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Abstract. We say that finite groups are isospectral if they have the same sets of orders
of elements. It is known that every nonsolvable finite group G isospectral to a finite
simple group has a unique nonabelian composition factor, that is, the quotient of G by
the solvable radical of G is an almost simple group. The main goal of this paper is prove
that this almost simple group is a cyclic extension of its socle.

To this end, we consider a general situation when G is an arbitrary group with unique
nonabelian composition factor, not necessarily isospectral to a simple group, and study
the prime graph of G, where the prime graph of G is the graph whose vertices are
the prime numbers dividing the order of G and two such numbers r and s are adjacent
if and only if r 6= s and G has an element of order rs. Namely, we establish some
sufficient conditions for the prime graph of such a group to have a vertex adjacent to all
other vertices. Besides proving the main result, this allows us to refine a recent result
by P. Cameron and N. Maslova concerning finite groups almost recognizable by prime
graph.

Keywords: almost simple group, group of Lie type, order of an element, recognition
by spectrum, prime graph

1. Introduction

Given a finite group G, we denote the set of prime divisors of the order of G by π(G).
The set of element orders of G is called the spectrum of G and denoted by ω(G). If
ω(G) = ω(H), then G and H are said to be isospectral.
Suppose that G is a finite group isospectral to a finite nonabelian simple group L.

Then G is either solvable, in which case L is one of L3(3), U3(3), S4(3), or has exactly
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one nonabelian composition factor (see [5, Theorem 2]). In what follows, we assume that
G is not solvable, and so G has a normal series

(1.1) 1 6 K < H 6 G,

where K is the solvable radical of G, H/K is a nonabelian simple group and G/K is
an almost simple group with socle H/K. Denoting H/K by S, we may identify G/K
with a subgroup of AutS, and then G/H with a subgroup of OutS = AutS/S. Observe
that G/H is solvable.
If L is sufficiently ’large’, more precisely, if L is a classical group of dimension at least

38 or a non-classical group other than Alt6, Alt10, J2,
3D4(2), then K = 1 and H ≃ L

(see [9,13]). Furthermore, it follows that G/H is cyclic (see [8] and the references therein).
In general case, K is not always trivial and H/K is not always isomorphic to L but in all
known examples, G/H is cyclic. This observation suggests us to conjecture that G/H is
always cyclic and the main goal of this paper is to prove this conjecture.

Theorem 1. Let L be a finite nonabelian simple group and let G be a nonsolvable finite

group with ω(G) = ω(L). Suppose that 1 6 K < H 6 G is the normal series of G as in

(1.1). Then G/H is cyclic. Furthermore, if H/K is a simple group of Lie type other than

L2(q), then G/H does not contain diagonal automorphisms.

If L is sporadic or alternating, Theorem 1 is a direct consequence of the known de-
scription of groups isospectral to L. If L is a group of Lie type, the proof has several
ingredients. The first is the well-known property of spectra of groups of Lie type stated
in Lemma 2.1 in Section 2. The second is the nilpotency of the solvable radical of G
established in [18]. The third is the following Theorem 2 which concerns all finite groups
of some specific structure, not only those isospectral to simple groups.

Theorem 2. Suppose that a finite group G has a normal series 1 6 K < H 6 G,

where K is the solvable radical of G, S = H/K is a finite simple group of Lie type, and

G/K ≤ AutS. Suppose also that K is nilpotent.

(i) If S 6= L2(q) and G/H contains a diagonal automorphism of S of prime order r,
then rs ∈ ω(G) for all s ∈ π(G) \ {r}.

(ii) If G/H is not cyclic, then there is r ∈ π(G/H) such that rs ∈ ω(G) for all

s ∈ π(G) \ {r}.

The set ω(G) defines the prime graph of G as follows: the vertex set of this is π(G)
and two primes r, s ∈ π(G) are adjacent if and only if r 6= s and rs ∈ ω(G). The prime
graph is also known as the Gruenberg–Kegel graph and we denote it by GK(G). It is
not hard to see that Theorem 2 states a property of the graph GK(G) rather than of
the whole set ω(G). This allows us to apply this theorem to the problem of recognition of
simple groups by prime graph. Recently, P. Cameron and N. Maslova [1] proved several
new results relating to this problem. In Theorem 3, we slightly refine Theorem 1.4 of [1].

Theorem 3. There exists a function F (x) = O(x5) such that for each labeled graph Γ,
the following conditions are equivalent:

(i) there exist infinitely many groups H such that GK(H) = Γ;
(ii) there exist more than F (|V (Γ)|) groups H such that GK(H) = Γ, where V (Γ) is

the set of the vertices of Γ.

In fact, Theorem 1.4 of [1] states exactly the same as Theorem 3 but with x7 in place
of x5.
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2. Proofs of Theorems 1 and 2

We begin this section with notation and preliminary results. We write Lε
n(q) and

Eε
6(q) assuming that ε ∈ {+,−}, L+

n (q) = Ln(q), L
−

n (q) = Un(q), E
+

6 (q) = E6(q), and
E−

6 (q) =
2E6(q). If r is a prime and a is an integer, then (a)r is the highest power of r

dividing a. If S is a group of Lie type, then Inndiag S is the subgroup of AutS generated
by inner and diagonal automorphisms, and Outdiag S is the image of Inndiag S in OutS.
Also we use the terms ‘field automorphism’ and ‘graph automorphism’ of S according
to [4, Definition 2.5.13].

Lemma 2.1. If S is a finite simple group of Lie type, then for every r ∈ π(S) there is

s ∈ π(S) such that r 6= s and rs 6∈ ω(S).

Proof. This follows from [16, 17] (see, for example, [6, Lemma 2.2]). �

Lemma 2.2. Let S be a finite simple group of Lie type in characteristic p. If r divides

|OutdiagS| and rp 6∈ ω(S), then either S = L2(q), or S = Lε
3(q) and (q − ε)3 = 3.

Proof. This follows, for example, from [16, Propositions 3.1 and 3.2]. �

Lemma 2.3. Let S be a finite simple group of Lie type in characteristic p. If r ∈ π(S),
r is odd and 2r 6∈ ω(S), then either a Sylow r-subgroup of S is cyclic, or S = L2(q) and
r = p, or S = Lε

3(q), p = 2, r = 3 and (q − ε)3 = 3.

Proof. This follows from the results of [16, Sections 3 and 4] and the cross-characteristic
Sylow structure of groups of Lie type [3, (10-2)]. �

Lemma 2.4. Let S = tΣ(q) be a finite simple group of Lie type, not a Suzuki–Ree group,

and let ϕ be a field automorphism of S of prime order r. Then r ·ω(tΣ(q1/r)) ⊆ ω(S⋊〈ϕ〉).

Proof. This follows from the Lang–Steinberg theorem [14, Section 10] (see, for example,
[7, Lemma 2.8]). �

Lemma 2.5. Suppose that G is a finite group, K is a normal subgroup of G and every

g ∈ G \K acts fixed-point-freely on K. Then every odd order Sylow subgroup of G/K is

cyclic and a Sylow 2-subgroup of G/K is cyclic or generalized quaternion.

Proof. This is a well-known property of fixed-point-free automorphisms (see, for example,
[10, Satz 8.7]). �

Proof of Theorem 2. Denote the defining characteristic of S by p, G/K by G and G/H

by Ĝ. As we remarked in the introduction, Ĝ can be regarded as a subgroup of OutS.
Clearly, we may assume that either Outdiag S 6= 1 or OutS is not cyclic, in particular,

we may assume that S is not a Suzuki–Ree group and so 3 ∈ π(S).

(i) Suppose that r ∈ π(Ĝ ∩OutdiagS). Observe that r ∈ π(S) and r 6= p. By Lemma
2.2, it follows that rp ∈ ω(S) unless S = Lε

3(q), r = 3 and (q − ε)3 = 3. In this case
PGLε

3(q) 6 G, and since PGLε
3(q) has an element of order p(q−ε), we see that rp ∈ ω(G).

Suppose that s ∈ π(S) and s 6= p. If s ∈ π(OutdiagS), then rs ∈ ω(S) since Outdiag S
is abelian. So we may assume that s 6∈ π(OutdiagS). The maximal tori of Inndiag S
are isomorphic to those of the universal version S̃u of S̃, where S̃ = S if S is not of
type Bn or Cn, and B̃n(q) = Cn(q), C̃n(q) = Bn(q) (see [2, Section 4.4]). Since every

maximal torus of S̃u contains the center Z(S̃u) of S̃u and |Z(S̃u)| = |Outdiag S|, we see
that Inndiag S includes a maximal torus whose order is divisible by s|OutdiagS|. So G
contains an abelian subgroup of order sr.
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Let s ∈ π(G)\π(S). Since s 6= 2, 3 and s 6∈ π(OutdiagS), it follows that G/K contains
a field automorphism of S of order s. By Lemma 2.4, we have s ·ω(S0) ⊆ ω(G/K), where
S0 is a group of the same Lie type as S. If r = 2, 3, then it is clear that r ∈ π(S0). If
r 6= 2, 3, then S = Lε

n(q), r divides (n, q−ε) and S0 = Lε
n(q

1/s). Since r divides pr−1−εr−1

and r − 1 6 n− 1, we see that r ∈ π(S0).
Let s ∈ π(K) \π(G). If r = 2, then s is adjacent to r in GK(G) by [15, Proposition 2].

So we may assume that r is odd. If S = Eε
6(q) or S = Lε

n(q) with n > 4, then S includes
a torus of the form Zq−ε × Zq−ε, and hence S includes an elementary abelian group of

order r2. If L = Lε
3(q), then PGLε

3(q) 6 G and so G includes an elementary abelian group
of order r2. Now we apply Lemma 2.5 to conclude that rs ∈ ω(G).

(ii) Let S 6= L2(q). By (i), we may assume that Ĝ ∩ Outdiag S = 1. Then either Ĝ
includes an elementary abelian group of order 22, or S = O+

8 (q) and, up to conjugation in

OutS, Ĝ contains the image of the graph automorphism γ of S induced by the symmetry
of the Dynkin diagram of order 3.
In the first case, S = Ln(q), O

+

2n(q), or E6(q), and we claim that 2 is adjacent to all

odd primes in GK(G). By [15, Proposition 2], every s ∈ π(K) ∪ π(Ĝ) is adjacent to
2. Now let t ∈ π(S) and suppose that 2t 6∈ ω(S). Excluding for a while the case when
t = 3, S = L3(q), p = 2, (q− 1)3 = 3 and applying Lemma 2.3, we conclude that a Sylow
t-subgroup T of S is cyclic, and hence NG(T )/CG(T ) is cyclic. On the other hand, by

the Frattini argument, NG(T )/(NG(T )∩ S) ≃ Ĝ, and so a Sylow 2-subgroup of NG(T ) is
not cyclic. Thus 2 ∈ CG(T ), and 2t ∈ ω(G).

Suppose that t = 3, S = L3(q), p = 2, and (q−1)3 = 3. Since Ĝ includes an elementary
abelian group of order 22, it follows that G contains a field automorphism of S of order
2, and so 6 ∈ ω(G).
Now suppose that S = O+

8 (q) and G contains the graph automorphism γ. The central-
izer of γ in S is isomorphic to G2(q) [3, (9-1)] and so 3s ∈ ω(G) for all 3 6= s ∈ G2(q).
Since S includes an elementary abelian group of order 9, we conclude that 3s ∈ ω(G) for
all s ∈ π(K) \ {3}. Also a 2′-Hall subgroup of OutS is abelian, and hence 3 is adjacent

to every s ∈ π(Ĝ) \ {2, 3} in GK(Ĝ).. Let s ∈ π(S) \ {3} and 3s 6∈ ω(S). Then s divides
q2 + q + 1 or q2 − q + 1, therefore, s ∈ π(G2(q)) and, as we remarked, 3s ∈ ω(G). Thus 3
is adjacent to all vertices in GK(G).
Let S = L2(q), where q = pl. We claim that 2 is adjacent to all odd primes in GK(G).

Since OutS is a direct product of cyclic groups of orders (2, q − 1) and l, it follows that
p is odd, l is even and G = PGL2(q)⋊ 〈ϕ〉, where ϕ is a field automorphism of S of even
order. Since PGL2(q) contains elements of orders q±1 and 2p ∈ ω(G) by Lemma 2.4, we
see that 2 is adjacent to every odd s ∈ π(G). Let s ∈ π(K) be odd. A Sylow 2-subgroup
of PGL2(q) is dihedral, and so it cannot act fixed-point-freely on a Sylow s-subgroup of
K by Lemma 2.5. Hence 2s ∈ π(G), and the proof of Theorem 2 is complete. �

Now we are able to prove Theorem 1. Let S = H/K. Clearly, we may assume that
OutS is not cyclic. In particular, we may assume that S is neither sporadic nor alternating
with the following convention: if S = Alt6 ≃ L2(9), we regard S as a group of Lie type.
If L is sporadic and L 6= J2, or if L = Altn and n 6= 6, 10, then G ≃ L (see [11] and [5]

respectively). If L = J2, then G ≃ L or S = Alt8 by [11]. If L = Alt10, then G ≃ L or
S = Alt5 by [12]. If L = Alt6, we regard L as a group of Lie type.
Let L be a group of Lie type. By [18, Theorem 1], it follows that K is nilpotent, and

so G satisfies the hypothesis of Theorem 2. If G/H is not cyclic or if S 6= L2(q) and
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G/H contains a diagonal automorphism of S, then there is r ∈ π(G) adjacent to all other
vertices in GK(G). But this is impossible by Lemma 2.1 since GK(G) = GK(L). This
contradiction completes the proof of Theorem 1.

3. Groups almost recognizable by prime graph

Given a positive integer k, a finite group G is said to be k-recognizable by prime graph
if there are exactly k pairwise nonisomorphic finite groups H with GK(H) = GK(G) and
almost recognizable by prime graph if it is k-recognizable for some k.
By [1, Theorem 1.3], if G is almost recognizable by prime graph, then G is almost simple

and each group H with GK(H) = GK(G) is almost simple. So if G is a k-recognizable
group, then k is at most the number of almost simple groups H such that π(H) = π(G).
By [1, Proposition 4.2], this number is at most O(|π(G)|7). A direct corollary of this
discussion is the following theorem.

Theorem A [1, Theorem 1.4]. There exists a function F (x) = O(x7) such that for each

labeled graph Γ, the following conditions are equivalent:

(i) there exist infinitely many groups H such that GK(H) = Γ;
(ii) there exist more then F (|V (Γ)|) groups H such that GK(H) = Γ, where V (Γ) is

the set of the vertices of Γ.

It is clear that estimating k we do not need to calculate all almost simple groups H
such that π(H) = π(G). It is sufficient to calculate those H whose prime graph satisfies
some necessary conditions for H to be almost recognizable by prime graph. One of these
conditions is stated in [1, Theorem 1.3]: 2 is nonadjacent to at least one odd prime in
GK(H). But in fact this condition can be strengthened: every r ∈ π(H) is nonadjacent
to at least one prime s 6= r in GK(H). Indeed, otherwise GK(H) = GK(H × Z

k
r) for

all positive integers k. Applying Theorem 2, we see that it sufficient to calculate H such
that H/S is cyclic, where S is the socle of H .

Lemma 3.1. There is a function F (x) = O(x2) such that if S is a finite simple group of

Lie type, then there are at most F (|π(S)|) almost simple groups H with socle S such that

H/S is cyclic.

Proof. Let n be the Lie rank of S and q = pl the order of the base field of S. Denote
the number of divisors of l by d(l). By [1, Lemma 2.7], we have n 6 2|π(S)| + 3 and
d(l) 6 |π(S)|+ 1.
Steinberg’s theorem [4, Theorem 2.5.12] states that OutS = Outdiag S ⋊ΦSΓS, where

|OutdiagS| 6 n + 1 and ΦSΓS is either a subgroup in Zl × Sym3 or a cyclic group of
order 2l or 3l. In any case the number of cyclic subgroups of ΦSΓS is at most 6d(l). Thus
the number of cyclic subgroups of OutS is at most 6(n + 1)d(l), which is O(|π(S)|2) by
the preceding paragraph. �

Now we are ready to prove Theorem 3 (in fact we follow the lines of the proof of [1,
Theorem 1.4] but Theorem 2 allows us to use the bound of Lemma 3.1 instead of that
of [1, Proposition 4.1]). It is sufficient to show that there exists a function F (x) = O(x5)
such that for every finite group G, if G is almost recognizable by prime graph, then there
are at most F (|π(G)|) pairwise nonisomorphic groups H with GK(H) = GK(G).
Assume that G is k-recognizable by prime graph. By [1, Theorem 1.3], each group H

with GK(H) = GK(G) is almost simple. Furthermore, as we remarked, every r ∈ π(H)
is nonadjacent to at least one prime s 6= r in GK(H). By Theorem 2, it follows that H is
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a cyclic extension of its socle. By [1, Proposition 3.1], the number of nonabelian simple
groups S such that π(S) ⊆ π(G) is bounded by F1(|π(G)|) with F1(x) = O(x3). Applying
Lemma 3.1, we see that the number of almost simple groups H with socle S such thatH/S
is cyclic is at most F2(|π(S)|), where F2(x) = O(x3). Thus k 6 F1(|π(G)|)F2(|π(G)|) =
O(|π(G)|5), and this completes the proof of Theorem 3.
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