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Abstract We give a general formulation of the Principle of virtual powers in Con-
tinuum Mechanics from a distributional point of view, and study some of its rele-
vant consequences in the field of balance equations.
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1 Introduction

It is well known that the basic equations of Mechanics can be given starting from
the Principle of virtual powers. However, such a procedure is usually deemed to
be only instrumental, and the formulation in terms of forces is kept as the reference
frame. On the contrary, it is worthwhile considering that the approach based on the
concept of virtual power is independent of the notion of force, and it has lots of
capabilities and a great appeal. In particular, it enables a more general and versatile
treatment of the mechanical problem; this is mainly due to the prerogatives of
duality between forces and velocities.

The situation in the specific context of Continuum Mechanics has not been dif-
ferent: the Principle of virtual powers was regarded as a technical tool. Nonethe-
less, in two important papers of 1973 [4,5] Paul Germain faced the question in
a comprehensive way. In particular, the author developed the so called first and
second gradient theories, showing the outstanding flexibility of the Principle. We
refer also to [7] for a slightly earlier presentation of the topic using the Principle
of Virtual Work.

In the present paper, starting from Germain’s ideas, we revise the formulation
of the Principle of virtual powers. On the base of recent advances in the founda-
tions of Continuum Mechanics such as [1], we can give a more general treatment
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of the subject. In particular, the approach by means of the theory of distributions,
mentioned by Germain himself but not fully developed, is here adopted from the
beginning. Clearly, in order to obtain deeper results such as the Cauchy Stress
Theorem, some extra regularity has to be assumed. Note that a power depends in
general from two variables, the velocity field and the subbody. So it is a bit more
complex than a mere distribution.

Among the results obtained in this paper we point out a careful study of the
contact powers, the general treatement of the Principle of virtual powers in the set-
ting of measures (which can be singular with respect to the usual volume and area),
and an optimal formulation of the axioms for a first-gradient theory by means of
the systematic use of affine functions and n-intervals.

2 Measure-theoretic stuff

The section acquaints the readers with some detailed results of measure theory
which will be useful in the sequel.

We say that a set M ⊆ Rn is normalized, if M = M∗ where M∗ denotes the
set of points of density of M with respect to the n-dimensional Lebesgue measure
L n,

M∗ =
{

x ∈ Rn : L n(Br(x)\M)
/

rn → 0 as r → 0+
}

.

The measure-theoretic boundary of a set M is

∂∗M = Rn \
(
M∗∪ (Rn \M)∗

)
.

A normalized set is a sort of “open” set from a measure-theoretical viewpoint.
However, topological concepts such as “open” or “closed” can be considered in
the eyes of Mechanics as external to the model, while measure-theoretic notions
are much more related to the notion of “mass”, which is with no doubt involved in
the model. In the following, the usual topological notions of interior, closure and
boundary will be denoted by int, cl and bd resp.

Hereafter, Ω will denote a bounded open normalized subset of Rn. We denote
by M(Ω) the set of Borel measures µ : B(Ω)→ [0,+∞] finite on compact subsets
of Ω . Let µ ∈ M(Ω) and λ : P → R, where P is a collection of Borel subsets
of Ω . We write λ � µ , if

∀M ∈P : µ(M) = 0 ⇒ λ (M) = 0 .

In this paper we choose a particularly simple class of subbodies, namely open
n-intervals with compact closure in Ω . In our opinion, every class of subbodies
should contain such a family, which is in a sense minimal. Moreover, since we deal
with measures which can be singular, we have to introduce a notion of “almost all”
in the class of n-intervals. This is the meaning of G-interval in Definition 1 below.

Definition 1 A full grid G is an ordered triple

G =
(
x0,(e1, . . . ,en), Ĝ

)
,

where x0 ∈ Rn, (e1, . . . ,en) is a positively oriented orthonormal basis in Rn and Ĝ
is a Borel subset of R with L 1(R\ Ĝ) = 0.
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A subset M of Rn is said to be a G-interval, if

M =
{

x ∈ Rn : a j < (x− x0) · e j < b j ∀ j = 1, . . . ,n
}

for some a1,b1, . . . ,an,bn ∈ Ĝ. We set

MG = {M ⊆ Rn : M is a G-interval with clM ⊆ Ω} .

It is clear that the elements of MG are normalized; they are also regularly open.
However, it can happen that the union of two G-intervals M1,M2 in not normalized
(although it is obviously open), so we will consider the normalized union of such
sets, (M1∪M2)∗. It holds that

(M1∪M2)∗ = intcl(M1∪M2) ,

hence in the case of G-intervals the well-known notion of “regularly open set” is
recovered by the normalization procedure.

Definition 2 Let X be a linear space. A function λ : MG → X is said to be ∗-
additive, if

λ ((M1∪M2)∗) = λ (M1)+λ (M2)

for every M1,M2 ∈MG such that (M1∪M2)∗ ∈MG and M1∩M2 = ∅.

The following theorems are quite standard in Measure Theory. For a proof of
the first, one can refer to [1].

Theorem 1 Let X be a finite-dimensional normed space and λ : MG×X → R a
function such that

1. for every y ∈ X, λ ( · ,y) is ∗-additive;
2. for every M ∈MG, λ (M, ·) is linear;
3. there exists µ ∈M(Ω) such that

∀M ∈MG,∀y ∈ X : |λ (M,y)|6 |y|µ(M) .

Then there exists a bounded Borel map A : Ω → X∗ such that

∀M ∈MG,∀y ∈ X : λ (M,y) =
∫

M
〈A(x),y〉dµ(x) .

Moreover, A is uniquely determined µ-a.e.

The following is an easy generalization of [3, Corollary 2.9.4].

Theorem 2 Let λ : MG → R be ∗-additive and suppose that there exists µ ∈
M(Ω) such that λ � µ .

Then λ 6 0 if and only if for µ-a.e. x0 ∈ Ω one has

lim
i→∞

λ (Mi)
µ(Mi)

6 0

whenever (Mi)⊆MG is a sequence of open n-cubes with x0 ∈Mi and diamMi → 0
as i → ∞.
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For a proof of the following theorem, see [2, p. 43].

Theorem 3 (Lebesgue-Besicovitch Differentiation Theorem) Let µ ∈ M(Ω)
and f ∈ L1

loc(Ω ; µ). Then for µ-a.e. x0 ∈ Ω

lim
i→∞

1
µ(Mi)

∫
Mi

f dµ = f (x0) (1)

whenever (Mi)⊆MG is a sequence of open n-cubes with x0 ∈Mi and diamMi → 0
as i → ∞.

Corollary 1 Let µ ∈M(Ω) and f ∈ L1
loc(Ω ; µ) be such that

∀M ∈MG :
∫

M
f dµ = 0 .

Then f (x) = 0 for µ-a.e. x ∈ Ω .

Proof It is an easy consequence of the previous theorem, because the left-hand
side of (1) vanishes µ-a.e. ut

3 Powers of order one

We denote with Lin the space of linear functions A : Rn →Rn. The symmetric and
skew-symmetric parts of A will be denoted by As and Aω , respectively. Let Aff be
the collection of all affine functions v : Ω → Rn, v(x) = v0 +Fx , where F ∈ Lin.

Definition 3 We say that a function P : MG×Aff → R is a power of order one,
if the following properties hold:

1. for every v ∈ Aff, P( · ,v) is ∗-additive;
2. for every M ∈MG, P(M, ·) is linear;
3. there exist µ0,µ1 ∈M(Ω) such that

|P(M,v)|6
∫

M
|v|dµ0 +

∫
M
|∇v|dµ1

for every M ∈MG and v ∈ Aff.

If in the previous definition one can choose µ1 = 0, then we will refer to P as a
body power.

Remark 1 For a theory of higher order powers, where also edge or vertex inter-
actions are involved, it is natural to weaken estimate (c) (see [1]). Moreover, the
class of virtual velocities must contain higher grade polynomials.

A first important result is the following theorem, which gives an integral represen-
tation for the power.

Theorem 4 There exist two bounded Borel maps a : Ω → Rn and A : Ω → Lin
such that |a|6 1 µ0-a.e., |A|6 1 µ1-a.e. and

∀M ∈MG, ∀v ∈ Aff : P(M,v) =
∫

M
a ·vdµ0 +

∫
M

A ·∇vdµ1 . (2)

Moreover, a is uniquely determined µ0-a.e. and A is uniquely determined µ1-a.e.
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Proof One has

∀M ∈MG, ∀v0 ∈ Rn : |P(M,v0)|6
∫

M
|v0|dµ0 ,

hence by Corollary 1 there exists a bounded Borel map a : Ω → Rn such that

∀M ∈MG, ∀v0 ∈ Rn : P(M,v0) =
∫

M
a ·v0 dµ0 (3)

and |a|6 1 µ0-a.e.
Given F ∈ Lin and the vector field vF(x) = Fx, we now want to prove that∣∣∣∣P(M,vF)−

∫
M

a ·vF dµ0

∣∣∣∣ 6
∫

M
|F|dµ1 (4)

for every M ∈MG. Consider the function

λ1(M) = P(M,vF)−
∫

M
a ·vF dµ0−

∫
M
|F|dµ1 .

Then λ1 is ∗-additive and λ1 � µ , where µ = µ0 + µ1. For every x0 ∈Ω it can be
easily checked that

λ1(M) = P(M,vF−Fx0)−
∫

M
a · (vF−Fx0)dµ0−

∫
M
|F|dµ1 .

Let x0 ∈ Ω and (Mi) a sequence as in Theorem 2; we have

lim
i→∞

λ1(Mi)
µ(Mi)

6 lim
i→∞

1
µ(Mi)

∫
Mi

|F(x− x0)|(1+ |a|)dµ0 = 0

and by Theorem 3 the right-hand side vanishes for µ-a.e. x0 ∈ Ω , hence λ1 6 0.
In the same way, setting

λ2(M) = P(M,vF)−
∫

M
a ·vF dµ0 +

∫
M
|F|dµ1 ,

one can prove that λ2 > 0 and (4) follows.
Then, by Corollary 1 there exists a bounded Borel map A : Ω → Lin such that

∀M ∈MG, ∀F ∈ Lin : P(M,vF) =
∫

M
a ·vF dµ0 +

∫
M

A ·Fdµ1 (5)

and |A|6 1 µ1-a.e. Equation (5), combined with (3), ends up the proof. ut

Now we see that Theorem 4 admits a form of converse.

Proposition 1 Let µ0,µ1 ∈M(Ω) and let a : Ω →Rn, A : Ω → Lin be Borel and
bounded.

Then there exists a full grid G such that the function P : MG×Aff→R defined
as

P(M,v) =
∫

M
a ·vdµ0 +

∫
M

A ·∇vdµ1 (6)

is a power of order one.
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Proof Set η = µ0 + µ1 and

Ĝ =
{

a ∈ R : η
(
{x ∈ Ω : (x− x0) · ei = a}

)
= 0

}
.

Since η is finite on compact subsets of Ω , it is easy to see that the triple G =(
x0,(e1, . . . ,en), Ĝ

)
is a full grid for any x0 ∈ Rn and (e1, . . . ,en). Then it is clear

that (6) defines a power. ut

3.1 Extension of a power

We show now that a power, even if it has been defined only on a small class
of subbodies and virtual velocities, can indeed be extended in a unique way to
(almost all) Borel subsets of Ω and all vector fields on Ω of class C1. The key tool
is the integral representation (2), but one has to pay attention to the ∗-additivity.

We need to introduce the family of almost all Borel sets with compact closure
in Ω ; for η ∈M(Ω), we set

Bη = {M ⊆ Rn : M = M∗ ,clM ⊆ Ω , η(∂∗M) = 0} .

Theorem 5 Let P be a power, a,A be as in Theorem 4 and η = µ0 + µ1.
Then the function P̃ : Bη ×C1(Ω ;Rn)→ R defined as

P̃(M,v) =
∫

M
a(x) ·v(x)dµ0(x)+

∫
M

A(x) ·∇v(x)dµ1(x)

is an extension of P which satisfies (a), (b) and (c) of Definition 3 on all its domain.
Moreover, such an extension is unique.

Proof Since η(∂∗M) = 0 for every M ∈Bη , the function P̃ is ∗-additive on Bη .
Moreover, it clearly satisfies (b) and (c) of Definition 3 on Bη ×C1(Ω ;Rn) .

For the uniqueness, consider a generic function P̃ : Bη ×C1(Ω ;Rn) → R
which satisfies Definition 3 on all its domain with η = µ0 + µ1. Then in particular
it is a power of order one and there exist two bounded Borel maps a,A such that
(2) holds. Let v ∈C1(Ω ;Rn) and set

∀M ∈Bη : λ (M) = P̃(M,v)−
∫

M
a ·vdµ0−

∫
M

A ·∇vdµ1 .

Let x0 ∈ Ω , (Mi) be a sequence as in Theorem 2 and w = v−v(x0)−∇v(x0)(x−
x0). By (2) it is easy to see that

λ (M) = P̃(M,w)−
∫

M
a ·wdµ0−

∫
M

A ·∇wdµ1 .

Since w(x0) = 0 and ∇w(x0) = 0, taking into account Theorem 3 and (c) of Defi-
nition 3 one has

lim
i→∞

λ (Mi)
η(Mi)

= 0 ,

for η-a.e. x0 ∈ Ω , hence λ = 0. ut

From now on, we shall denote with the same symbol P such an extension.



On the Principle of Virtual Powers in Continuum Mechanics 7

4 Virtual stress power

We recall that a vector field v is rigid if ∇v is skew. By a virtual stress power (or
virtual power of internal forces) we mean a power P(i) of order one which satisfies
the following axiom:

Axiom 1 (Axiom of virtual stress powers) P(i)(M,v) is null for every rigid ve-
locity field v ∈ Aff and every M ∈MG .

This is equivalent to state that P(i) is an objective quantity, i.e. it has the same value
in every reference frame.

In view of the previous axiom, the stress power admits a special representation.
First of all, since P(i) is a power of order one, by Theorem 4 one has

P(i)(M,v) =
∫

M
a ·vdµ0 +

∫
M

A ·∇vdµ1 .

Let us denote with D the symmetric part of ∇v, i.e. D = (∇v)s.

Theorem 6 Let P(i) be a virtual stress power. Then

P(i)(M,v) =−
∫

M
T ·Ddµ1

for every M ∈MG and v ∈ Aff, where T =−As is symmetric.

Proof Consider a constant vector field v0 ∈ Rn. Since

∀M ∈MG : P(i)(M,v0) =
∫

M
a ·v0 dµ0

and the left-hand side vanishes in view of Axiom 1, the arbitrariness of v0 implies

∀M ∈MG :
∫

M
adµ0 = 0 .

Hence by Corollary 1 one has a = 0 µ0-a.e. and

∀M ∈MG : P(i)(M,v) =
∫

M
A ·∇vdµ1 . (7)

Now consider a skew matrix F ∈ Lin and the vector field v(x) = Fx. From (7) and
Axiom 1 it follows that

∀M ∈MG :
∫

M
A ·Fdµ1 =

∫
M

Aω ·Fdµ1 = 0

and the arbitrariness of F yields Aω = 0 µ1-a.e. ut
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5 Virtual contact powers

In this brief section we investigate some features of the contact powers. In the
standard doctrine of Continuum Mechanics, the contact power is defined as the
resultant of the stress vector field over the boundary of a subbody. In the present,
more general, situation where the existence of a stress field is not assumed a priori,
we assume that the contact power is a particular power of order one satisfiyng an
additional assumption of distributional flavor. The simple idea is that one wants a
contact power to act only on the boundary of a subbody.

Let P be a power of order one with

P(M,v) =
∫

M
b ·vdγ0 +

∫
M

B ·∇vdγ1 .

Definition 4 We say that P is a contact power, if

∀M ∈MG, ∀v ∈C∞
0 (Ω ;Rn) : suptv ⊆ M ⇒ P(M,v) = 0 .

Note that even if a power of order one is defined on affine virtual velocities, the
previous assumption makes sense in view of the Extension Theorem 5.

The following is a distributional characterization of contact powers.

Theorem 7 Let P be a power of order one. Then P is a contact power if and only
if

bγ0 = div(Bγ1)

on Ω in the sense of distributions.

Proof Consider v ∈C∞
0 (Ω ;Rn) and let M ∈MG be such that suptv⊆M. One has

〈bγ0,v〉=
∫

Ω

b ·vdγ0 =
∫

M
b ·vdγ0

and, by definition of distributional divergence,

〈div(Bγ1),v〉=−
∫

Ω

B ·∇vdγ1 =−
∫

M
B ·∇vdγ1 .

Then it is clear that P is a contact power if and only if the left-hand sides do
coincide. ut

6 The principle of virtual powers

From now on we will assume that

P(d)(M,v) =
∫

M
a ·vdµ0 +

∫
M

A ·∇vdµ1
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is a given power of order one, which will be called power of external forces. More-
over P(c) will be the contact power and P(i) the stress power. In particular, by The-
orems 4 and 6 they can be represented as

P(c)(M,v) =
∫

M
b ·vdγ0 +

∫
M

B ·∇vdγ1 ,

P(i)(M,v) =−
∫

M
T ·Ddν ,

where T is symmetric.
The following axiom is the classical formulation of the principle of virtual

powers in the case of Continuum Mechanics.

Axiom 2 (Principle of virtual powers) Denoting with P(d) the power of external
forces, with P(i) the stress power and with P(c) the contact power, we assume that
a necessary and sufficient condition for a continuous body to be in equilibrium is

P(d)(M,v)+P(i)(M,v)+P(c)(M,v) = 0

for every M ∈MG and every virtual velocity v ∈ Aff.

Remark 2 Although the previous axiom is an equilibrium condition, by a standard
implementation of the so called d’Alembert principle it can cover also the dynam-
ical case: it is sufficient to keep into account also of the inertial terms into the
power of external forces.

Remark 3 Due to the nature of our presentation, which stops at first order powers,
it seems natural to assume the previous principle for affine virtual velocity fields.
However, it can be proved that it is equivalent to assume Axiom 2 on the class of
C1 virtual velocities. Indeed, as we have seen in Theorem 5 a power of order one
is uniquely determined by its behavior on affine vector fields.

Then the Principle of virtual powers becomes∫
M

a ·vdµ0 +
∫

M
A ·∇vdµ1−

∫
M

T ·Ddν +
∫

M
b ·vdγ0 +

∫
M

B ·∇vdγ1 = 0 (8)

for every M ∈MG and v ∈ Aff.
Consider a constant field v(x) = v0; one has

∀v0 ∈ Rn, ∀M ∈MG :
∫

M
a ·v0 dµ0 +

∫
M

b ·v0 dγ0 = 0

and Corollary 1 yields the identity of measures

a µ0 +bγ0 = 0 .

In particular, by Theorem 7 one obtains

aµ0 +div(Bγ1) = 0 . (9)

Moreover (8) becomes∫
M

A ·∇vdµ1−
∫

M
T ·Ddν +

∫
M

B ·∇vdγ1 = 0
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for every M ∈ MG and v ∈ Aff. Taking the symmetric and skew-symmetric part
of the tensor fields, keeping into account the arbitrariness of v and M one gets

Bγ1 = Tν −Aµ1 , (10)

where, in particular,

Bs
γ1 = Tν −As

µ1 , Bω
γ1 =−Aω

µ1 .

Finally, by combining (9) and (10) one obtains

aµ0 +div(Tν −Aµ1) = 0 . (11)

The following situations are remarkable:

– If the power of external forces has order 0 (i.e. A = 0) then B is symmetric
γ1-a.e., Tν +Bγ1 = 0 and the standard balance equation

aµ0 +div(Tν) = 0

is achieved.
– B is symmetric γ1-a.e. if and only if A is symmetric µ1-a.e.

7 Boundary powers

We study now a special case, where the contact power is a set function bounded by
an integral on the boundary of the subbody. In the spirit of the paper, the involved
measure is not assumed to be the area measure. A similar approach were adopted
in [6].

Definition 5 A boundary power is a function

P(c) : MG×C∞
0 (Ω ;Rn)→ R ,

such that the following properties hold:

1. for every v ∈C∞
0 (Ω ;Rn), P(c)( ·,v) is ∗-additive;

2. for every M ∈MG , P(c)(M, ·) is linear;
3. for every M ∈MG there exists γM ∈M(Ω) such that

∀v ∈C∞
0 (Ω ;Rn) : |P(c)(M,v)|6

∫
bdM

|v|dγM .

Proposition 2 Let P be a boundary power. Then for every M ∈MG there exists a
Borel vector field tM : Ω → Rn such that

P(M,v) =
∫

bdM
tM ·vdγM

for every v ∈C∞
0 (Ω ;Rn) .
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Proof Let M ∈MG. The map P(M, ·) : C∞
0 (Ω ;Rn)→ R is linear and

|P(M,v)|6 ‖v‖∞γM(bdM) ,

hence it is a vector distribution on Ω of order zero. Moreover it is absolutely
continuous with respect to γM bdM and the proof is complete. ut

In the classical situation the measure γM is simply the area measure H n−1

restricted to bdM and tM is the stress vector field, which depends on M only
through the surface normal.

If the principle of virtual powers 2 is assumed, one has

|P(c)(M,v)|= |P(d)(M,v)+P(i)(M,v)|6
∫

M
|v|dµ0 +

∫
M
|∇v|d(µ1 +ν) .

Hence in particular a boundary power is a power of order one. Moreover, assump-
tion (c) implies that P(c)(M,v) = 0 whenever suptv⊆M, hence a boundary power
is a contact power and we can apply the results of section 6.

A very interesting result can be obtained if we slightly increase the regularity
for P(i) and P(d). Namely, we assume that µ1 = ν = L n and that A,T be tensor
fields with divergence measure. In this case there exists a full grid, denoted again
with G, such that∫

M
A ·∇vdL n =

∫
bdM

AnM ·vdH n−1−
∫

M
v ·divA ,∫

M
T ·DdL n =

∫
bdM

TnM ·vdH n−1−
∫

M
v ·divT

for every M ∈MG and every v ∈C1(Ω ;Rn). Moreover, equation (11) becomes

aµ0 +divT−divA = 0 . (12)

By stating the Principle of virtual powers we obtain the integral equation∫
bdM

AnM ·vdH n−1−
∫

bdM
TnM ·vdH n−1 +

∫
bdM

tM ·vdγM = 0 ,

which holds for every M ∈ MG and v ∈ Aff. Now the arbitrariness of v yields
γM �H n−1 bdM and

tM = (T−A)nM ,

which is a general version of the Cauchy Stress Theorem.
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