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On the Prime Factors of (2„")

By P. Erdös, R. L. Graham, I. Z. Ruzsa and E. G. Straus

Abstract.   Several quantitative results are given expressing the fact that   (    )   is

usually divisible by a high power of the small primes.   On the other hand, it is

shown that for any two primes  p   and q, there exist infinitely many n for which

((2"),PQ)= 1.

1.  Introduction.   In the present paper we study the prime factors of (2").  It is

a well-known phenomenon that  (2") is divisible by a high power of the small primes.

We shall try to put this observation into a quantitative form.  First of all, note that it

is not known whether the smallest odd prime factor g(n) of (2") is bounded.  A

computer check shows that g(k) < 11   for  k < 3160, #(3160) =13  and g(k) <

13  for  k < 107.  Of course, it is clear that 2 always divides  (2").  We shall show

that for any two primes p  and q  there are infinitely many integers n   such that

((2n), pq) = 1.  (In fact, we shall prove a considerably sharper result.)

Set

m=    i    I
p-r( ");p«h

where p  denotes a prime.  The most striking fact is that we cannot decide if /(«)  is

unbounded.

We are going to prove

lim
x-».oo

Also, we shall show that

1    x ^   log k

¿T m=E-jr=co-
A n = l k = 2     ¿

lim   I ¿   /2(«) = e2.
X-*" x „=i

From these two results we immediately obtain that for all but o(n) integers  m < «,

f(m) = c0 + o(l), and it is not hard to deduce that for all but o(n) integers m < n

the number of Km  with  t \ (2m), is cxm + o(m)  for a certain absolute constant

cx.  Finally, we shall study some special questions about the divisors and prime factors

of (2n).
K n '

2.  The Main Results.  An elementary fact which we shall frequently use is the

following:

Received June 6, 1974.

AMS (MOS) subject classifications (1970).   Primary 10A40, 10L10, 10H15.

Copyright © 1975, American Mathematical Society

83

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



84 P. ERDÖS, R. L. GRAHAM, I. Z.RUZSA AND E. G. STRAUS

Fact.   For a prime p,

(\\        C") £ u  (modp)   if and only if every coefficient (or "digit") ak  in the

base p  expansion « = 2fc>0 afcpfc,  0 < afc <p, satisfies afc <p/2.

Thus the result that for any two primes p, ¿7  there are infinitely many integers

n  with ((2n), pq) — 1   is a special case of the following:

Theorem 1. Lei ^4  and B be positive integers satisfying A/(p — 1) +

5/(17 — 1) > 1   w«ere p a«û? ¿7 are integers exceeding 1.  77ze« í«ere exz'sr infinitely

many integers whose base p expansion has all digits < A  and whose base q expan-

sion has all digits < B.

Proof.   If log p  and  log q  are commensurable, then p  and q  are powers of

the same integer  r, say, p = rk, q — r1.   Hence, any sum   2,. r '     has all digits either

0  or   1   to both bases p  and  q.

If log p  and  log q  are incommensurable, then there are infinitely many expo-

nents a  and ß  so that

B qß-l

2   q - 1 '

i.e., so that the base  q  expansion of pa  either has all digits  <fi  or has a digit  <B

preceding any digit  > B. For brevity we call a number (p, A)-good and  (q, B)-good

if their base p  digits are all  < A, respectively, if their base  q  digits are all  < B.

We consider the following assertion.

Lemma. Given a number TV which is (p, A)-good, say TV = anp" + • • • +

ampm,  n > • • • >m > 0, a¡<:A, with TV = brqr + • • • + b¡q' + • • • + bfq' +"•

where j is the largest index so that  b)- > B,   i  is the least index  > j so that b¡ < B

(and so  bk = B for i > k> j), then there exists a number N*  which is  (p, A)-good

satisfying N* > brqr + ■ • • + b¡ql  and so that

N* = brqr + • • • + bi+l qi+ ' + bfq, + • • -,

where

either b* = b¡ and N* < N,  or B > b* > b¡, or B = b* and

the first digit with index less than  i  which is not equal to B  is  < B.

It is clear that Theorem 1 follows from this lemma, since after a finite number of

modifications we must obtain an N *  which is also  (q, Ä)-good.

Proof of Lemma.   Let   T = b^rf*'1 + • • • + b0  be the "tail" of N.  If we

can subtract any number  < T from TV and get a (p, ^4)-good number, we have a

modification of the first kind to an   N* <N.  The smallest number which has to be

subtracted from N in order to obtain a smaller  (p, ^)-good number is

So, if  T > S, we set N * = TV - S.   Thus, from now on we may assume   T < S.   Since

(2)
b ap
2   q - 1
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T > B((ql - l)l(q - 1)) + 1, then we have

Now, we can add any number   U to  TV with

qi-T<U<qi-T+ B((q> - l)/(q - 1)),

so that TV* = TV + U satisfies b* = b¡ + 1   and, if TV*  is not  (q, ¿?)-good, then

there is an index i* < i with 6*» < B  while the first digit b** > B satisfies /* < i*.

It therefore suffices to prove that there is a  (p, .4)-good number   U in this range with

U <pm.  This will follow from the following result.

Fact.   For every positive integer x, the half-open interval   [x, (p - \)x/A) con-

tains a  (p, ,4)-good integer.

Proof of Fact.  The ratio between a  (p, A)-gooà number M and the predecessor

of the next  (p, ^4)-good number TV is maximal when M = Apr~ ' + • • • + Ap + A

= A((pr - l)/(p - 1)) and TV = pr.   In this case the ratio is  (p - l)/A   and the fact

follows.    D

Now, for x = ql — T, we have

X<q<-1-B(^y(^±\(q<-1)

so that

<A(qi-l)l(p-l),

P-l/   A     +—W-T)

A     \p - 1     q - 1

>P-1 /P - 1 .

Hence, there exists a  (p, /l)-good number   t/ in this interval.   Finally, by (3) we have

^<t7f-i<f-^-Ui--^-r
\ 5

tq - 1 \ /   £<i-V-j(^T»(pW,-1) = p'n-
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so that the interval   [x, ((p — \)jA)x)  lies below pm.  This proves the Lemma and

Theorem 1 follows.    D

One could ask whether the hypotheses of Theorem 1 can be weakened and whether

similar results can be obtained for three or more bases instead of just two.   At the

moment we cannot decide either of these questions and perhaps a new idea will be

needed.

Theorem 2.
1     x

lim-Z f(n) = c0.
*->"*> x „=1

Proof.   We have by definition

"=l Py(2nn);p<nP     P<*       P

where A(p;x)  denotes   | {k: p < k <x, p \ (2k)}\.  Let  t? = 1/x > 0  be small.  We

first show that the contribution from the primes p < xv  is negligible.  (The reason for

this is that  (2n)  almost surely is a multiple of a small prime.)  Choose  r  and   t  so

that   1 < t < p  and  tpr < x < (t + l)pr.  By (1) it is clear that

A(p;x)^A(p;(t+l)pr)

^p + lV     /r+lWp + lV

Thus,

<*->m<mm *«(!)'*
A(p;x)     x   v ^ A(p;x)

r>        H *   r>j      l/(c+l)^     .    1/r        P
p<x ' x   IK        '<p<x   '

C-,

iZ 2(|)^log(l+A)=0(e-)

for some c3 > 1, which is negligible for s  sufficiently large.

Therefore, it suffices to consider only those p  exceeding xlls. Note that for

any  0<e<a<l-e,

V        A(p\x) v        1
(4) 2-       -< * ¿-       „       4

a,   /   a + e        P «,    .   a + e F
x   <p<x x   <p<x

where  c4 = c4(a).   But for each p  with xl/(r+1)+e <p < xl/r"e,

A(p; x) = x/2r + o(x).

Thus,
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ON THE PRIME FACTORS OF   (2") 87

1    * j   y   A(p;x)

n=l x p<x      v

= \_l   y      A(p;x) | ¿(p;*)\

'=1   ,1/(''+1)<P<x1/'' P

s-1

!q       z     +      z

+ + 0(1)

1/r-e.    ,,    1/r,:'        <p<x   '  T

Z yrlog(l + j)+es + 0(l)
r=l    2r

where  e„ —► 0  as 5 —► °°.  Hence
s

*-~ * „ = i r=l  2r V r/ r=2 2r

Theorem 3.

lim  lxZ /» = 4
x-+oo n=x

Proof  We can write

1    £    f2(^       1   V V- 1 1     V      ^(P' ^ *>

P.«Kl „ );p.9<n

x ¿^  .»   v /     x ¿_ ^ pq     x    t-, p„

where

4(p, .7; x) = {*:p, <?<*:<*, ((f), m) = i}.
As before we first choose a large s and then a small e depending on s. The

exact dependence will be clear shortly. We partition the pairs of primes (p, q) into

three classes:

I. p, q<x1<s;

II.  p<xlls <q   or  q <x1/s <p;

III. p,q>xl>s.

For class I it can be seen by the same argument as in the proof of Theorem 2

that
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A(p, q;x)1 A(p,q;x)
-       Y      -=0(Cc).      c, > 1.
x      ^xls       pq y 5 '        s

p,q<x1/s

For class II we observe that

A(p, q;x)-    Z Z
x        ils   ils pqp<xl's x1/s<q<s

1 A(p; x)       v       i
<*    Z   —I—      Z      - <c6Mogi = o(l)

1 Is       " 1/ï "
p<x   ' oc '  <c7<x

as s —► °°.

Finally, we consider class III.  Suppose jc1/(r+1) <p <xl'r, x1/(f+1> < q <

x1 lf, 1 < r, t < s.   Let  w, < w2 < • • • < wr+t  be the sequence of numbers p'   and

q',   1 < i < r, 1 </' < r, arranged in increasing order.  The numbers  k  which con-

tribute to A(p, q;x) satisfy the condition

k = zk   (mod wfc),      0 < zk < wk/2, k = 1, 2, • • • , r + f.

Hence, if we now assume

(5) wk+i/wk>x6'      k= I,--• ,r + t - 1, x/wr+t>xe,

then we see by (1) that

A(p, q;x)=-*-+o(x).
2r+t

Summing this over p  and  q, we get the main contribution of c\x + o(x).  It is

easily seen that the contributions of the pairs  (p, q)  not satisfying (5) is negligible.

For if (5) does not hold, then either

pr>x1-£,   i.e.,x^-e)/r<p<x1'r

or

qf>xl-€,   i.e.,x^-£)'t<q<x1't

or

x~€ <puqv <xe    for some   1 < u < r,   1 < v < t.

Summing   \\pq  in these cases, we get  o (I)  as  e—► 0.  Strictly speaking, we only

proved

Z   f2(n)<c2x + o(x).
n<x

However, Theorem 3 follows at once by Theorem 2 and the arithmetic-quadratic mean

inequality.  D
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Corollary.   For all e > 0,

Urn   ^|{«<x: |/(„)_ c0|>e}| = 0.

Observe that, in fact, the proofs of Theorems 2 and 3 show that for 0 < a, ß < 1

with j3 — a > tí > 0  we have for almost all «,

(6)
p\(

Z \   = Z       — log fl  +i) + 0(l)
n),n   <p<nF l/ß<k<l/a ¿ v '

uniformly in  17 .  From this it now follows by the sieve method that:

Theorem 4. For a < 1,

|{.m: 1< m < na, m \ (2")j = c(a)na + o(«a),

where  c(a) —► 1   as  a —► 0.  (In fact, c(a) can be explicitly calculated.)

A well-known averaging argument gives:   If e > 0  and r > r(e), then for any

p    satisfying x1/r < p < x1'^r~1\ then with the exception of at most x/c\  «'s < x,

we have pa||(2")  with nA~e <pa <nA + e, where ce > 1.  This leads to the follow-

ing:

Theorem 5. Suppose for some  e>0 and w<x, pa \m => pa <xe.   Then

{n<x:m + \n)\ <
,1/e

where c7 > 1.

Proof.   Suppose x1^r+l <pa <xl¡r. By the above remark,it is certainly true

that at most x/c^n's<x  have pß\\(2„) with pß<nA~e.  Since at most  r  dif-

ferent prime powers dividing m  can lie between x1^^1   and x1^, then these prime

powers can knock out at most  rx/cre «'s less than x.   On the other hand, if p^||(2")

with p'3>«1/2~€, then the prime p   can cause no trouble provided  «1/2_e > xe, i.e.,

«>x2e/(1~2e).  Therefore

It <*:»+(?)},< z
|l V     ' ' \ r>l\

J2L + x2e¡(l-2e)

<-
.l/e

for some c7 > 1.    □

By the preceding methods, we can prove the following result.

Theorem. Let p  be fixed.   Then

in < x: pa\\ (2wn), p" £ («,/2-£, «,/2 + e)} = o(x).

In fact, as we have already observed, this result holds for p = o(xn).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



90 P. ERDOS.R. L. GRAHAM, I. Z. RUZSA AND E. G. STRAUS

We would like to be able to turn this result around, i.e., to show that for fixed n,

p<n:pa\\^),pat(nlÁ-e,nÁ + e)}\

is in some sense small.  For example, put fe(n) = 2'l/p, where the dash in the sum-

mation indicates that the sum is extended over all primes p < «  for which

pa||(2n") and pa £ («1/2-e, «'/2+e).  It seems possible that for every  e > 0, fe(n) <

c(e).  By the methods of Theorems 2 and 3, we can prove that the limits

lim   h  Z   W = Ce     and      lim    h   Z   ft W = Ce
^->°°      n<x *^°°      n<x

exist.

By methods similar to those we have employed earlier, it is not difficult to prove

the following

(7) Z       i-> clog log«.

p|(2„");p<«P

There is no doubt that (7) holds for any c > 1 — e, and this would follow, of course,

from the boundedness of  2     , 1/p.  In this connection we would like to
p-r(    );p<«

state the following conjecture:

Z*£=04 + o(l))loglogn
p<n   y

where the * indicates that the summation is extended over all primes p   such that

« = kp + r, where p/2 < r < p   and  k is integral.

Before closing the paper, we make a few random remarks about divisibility prop-

erties of binomial coefficients.  It is well known that  (2")/(« + 1) is always an integer.

Balakran [1] proved that  (« + 1)2|(2") for infinitely many  «   and by his method

one can prove that for every  k  there are infinitely many «, so that  (« + l)fcl(2"),

and also for every  k  there are infinitely many  n   for which  (2«)!/(« + 1)!(« + k)\

is an integer.  (In fact, this even holds if k < c log «   if c  is a sufficiently small

absolute constant.)  It seems certain that for every  k  there are infinitely many in-

tegers «   for which  (2n)\/(n + fc)!(« + k)\  is an integer, but we cannot prove this

even for  k = 2.

An old result of P. Erdös (see [3] ) states that there is an absolute constant  c

so that if «!/a!fe!   is an integer then  a + b < « + c log n, but for infinitely many

values of «   and some  c > 0, n\ja\b\  is an integer with a + b = « + c log «.  In

fact, it is not hard to show that for all n  with the exception of a sequence of density

0,  (2«)!/«! [« + c log «] !   is an integer.  We do not give the details of any of these

results (the proofs are fairly simple).

There is one curious problem here.  As stated before, n\/a\b\   cannot be an in-

teger for a + b > n + c log n.   It is possible that this is due only to the small primes.
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More precisely, is the following result true:   To every c  there is a  k  so that for in-

finitely many  «   (all n > n0(k, c)?) there are  suitable a  and  b  such that

a + b > « +elog«    and    n\\a\b\    has no prime factor    > k    in its de-

nominator?  Also, suppose a ~> en,  b > en, and a + è > « + c log «.   Can it happen

that  «!(a + b - n)\/alb\  is an integer?

Finally, while there is no doubt that there exist infinitely many pairs  (2m ), (2n)

which have the same set of prime divisors, e.g., C™), C™) or  (12^), C¿¿£).

we are not at present able to prove this.

Let us denote by Ain) the least integer which does not divide  (2").  Of course,

A(n)  is always a prime power.  It is not hard to show that except for a set of density 0,

(8) exp((log n)I/2-e) < A(n) < exp((log «)'/2 + e).

It would not be difficult to obtain sharper results than (8), but an asymptotic formula

seems hard.  Below we tabulate the first 100 values of A(n).

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

20

A(n)

3

22

3

3

5

5

5

22

3

3

5

3

3

7

7

22

7

21

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

40

A(n)

Table 1

A(n)

7

7

7

7

5

5

3

3

32

3

3

22

23

23

5

3

3

32

3

3

41

2

3

4

5

6

7

8

9

50

1

2

3

4

5

6

7

8

9

60

13

13

13-

11

11

11

11

23

7

5

5

5

13

32

5

5

5

7

7

5

61

2

3

4

5

6

7

8

9

70

1

2

3

4

5

6

7

80

A(n)

5

5

7

22

7

7

32

23

13

7

7

7

7

24

17

24

19

13

13

81

2

3

4

5

6

7

8

9

90

1

2

3

4

5

6

7

8

9

100

A(n)

3

3

32

3

3

17

32

32

17

3

3

32

3

3

19

7

7

7
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at the beginning of the paper.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



92 P. ERDOS, R. L. GRAHAM, I. RUZSA AND E. G. STRAUS

Bell Laboratories

Murray Hill, New Jersey   07974 and

Mathematics Institute of the Hungarian Academy of Science

Budapest, Hungary

Bell Laboratories

Murray Hill, New Jersey   07974

Eötvös Lorand University

Budapest, Hungary

Mathematics Department

University of California

Los Angeles, California   90024

1. H. BALAKRAN, "On the values of  n   which make   (2n)!/(n + 1)! (n + 1)!   an integer,"

/. Indian Math. Soc, v. 18, 1929, pp. 97-100.

2. P. ERDÖS, "On some divisibility properties of   (2")," Canad. Math. Bull., v. 7, 1964,

pp. 513-518.       MR 30 #52.
3. P. ERDÖS, "Aufgabe 557," Elemente Math., v. 23, 1968, pp. 111-113.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


