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ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE
CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

UDC 519.21

A. V. MELNIKOV AND M. L. NECHAEV

Abstract. The paper deals with the problem of pricing an equity-linked insurance

contract based on stock prices. The stock prices are supposed to follow a stochastic
exponent model with respect to a given Gaussian martingale. The model gives a
possibility to obtain unified formulas for “mean–variance” hedging and the corre-
sponding premium for both natural cases: Black–Scholes and Gaussian discrete time
models.

1. Introduction

Suppose that an insurance company has a portfolio of l insurance contracts. Any
contract is associated with a random time τi, i = 1, . . . , l, which indicates the time
of incident occurrence. The corresponding premiums should be distributed between
financial assets to guarantee the best correspondence between liabilities of the company
and its capital V π. As a criterion of the quality of a financial portfolio π we shall use
the mean variance distance

E
[
(V π

T − fT )2
]
,

where fT represents the claim that should be paid by the company at the terminal time T .
The insurance contract based on the market’s price of a given asset St is called an

equity-linked life insurance contract. An appropriate description of such a contract was
given, for instance, in [3], in the framework of the Black–Scholes model for S. This paper
is devoted to the pricing of such insurance contracts and in a more general case of a
financial market driven by Gaussian martingale.

2. Financial market and insurance portfolio

Suppose the company invests in the (B, S)-market with two traded assets: bank ac-
count Bt ≡ 1 and stock St,

St = S0 exp
{

Yt −
1
2
〈Y 〉t

}
,

where Yt is the right continuous Gaussian martingale (see [2]) on a given stochastic basis

(Ω1,F1, P 1, F 1)

with filtration F 1 generated by Y .
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Any self-financing trading strategy π = (β, γ) can be determined by its capital

V π
t = V π

0 +
∫ t

0

γu dSu,

where γt is the number of stocks in the portfolio at time t (see [4]). The number of bank
account units β can be identified from the balance equation

Vt = γtSt + βt.

Using the explicit form of S and the Kolmogorov–Itô formula [2], we can derive the
following expression for the capital V π

t :

(1) V π
t = V π

0 +
∫ t

0

γuSu− dYu +
∑
u≤t

γuSu−

(
exp

{
∆Yu − 1

2
∆ 〈Y 〉u

}
− 1 − ∆Yu

)
.

The maturity time of this contract will be denoted by T . We also assume a pure technical
condition: ∆YT = 0. The corresponding contingent claim has the form fT = f(ST ),
where the Borel function f satisfies the following condition:

f(x) ≤ c
(
1 + xp1

)
x−p2

, c ≥ 0, p1 ≥ 0, p2 ≥ 0, x ≥ 0.

In this case (see [1]) we can define the function

F (u, x) =
1√

2π 〈Y 〉T − u

∫
R+

f(z)
z

exp

{
−

(
ln(x/z) + 1

2 (〈Y 〉T − u)
)2

2(〈Y 〉T − u)

}
dz.

It is easy to prove that this function is twice continuously differentiable with respect to
both argument u and x and admits the representation

(2) F (〈Y 〉t , St) = E
[
f(ST ) | F1

t

]
for any t < T.

Using the martingale convergence theorem [2] we can conclude that

F (〈Y 〉T , ST ) = f(ST ).

The Kolmogorov–Itô formula gives directly that

F (〈Y 〉t , St) = F (0, S0) +
∫ t

0

Fx(〈Y 〉u− , Su−)Su− dYu

+
∫ t

0

Fu(〈Y 〉u− , Su−)Su−d 〈Y 〉u

+
1
2

∫ t

0

Fxx(〈Y 〉u− , Su−)S2
u−d 〈Y c〉u

+
∑
u≤t

{
F (〈Y 〉u , Su) − F (〈Y 〉u− , Su−) − Fx(〈Y 〉u− , Su−)Su−∆Yu

− Fu(〈Y 〉u− , Su−)Su−∆Yu

}
,

(3)

where Fx, Fu, and Fxx are the corresponding derivatives. Taking into account that the
process F (〈Y 〉t , St) should be a martingale, we can reduce (3) to the equality

F (〈Y 〉t , St) = F (0, S0) +
∫ t

0

Fx(〈Y 〉u− , Su−)Su− dYu

+
∑

{u≤t}
{F (〈Y 〉u , Su) − F (〈Y 〉u− , Su−) − Fx(〈Y 〉u− , Su−)Su−∆Yu}.

(4)

The insurance portfolio of l contracts can be characterized by random times

τi, i = 1, . . . , l,
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of incident occurrence and claim payment values. We shall assume that τi are i.i.d.
random variables on some probability space (Ω2,F2, P 2). The payment function g(·) for
the contract indicates the value g(ST ) which should be paid if no incident occurs during
the insured period.

Suppose that the distribution of τi admits the following representation:

P 2(τ ≤ t) = 1 − exp
{
−

∫ t

0

µs ds

}
,

where µ is called a force of mortality. Denote Ik
t = I{τk≤t}, and Nt = I1

t + · · · + I l
t.

The counting process Nt indicates the number of incidents on [0, t]. We shall equip
(Ω2,F2, P 2) with a filtration F 2 = (F2

t )t≥0 generated by (Nt)t≥0. The process∫ t

0

(l − Ns−)µs ds

is a compensator of Nt and

Mt = Nt −
∫ t

0

(l − Ns−)µs ds

is a martingale with respect to F 2.

3. Main results and examples

It is quite natural to think that the financial market and the lives of insured are
independent. Hence the general probability space for the model can be defined as a
product of (Ω1,F1, F 1, P 1) and (Ω2,F2, F 2, P 2) with the general filtration F generated
by F 1 and F 2:

Ω = Ω1 × Ω2, F = F1 ×F2, P = P 1 × P 2,

F = F 1 × F 2 =
{
Ft = F1

t ×F2
t

}
t≥0

.

The payment function of such a contract has the form

fT = g(ST )(l − NT ),

where the Borel function g(·) satisfies the conditions mentioned above,

g(x) ≤ c(1 + xp1
)x−p2

, c ≥ 0, p1 ≥ 0, p2 ≥ 0, x > 0.

To optimize its liabilities the company should choose an initial capital v̂ and a self-
financing trading strategy π̂ such that

E
[
(V π̂

T (v̂) − fT )2
]
≤ E

[
(V π

T (v) − fT )2
]

for any v and any self-financing strategy π.
Denote by

V ∗
t = E[fT | Ft] = E[g(ST )(l − NT ) | Ft]

the so-called “tracking process” V ∗
t ; using the independence of S and N we get

V ∗
t = E1

[
g(ST ) | F1

t

]
E2

[
(l − NT ) | F2

t

]
.

It is easy to check that

(5) E2
[
(l − NT ) | F2

t

]
= E2

[ l∑
i=1

(1 − I{τi≤T})
∣∣∣ F2

t

]
= (l − Nt)tpT ,

where tpT = E2[1 − I{t<τi≤T} | Ft] = exp
{
−

∫ T

t
µs ds

}
is the probability of incident

occurrence after expiration date T . Using the representation (2) we have

V ∗
t = F (〈Y 〉t , St)(l − Nt)tpT .
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Applying the Kolmogorov–Itô formula to the process V ∗
t we obtain the integral repre-

sentation

V ∗
t = V ∗

0 +
∫ t

0

(l − Nu−)upT dF (〈Y 〉u , Su) +
∫ t

0

F (〈Y 〉u−
, Su−)(l − Nu−)upT µu du

−
∫ t

0

F (〈Y 〉u−
, Su−)upT dNu

+
∑
u≤t

[
F (〈Y 〉u , Su)(l − Nu)upT − F (〈Y 〉u−

, Su−)(l − Nu−)upT

− (l − Nu−)upT ∆F (〈Y 〉u , Su) + F (〈Y 〉u−
, Su−)upT ∆Nu

]
.

(6)

The equality (6) can be rewritten as

V ∗
t = V ∗

0 +
∫ t

0

(l − Nu−)upT dF (〈Y 〉u , Su) −
∫ t

0

F (〈Y 〉u−
, Su−)upT dMu

+
∑
u≤t

[
F (〈Y 〉u , Su)(l − Nu)upT − F (〈Y 〉u−

, Su−)(l − Nu−)upT

− (l − Nu−)upT ∆F (〈Y 〉u , Su) + F (〈Y 〉u−
, Su−)upT ∆Nu

]
,

(7)

where

Mt = Nt −
∫ t

0

(l − Nu−)µu du.

Taking into account the representation (4) for F (〈Y 〉t , St) we have from (7) that

V ∗
t = V ∗

0 +
∫ t

0

(l − Nu−)upT Fx(〈Y 〉u−
, Su−)Su− dYu− −

∫ t

0

F (〈Y 〉u−
, Su−)upT dMu

+
∑
u≤t

[
F (〈Y 〉u , Su)(l − Nu)upT − F (〈Y 〉u−

, Su−)(l − Nu−)upT

+ F (〈Y 〉u−
, Su−)upT ∆Nu − (l − Nu−)upT Fx(〈Y 〉u−

, Su−)∆Yu

]
.

Note that any capital V π
t controlled by a self-financing strategy can be represented in

the form (1). Consider the mean variance distance between V π
T and V ∗

T = fT :

R(π, v) = E
[
(V π

T − V ∗
T )2

]
.

Because of the martingale properties of V π
t and V ∗

t , it is clear that the initial capital v̂
for the optimal trading strategy should be equal to V ∗

0 :

v̂ = lE1[g(ST )]p(0, T ) = lF (0, S0) P({τ > T}).
Let the initial capital v of the self-financing strategy π be equal to v̂; then

R(π, v) = E

[(∫ t

0

((l − Nu−)upT Fx(〈Y 〉u−
, Su−) − γu)Su− dYu

−
∫ t

0

F (〈Y 〉u−
, Su−)upT dMu

+
∑
u≤t

[
(l − Nu)upT ∆F (〈Y 〉u , Su)

− (l − Nu−)upT Fx(〈Y 〉u−
, Su−)Su−∆Yu−

− γu∆Su + γuSu−∆Yu

])2
]
.

(8)
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Since the difference

Mt = V ∗
t − V π

t

is a martingale with respect to F , there is a unique representation of the form

Mc + Md,

where Mc and Md are respectively the purely continuous and discontinuous parts of
Mt, which are orthogonal. Consequently

E
[
M2

]
= E

[
(Mc)2

]
+ E

[(
Md

)2
]
.

Let us rewrite Mc in the form

Mc =
∫ t

0

(
(l − Nu−)upT Fx(〈Y 〉u−

, Su−) − γu

)
Su− dY c

u −
∫ t

0

F (〈Y 〉u−
, Su−)upT dM c

u.

Since Yu and Mu are independent, we get

E
[
(Mc)2

]
= E

[∫ t

0

(
(l − Nu−)upT Fx(〈Y 〉u−

, Su−) − γu

)2
S2

u−d 〈Y c〉u
]

+ E

[∫ t

0

(F (〈Y 〉u−
, Su−)pT )2 d 〈M c〉u

]
.

In the case of the purely discontinuous part Md, we have the formula

Md =
∑
u≤t

[
−upT F (〈Y 〉u , Su)∆Nu + (l − Nu−)upT ∆F (〈Y 〉u , Su) − γu∆Su

]
,

and therefore

E
[
(Md)2

]
= E

[(∑
u≤t

[
−upT F (〈Y 〉u , Su)∆Nu+(l−Nu−)upT ∆F (〈Y 〉u , Su)−γu∆Su

])2
]
.

It is well known (see [2]) that the times of the jumps of the Gaussian martingale are
deterministic. Denote the corresponding set by A. Define the processes γ and γ̃ by the
following formulas:

γ̃s = γsχA, γs = γsχA,

where χA is the indicator function of the set A. Take

γs = γ̃s + γs.

Since A is a countable set,

E
[
(Mc)2

]
= E

[∫ t

0

((l − Nu−)upT Fx(〈Y 〉u−
, Su−) − γ̃u)2S2

u− d 〈Y c〉u
]

+ E

[∫ t

0

(F (〈Y 〉u−
, Su−)upT )2 d 〈M c〉u

]
.

(9)
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On the other hand it is clear that

E
[
(Md)2

]
= E

[(∑
u∈A

[
−upT F (〈Y 〉u , Su)∆Nu

+ (l − Nu−)upT ∆F (〈Y 〉u , Su) − γu∆Su

]

−
∑
u/∈A

[upT F (〈Y 〉u , Su)∆Nu]
)2

]

= E

[(∑
u∈A

[
−upT F (〈Y 〉u , Su)∆Nu

+ (l − Nu−)upT ∆F (〈Y 〉u , Su) − γu∆Su

])2
]

+ E

[(∑
u/∈A

[upT F (〈Y 〉u , Su)∆Nu]
)2

]
.

(10)

Equations (9) and (10) give us the explicit forms of γ̃ and γ:

(11) γ̃ = (l − Nt−)tpT Fx(〈Y 〉t− , St−)χA

and

(12) γt =t pT (l − Nt−)
E

[
∆F (〈Y 〉t , St)∆St | Ft−

]
E

[
∆(St)2 | Ft−

] ,

where 0/0 is supposed to be equal to 0.
So, we get the following main result of the paper:

Theorem 1. For the (B, S)-market controlled by a Gaussian martingale and a portfolio
of l homogeneous unit-linked pure endowment insurance contracts, there is an optimal
mean-variance hedging strategy γ̂ = γ̃ + γ, where the continuous part γ̃ and the purely
discontinuous part γ are defined by (11) and (12), respectively.

The initial capital v̂ of the strategy can be calculated by

v̂ = l E[g(ST )] P(τ > T ),

where g(St) is a payment function for one insurance contract, T is a terminal time, and
τ is a random time with distribution of the incident occurrence.

Example 1. The model investigated above includes the model considered by T. Møller
(see [3]) when Yt is Brownian motion. Taking, in our setting,

γt ≡ 0, γ̂t = γ̃t = (l − Nt−)tPT Fx(〈Y 〉t , St)

gives the model and the result presented in [3].

Example 2. Another interesting example is the discrete model

Sn = S0 exp
{

Mn − 1
2
〈M〉n

}
,

Bn ≡ 1,

where Mn = h1 + · · · + hn, hi = σεi, εi ∼ N(0, 1), and εi are i.i.d. random variables on
the probability space (Ω1,F1, P 1) with filtration F 1 = {F̃1

n}, F̃1
n = σ{εi, i ≤ n}. It is

clear that 〈M〉n = σ2n and

Sn = S0 exp
{

h1 + · · · + hn − σ2

2
n

}
.
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Using the independence of εi, we have

E[Sn | Fn−1] = Sn−1 E
[
exp

{
hn − σ2/2

}
| Fn−1

]
= Sn−1.

We can embed the discrete model to our general model by the following standard way:

Yt =

⎧⎪⎨
⎪⎩

0, t ∈ [0, 1),
Mn, t ∈ [n, n + 1), n < N,

MN , t ∈ [N, N + δ), N + δ = T,

F1
t = F1

[t], F 1 = {F1
t }t≥0.

It is clear that Y is a Gaussian martingale on the standard stochastic basis(
Ω1,F1, F 1, P 1

)
satisfying the technical condition ∆YT = 0. In view of the theorem γ̃n = 0 because there
is no continuous part of Y . Regarding the other part of a hedging strategy γn we have

E[∆F (〈Y 〉n , Sn)∆Sn | Fn−1] = E[(F (〈Y 〉n , Sn) − F (〈Y 〉n−1 , Sn−1))∆Sn | Fn−1]

= E[F (〈Y 〉n , Sn)∆Sn|Fn−1] = E[g(ST ∆Sn) | Fn−1].

Hence we get

γ̃t = γn =n pT (l − Nn−1)
E [g(ST ∆Sn) | Fn−1]
E [(∆Sn)2 | Fn−1]

,

where ST = SN .
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