}^{c}\right)^{2}\right]= & \mathrm{E}\left[\int_{0}^{t}\left(\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)-\gamma_{u}\right)^{2} S_{u_{-}}^{2} d\left\langle Y^{c}\right\rangle_{u}\right] \\
& +\mathrm{E}\left[\int_{0}^{t}\left(F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right) p_{T}\right)^{2} d\left\langle M^{c}\right\rangle_{u}\right]
\end{aligned}
$$

In the case of the purely discontinuous part \mathcal{M}^{d}, we have the formula

$$
\mathcal{M}^{d}=\sum_{u \leq t}\left[-{ }_{u} p_{T} F\left(\langle Y\rangle_{u}, S_{u}\right) \Delta N_{u}+\left(l-N_{u_{-}}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)-\gamma_{u} \Delta S_{u}\right]
$$

and therefore

$$
\mathrm{E}\left[\left(\mathcal{M}^{d}\right)^{2}\right]=\mathrm{E}\left[\left(\sum_{u \leq t}\left[-{ }_{u} p_{T} F\left(\langle Y\rangle_{u}, S_{u}\right) \Delta N_{u}+\left(l-N_{u_{-}}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)-\gamma_{u} \Delta S_{u}\right]\right)^{2}\right]
$$

It is well known (see [2]) that the times of the jumps of the Gaussian martingale are deterministic. Denote the corresponding set by A. Define the processes $\bar{\gamma}$ and $\tilde{\gamma}$ by the following formulas:

$$
\tilde{\gamma}_{s}=\gamma_{s} \chi_{\bar{A}}, \quad \bar{\gamma}_{s}=\gamma_{s} \chi_{A}
$$

where χ_{A} is the indicator function of the set A. Take

$$
\gamma_{s}=\tilde{\gamma}_{s}+\bar{\gamma}_{s}
$$

Since A is a countable set,

$$
\begin{align*}
\mathrm{E}\left[\left(\mathcal{M}^{c}\right)^{2}\right]= & \mathrm{E}\left[\int_{0}^{t}\left(\left(l-N_{u_{-}}\right)_{u} p_{T} F_{x}\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)-\tilde{\gamma}_{u}\right)^{2} S_{u_{-}}^{2} d\left\langle Y^{c}\right\rangle_{u}\right] \\
& +\mathrm{E}\left[\int_{0}^{t}\left(F\left(\langle Y\rangle_{u_{-}}, S_{u_{-}}\right)_{u} p_{T}\right)^{2} d\left\langle M^{c}\right\rangle_{u}\right] \tag{9}
\end{align*}
$$

On the other hand it is clear that

$$
\begin{align*}
\mathrm{E}\left[\left(\mathcal{M}^{d}\right)^{2}\right]= & \mathrm{E}\left[\left(\sum _ { u \in A } \left[-{ }_{u} p_{T} F\left(\langle Y\rangle_{u}, S_{u}\right) \Delta N_{u}\right.\right.\right. \\
& \left.+\left(l-N_{u_{-}}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)-\gamma_{u} \Delta S_{u}\right] \\
& \left.\left.\quad-\sum_{u \notin A}\left[{ }_{u} p_{T} F\left(\langle Y\rangle_{u}, S_{u}\right) \Delta N_{u}\right]\right)^{2}\right] \\
= & \mathrm{E}\left[\left(\sum _ { u \in A } \left[-{ }_{u} p_{T} F\left(\langle Y\rangle_{u}, S_{u}\right) \Delta N_{u}\right.\right.\right. \tag{10}\\
& \left.\left.\left.+\left(l-N_{u_{-}}\right)_{u} p_{T} \Delta F\left(\langle Y\rangle_{u}, S_{u}\right)-\bar{\gamma}_{u} \Delta S_{u}\right]\right)^{2}\right] \\
& +\mathrm{E}\left[\left(\sum_{u \notin A}\left[{ }_{u} p_{T} F\left(\langle Y\rangle_{u}, S_{u}\right) \Delta N_{u}\right]\right)^{2}\right]
\end{align*}
$$

Equations (9) and (10) give us the explicit forms of $\tilde{\gamma}$ and $\bar{\gamma}$:

$$
\begin{equation*}
\tilde{\gamma}=\left(l-N_{t_{-}}\right)_{t} p_{T} F_{x}\left(\langle Y\rangle_{t_{-}}, S_{t_{-}}\right) \chi_{\bar{A}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\gamma}_{t}={ }_{t} p_{T}\left(l-N_{t_{-}}\right) \frac{\mathrm{E}\left[\Delta F\left(\langle Y\rangle_{t}, S_{t}\right) \Delta S_{t} \mid \mathcal{F}_{t_{-}}\right]}{\mathrm{E}\left[\Delta\left(S_{t}\right)^{2} \mid \mathcal{F}_{t_{-}}\right]} \tag{12}
\end{equation*}
$$

where $0 / 0$ is supposed to be equal to 0 .
So, we get the following main result of the paper:
Theorem 1. For the (B, S)-market controlled by a Gaussian martingale and a portfolio of l homogeneous unit-linked pure endowment insurance contracts, there is an optimal mean-variance hedging strategy $\hat{\gamma}=\tilde{\gamma}+\bar{\gamma}$, where the continuous part $\tilde{\gamma}$ and the purely discontinuous part $\bar{\gamma}$ are defined by (11) and (12), respectively.

The initial capital \hat{v} of the strategy can be calculated by

$$
\hat{v}=l \mathrm{E}\left[g\left(S_{T}\right)\right] \mathrm{P}(\tau>T)
$$

where $g\left(S_{t}\right)$ is a payment function for one insurance contract, T is a terminal time, and τ is a random time with distribution of the incident occurrence.
Example 1. The model investigated above includes the model considered by T. Møller (see [3]) when Y_{t} is Brownian motion. Taking, in our setting,

$$
\bar{\gamma}_{t} \equiv 0, \quad \hat{\gamma}_{t}=\tilde{\gamma}_{t}=\left(l-N_{t_{-}}\right)_{t} P_{T} F_{x}\left(\langle Y\rangle_{t}, S_{t}\right)
$$

gives the model and the result presented in [3].
Example 2. Another interesting example is the discrete model

$$
\begin{gathered}
S_{n}=S_{0} \exp \left\{M_{n}-\frac{1}{2}\langle M\rangle_{n}\right\}, \\
B_{n} \equiv 1
\end{gathered}
$$

where $M_{n}=h_{1}+\cdots+h_{n}, h_{i}=\sigma \epsilon_{i}, \epsilon_{i} \sim N(0,1)$, and ϵ_{i} are i.i.d. random variables on the probability space $\left(\Omega^{1}, \mathcal{F}^{1}, P^{1}\right)$ with filtration $F^{1}=\left\{\tilde{\mathcal{F}}_{n}^{1}\right\}, \tilde{\mathcal{F}}_{n}^{1}=\sigma\left\{\epsilon_{i}, i \leq n\right\}$. It is clear that $\langle M\rangle_{n}=\sigma^{2} n$ and

$$
S_{n}=S_{0} \exp \left\{h_{1}+\cdots+h_{n}-\frac{\sigma^{2}}{2} n\right\}
$$

Using the independence of ϵ_{i}, we have

$$
\mathrm{E}\left[S_{n} \mid \mathcal{F}_{n-1}\right]=S_{n-1} \mathrm{E}\left[\exp \left\{h_{n}-\sigma^{2} / 2\right\} \mid \mathcal{F}_{n-1}\right]=S_{n-1}
$$

We can embed the discrete model to our general model by the following standard way:

$$
Y_{t}= \begin{cases}0, & t \in[0,1) \\ M_{n}, & t \in[n, n+1), n<N \\ M_{N}, & t \in[N, N+\delta), N+\delta=T\end{cases}
$$

$\mathcal{F}_{t}^{1}=\mathcal{F}_{[t]}^{1}, F^{1}=\left\{\mathcal{F}_{t}^{1}\right\}_{t \geq 0}$.
It is clear that Y is a Gaussian martingale on the standard stochastic basis

$$
\left(\Omega^{1}, \mathcal{F}^{1}, F^{1}, P^{1}\right)
$$

satisfying the technical condition $\Delta Y_{T}=0$. In view of the theorem $\tilde{\gamma}_{n}=0$ because there is no continuous part of Y. Regarding the other part of a hedging strategy $\bar{\gamma}_{n}$ we have

$$
\begin{aligned}
\mathrm{E}\left[\Delta F\left(\langle Y\rangle_{n}, S_{n}\right) \Delta S_{n} \mid \mathcal{F}_{n-1}\right] & =\mathrm{E}\left[\left(F\left(\langle Y\rangle_{n}, S_{n}\right)-F\left(\langle Y\rangle_{n-1}, S_{n-1}\right)\right) \Delta S_{n} \mid \mathcal{F}_{n-1}\right] \\
& =\mathrm{E}\left[F\left(\langle Y\rangle_{n}, S_{n}\right) \Delta S_{n} \mid \mathcal{F}_{n-1}\right]=\mathrm{E}\left[g\left(S_{T} \Delta S_{n}\right) \mid \mathcal{F}_{n-1}\right]
\end{aligned}
$$

Hence we get

$$
\tilde{\gamma}_{t}=\gamma_{n}={ }_{n} p_{T}\left(l-N_{n-1}\right) \frac{\mathrm{E}\left[g\left(S_{T} \Delta S_{n}\right) \mid \mathcal{F}_{n-1}\right]}{\mathrm{E}\left[\left(\Delta S_{n}\right)^{2} \mid \mathcal{F}_{n-1}\right]}
$$

where $S_{T}=S_{N}$.

Bibliography

1. O. Glonti and Z. Khechinashvili, Financial (B, S)-market with Gaussian martingale mean square optimal hedging strategies, Proc. A. Razmadze Math. Inst. 115 (1997), 33-43. MR1639100 (99j:90010)
2. R. Liptser and A. N. Shiryaev, Theory of Martingales, "Nauka", 1986. (Russian) MR0886678 (88h:60091)
3. T. Møller, Risk-minimizing hedging strategies for unit-linked life insurance contracts, Astin Bulletin 28 (1998), no. 1.
4. A. N. Shiryaev, Essentials of Stochastic Financial Mathematics, World Sci., River Edge, NJ, 1999. MR1695318 (2000e:91085)

Steklov Mathematical Institute, Gubkina 8, Moscow 117966, Russia
Current address: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Steklov Mathematical Institute, Gubkina 8, Moscow 117966, Russia
Received 12/MAR/2003
Originally published in English

[^0]: 2000 Mathematics Subject Classification. Primary 60H30; Secondary 91B28, 91B30.
 Key words and phrases. Hedging, (B, S)-market, contingent claim, insurance liabilities, insurance premiums and claims.

 This paper was partially supported by grants of NSERC and SSHRC.

