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Abstract. A formal treatment to the privacy of concealed data aggregation (CDA)
is given. While there exist a handful of constructions, rigorous security models
and analyses for CDA are still lacking. Standard security notions for public key
encryption schemes, including semantic security and indistinguishability against
chosen ciphertext attacks, are refined to cover the multi-sender nature and aggre-
gation functionality of CDA in the security model. A generic CDA construction
based on public key homomorphic encryption is given, along with a proof of its
security in the proposed model. The security of two existing schemes is also an-
alyzed in the proposed model.

1 Introduction

Concealed data aggregation (CDA) in which multiple source nodes send encrypted data
to a sink along a concast tree with ciphertext aggregation performed en route is an active
research problem, particularly in sensor networks [1,3,10,26]. Privacy and message au-
thentication are the two main security goals of CDA. This work focuses on the security
model for privacy of CDA.

The privacy goal is two-fold. First, the privacy of the data has to be guaranteed end-
to-end, that is, only the sink could learn about the final aggregation result and only a
negligible amount of information about the final aggregate should be leaked out to any
eavesdropper or node along the path. Each node should only have knowledge about its
data, but no information about the data of other nodes. Second, to reduce communica-
tion overhead, the data from different source nodes have to be efficiently combined by
intermediate nodes (i.e. aggregation) along the path. Nevertheless, these intermediate
nodes should not learn any information about the final aggregate in an ideal scheme. It
appears that these two goals are in conflict. As a result, deliberate study on the secu-
rity definitions and rigorous analyses on CDA schemes are necessary. While there are a
handful of CDA constructions [1,3,10,26] achieving various levels of privacy-efficiency
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tradeoff, a rigorous treatment to the security definitions, notions and analyses of CDA
is still lacking. This work aims to fill the gap.

While there has been a solid foundation in cryptography for both private-key
[23,17,16] and public-key [13,20,5,12] encryption, a refinement to the standard secu-
rity models is needed to cover the salient features in the CDA scenario: First, a CDA
scheme can be based on private key or public key cryptography. That is, the encryption
function of a CDA scheme could be public or private. Second, CDA is a many-to-one
(multi-sender single-receiver) cryptosystem while cryptosystems in the literature are
either one-to-one [16,13] or one-to-many [24,8]. Third, CDA includes the aggregation
functionality on encrypted data whose adversary model needs a new definition. In this
paper, we extend the standard security notions of semantic security and indistinguisha-
bility against chosen-ciphertext attacks to the CDA setting and analyze existing schemes
[3,26].

1.1 Related Work

Westhoff et. al gave the first CDA construction in [26,10] based on the Domingo-Ferrer
private key homomorphic encryption [6] and coined the term CDA. The scheme al-
lows additive aggregation. Castelluccia et. al [3] constructed a stream cipher like CDA
scheme for additive aggregation. In [1], Westhoff et. al. gave a private aggregation
scheme for comparing encrypted data; however, the security of the proposed scheme
is not reasonably high. It is fair to say that, despite the existence of these CDA con-
structions, a rigorous security model and analysis for CDA are still missing in the
literature.

1.2 Our Contributions

The main contribution of this paper is the formalization of CDA. We extend the stan-
dard security notions of encryption schemes to cover the CDA scenario. Our security
model covers both private-key and public-key based CDA constructions and takes into
account the possibility of insider attacks due to compromised source nodes, as com-
pared to [26,10] which do not explicitly consider the threat of compromised nodes.
It also includes the case in which the global randomness for encryption is prescribed
beforehand or chosen by the sink and broadcast to the source nodes [3].

We also give a generic CDA construction based on any public key homomorphic
encryption scheme. Provided that the underlying homomorphic encryption scheme is
semantically secure, the CDA construction achieves semantic security against any coali-
tion with up to n − 1 compromised nodes where n is the total number of nodes in the
system.1

Based on the CDA security model proposed in this paper, we analyze two existing
schemes, namely, WGA [26] and CMT [3]. We show that WGA is only secure when
there is no compromised node. Whereas, if the underlying pseudorandom function fam-
ily (used for key generation) is (computationally) indistinguishable from a truly random

1 In a general scenario, not all of the n nodes need to report in a given slot; only a subset of the n
nodes contribute to the final aggregate. Without loss of generality, we assume all the n nodes
contribute in the aggregation in the following discussion.
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function, CMT can be proven to be semantically secure even when there are n−1 com-
promised nodes. For the pseudorandom function assumption to be held, it appears that
a larger modulus size is needed as compared to that used in the original scheme. As an
alternative, a hash variant of CMT which does not require a revision on the modulus
size is given. Security preserves in the hashed variant if, given a uniformly distributed
input, the hash function output follows a uniform distribution.

The rest of the paper is organized as follows. We give a brief introduction to the
notations used in this paper in the next section. The definition of CDA and related
security notions are presented in Sections 3 and 4 respectively. In Section 5, a generic
CDA construction is given. The security of two existing schemes is analyzed in Section
6. We conclude the paper in Section 7.

2 Notations

We follow the notations for algorithms and probabilistic experiments that originate in
[14]. A detailed exposition can be found there. We denote by z ← A(x, y, . . .) the
experiment of running probabilistic algorithm A on inputs x, y . . ., generating output
z. We denote by {A(x, y, . . .)} the probability distribution induced by the output of A.
The notations x ← D and x ∈R D are equivalent and mean randomly picking a sample
x from the probability distribution D; if no probability function is specified for D, we
assume x is uniformly picked from the sample space. We denote by N the set of non-
negative integers. As usual, PPT denote probabilistic polynomial time. An empty set is
always denoted by φ.

3 Definitions

A typical CDA scheme includes a sink R and a set U of n source nodes (which are
usually sensor nodes) where U = {si : 1 ≤ i ≤ n}. Denote the set of source identities
by ID; in the simplest case, ID = [1, n]. In the following discussion, hdr ⊆ ID is
a header indicating the source nodes contributing to an encrypted aggregate. Given a
security parameter λ, a CDA scheme consists of the following polynomial time algo-
rithms.

Key Generation (KG). Let KG(1λ, n) → (dk, ek1, ek2, . . . , ekn) be a probabilistic
algorithm. Then, eki (with 1 ≤ i ≤ n) is the encryption key assigned to source
node si and dk is the corresponding decryption key given to the sink R.

Encryption (E). Eeki(mi) → (hdri, ci) is a probabilistic encryption algorithm taking
a plaintext mi and an encryption key eki as input to generate a ciphertext ci and a
header hdri ⊂ ID. Here hdri indicates the identity of the source node performing
the encryption; if the identity is i, then hdri = {i}.
We sometimes denote the encryption function by Eeki(mi; r) to explicitly show by
a string r the random coins used in the encryption process.

Decryption (D). Given an encrypted aggregate c and its header hdr ⊆ ID (which
indicates the source nodes included in the aggregation), Ddk(hdr, c) → m/ ⊥ is a
deterministic algorithm which takes the decryption key dk, hdr and c as inputs and
returns the plaintext aggregate m or possibly ⊥ if c is an invalid ciphertext.
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Aggregation (Agg). With a specified aggregation function f , the aggregation algo-
rithm Aggf (hdri, hdrj , ci, cj) → (hdrl, cl) aggregates two encrypted aggregates
ci and cj with headers hdri and hdrj respectively (where hdri ∩hdrj = φ) to cre-
ate a combined aggregate cl and a new header hdrl = hdri ∪hdrj . Suppose ci and
cj are the ciphertexts for plaintext aggregates mi and mj respectively. The output cl

is the ciphertext for the aggregate f(mi, mj), namely, Ddk(hdrl, cl) → f(mi, mj).
Note that the aggregation algorithm does not need the decryption key dk or any of
the encryption keys eki as input; it is a public algorithm.

Depending on constructions, the aggregation function f could be any associative
function, for instance, f could be the sum, multiplicative product, max, etc.. Leverag-
ing on the associativity property, we abuse the notation in this paper: we denote the
composition of multiple copies of f simply by f(m1, m2, . . . , mi) irrespective of the
order of aggregation and call it the f -aggregate on m1, m2, . . . , mi; to be precise, it
should be written as f(f(f(m1, m2), . . .), mi) with a certain aggregation order.

It is intentional to include the description of the header hdr in the above definition so
as to make the CDA security model as general as possible (to cover schemes requiring
headers in their operations). Nonetheless, generating headers or including headers as
input to algorithms should not be treated as a requirement in the actual construction or
implementation of CDA algorithms. For constructions which do not need headers (such
as the generic construction given in Section 5), all hdr’s can simply be treated as the
empty set φ in the security model and the discussions in this paper still apply.

Typical CDA Operation. The operation of CDA runs as follows. In the initialization
stage, the sink R runs KG to generate a set of encryption keys {eki : 1 ≤ i ≤ n} and
the corresponding decryption key dk and distributes each one of the encryption keys
to the corresponding source, say, eki to si. Depending on constructions, the encryption
keys eki could be private or public, but the decryption key dk has to be private in all
cases.

At a certain instant, the sink selects a subset S ⊆ U of the n sources to report their
data. Each si ∈ S uses its encryption key eki to encrypt its data represented by the
plaintext mi, giving a ciphertext ci. We do not pose restrictions on whether global or
local random coins should be used for encryption. If each source generates its random
coins individually, the random coins are said to be local; if the random coins are chosen
by the sink and broadcast to all source nodes, they are global. Global random coins
are usually public. When global random coins are used, we do not pose restriction on
the reuse of randomness despite that, in practice, each global random coin is treated as
nonce, that is, used once only. The generic construction given in Section 5 uses local
random coins whereas the CMT scheme [3] uses a global nonce.

Usually, the source nodes form a concast tree over which the encrypted data are
sent. In order to save communication cost, aggregation is done en route to the sink
whenever possible. When a node si in the tree receives x ciphertexts, say (hrdi1 ,
ci1), . . . , (hdrix , cix), from its children nodes2 (with identities i1, . . . , ix ∈ S), it ag-
gregates these ciphertexts along with its own ciphertext (hdri, ci) by running Aggf

2 It is possible that some of these ciphertexts are already the encryption of aggregated data rather
than the encryption of a single plaintext.
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successively. The concast tree structure ensures that any pair of these headers have an
empty intersection. Suppose ci1 , . . . , cix are the ciphertexts for the plaintext aggregates
mi1 , . . . , mix . The resulting ciphertext is: (hdrl, cl) where hdrl = hdri1 ∪. . .∪hdrix ∪
hdri and cl is the encryption of the aggregate f(mi1 , . . . , mix , mi).

Eventually, a number of encrypted aggregates will arrive at the sink which combines
them through running Aggf to obtain a single encrypted aggregate csink and then ap-
plies the decryption algorithm to csink to get back the plaintext aggregate f(. . . , mi, . . .)
with si ∈ S. We require the CDA be correct in the sense that when the encryption and
decryption are performed with matched keys and correct headers and all the aggrega-
tions are run properly, the decryption should give back an f -aggregate of all the data
applied to the encryption.

4 Security Notions

Two types of oracle queries (adversary interaction with the system) are allowed in the
security model, namely, the encryption oracle OE and the decryption oracle OD. Their
details are as follows:

Encryption Oracle OE(i, m). For fixed encryption and decryption keys, on input an
encryption query 〈i, m〉, the encryption oracle retrieves si’s encryption key eki and
runs the encryption algorithm on m and replies with the ciphertext Eeki (m; r) and
its header hdr. In case global random coins are used, the random coins r are part
of the query input to OE .

Decryption Oracle OD(hdr, c). For fixed encryption and decryption keys, on input
a decryption query 〈hdr, c〉 (where hdr ⊆ ID), the decryption oracle retrieves
the decryption key dk and runs the decryption algorithm D and sends the result
Ddk(hdr, c) as the reply.

The encryption oracle is needed in the security model since the encryption algo-
rithm in some CDA could use private keys, for examples [3,26]. In case the encryption
algorithm does not use any secret information, an adversary can freely generate the
ciphertext on any message of his choice without relying on the encryption oracle.

4.1 Security Against Chosen Ciphertext Attacks (CCA)

To define security (more precisely, indistinguishability) against adaptive chosen cipher-
text attacks (IND-CCA2), we use the following game played between a challenger and
an adversary, assuming there is a set U of n source nodes. If no PPT adversary, even
in collusion with at most t compromised node (with t < n), can win the game with
non-negligible advantage (as defined below), we say the CDA scheme is t-secure.3

Definition 1. A CDA scheme is t-secure (indistinguishable) against adaptive chosen
ciphertext attacks if the advantage of winning the following game is negligible in the
security parameter λ for all PPT adversaries.

3 The adversary is allowed to freely choose parameters n and t.
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Collusion Choice. The adversary chooses to corrupt t source nodes. Denote the set
of these t corrupted nodes and the set of their identities by S′ and I ′

respectively.
Setup. The challenger runs KG to generate a decryption key dk and n encryption keys

{eki : 1 ≤ i ≤ n}, and gives the subset of t encryption keys {ekj : sj ∈ S′} to
the adversary but keeps the decryption key dk and the other n − t encryption keys
{ekj : sj ∈ U\S′}.

Query 1. The adversary can issue to the challenger two types of queries:4

– Encryption Query 〈ij , mj〉. The challenger responds with Eeij
(mj).

– Decryption Query 〈hdrj , cj〉. The challenger responds with Ddk(hdrj , cj).
Challenge. Once the adversary decides that the first query phase is over, it selects a

subset S of d source nodes (whose identities are in the set I) such that |S\S′| > 0,
and outputs two different sets of plaintexts M0 = {m0k : k ∈ I} and M1 =
{m1k : k ∈ I} to be challenged. The only constraint is that the two resulting
plaintext aggregates x0 and x1 are not equal where x0 = f(. . . , m0k, . . .) and
x1 = f(. . . , m1k, . . .).

The challenger flips a coin b ∈ {0, 1} to select between x0 and x1. The chal-
lenger then encrypts5 each mbk ∈ Mb with ekk and aggregates the resulting ci-
phertexts in the set {Eekk

(mbk) : k ∈ I} to form the ciphertext C of the ag-
gregate, that is, Ddk(I, C) = xb, and gives (I, C) as a challenge to the adver-
sary.

Query 2. The adversary is allowed to make more queries (both encryption and decryp-
tion) as previously done in Query 1 phase but no decryption query can be made on
the challenged ciphertext C. Nevertheless, the adversary can still make a decryp-
tion query on a header corresponding to the set S except that the ciphertext has to
be chosen different from the challenged ciphertext C.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} for b.
Result. The adversary wins the game if b′ = b. The advantage of the adversary is

defined as: AdvA =
∣
∣Pr[b′ = b] − 1

2

∣
∣.

Note that in CDA what the adversary is interested in is the information about the
final aggregate. Consequently, in the above game, the adversary is asked to distinguish
between the ciphertexts of two different aggregates x0 and x1 as the challenge, rather
than to distinguish two different sets of plaintexts M0 and M1. By picking elements
for M0 and M1, the adversary is essentially free to choose x0 and x1. Allowing the
adversary to choose the two sets M0, M1 is to give him more flexibility in launching
attacks. When an adversary cannot distinguish between the ciphertexts of two differ-
ent aggregates (of his choice) with probability of success non-negligibly greater than
1/2, this means, in essence, he can learn no information about an aggregate from its
ciphertext.

4 In case global random coins are used, the adversary is allowed to choose and submit his choices
of random coins for both encryption and decryption queries. Depending on whether the encryp-
tion keys are kept secret, the encryption queries may or may not be needed.

5 In case global random coins are used for encryption, the challenger chooses and passes them
to the adversary. If a nonce is used, the global random coins should be chosen different from
those used in the Query 1 phase and no query on them should be allowed in the Query 2 phase.
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4.2 Semantic Security

Semantic security, which is equivalent to indistinguishability against chosen plaintext
attacks (IND-CPA), is defined by the same game as in the definition of security against
chosen ciphertext attacks in Section 4.1 except that no query to the decryption oracle
OD is allowed. Similar to the definition in Section 4.1, a CDA scheme is said to be
t-secure when it can still achieve semantic security against a PPT adversary corrupting
at most t compromised nodes.

For a CDA scheme to be useful, it should at least achieve semantic security. In the
notion of semantic security, the main resource for an adversary is the encryption oracle
OE . In some schemes like [26,3], the adversary may not know the encryption keys,
meaning he might not have access to the encryption oracle in the real environment.
Nevertheless, in sensor networks, he is able to obtain the encryption of any plaintext
of his choice by manipulating the sensing environment and recording the sensed value
using his own sensors. Hence, chosen plaintext attacks are still a real threat to CDA.

4.3 One-Wayness

One-wayness is the weakest possible security notion for encryption. A CDA scheme is
t-secure in one-wayness if no PPT attacker, corrupting at most t nodes, should be able,
with non-negligible probability of success, to recover the plaintext aggregate matching
a given ciphertext. To define one-wayness more formally, we can use the same game in
Section 4.1 except that no query is allowed and the adversary can make no choice in
the challenge phase but is given a ciphertext of a certain aggregate x (encrypted using
at least one encryption key not held by the adversary) and asked to recover x.

5 A Generic CDA Construction

In this section, a generic construction of semantically secure CDA (using local random
coins) is given based on any semantically secure public-key homomorphic encryption.
The result is not surprising but could be useful. Note that an asymmetric key homomor-
phic encryption is used in this construction, compared to the symmetric key encryption
used in the WGA construction [26]. An asymmetric key encryption is necessary in order
to guard against possible insider attacks from compromised nodes.

5.1 Public Key Homomorphic Encryption

A public key homomorphic encryption scheme is a 4-tuple (KG, E, D, A). The key
generation algorithm KG receives the security parameter 1λ as input and outputs a
pair of public and private keys (pk, sk). E and D are the encryption and decryption
algorithms. Given a plaintext x and random coins r, the ciphertext is Epk(x; r) and
Dsk(Epk(x; r)) = x. The homomorphic property allows one to operate on the cipher-
texts using the poly-time algorithm A without first decrypting them; more specifically,
for any x, y, rx, ry , A can generate from Epk(x; rx) and Epk(y; ry) a new ciphertext of
the form Epk(x ⊗ y; s) for some s. The operator ⊗ could be addition, multiplication or
others depending on specific schemes; for instance, it is multiplication for RSA [22] or
ElGamal [7] and addition for Paillier [21].
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As observed in previous work in the literature, due to the homomorphic property,
achieving IND-CCA2 security could be impossible for homomorphic encryption. The
notion of security against CCA1 attacks is not often considered in practical construc-
tions. Hence, semantic security or the equivalent notion of IND-CPA security appears
to be the de facto security notion for homomorphic encryption schemes. In brief, the
IND-CPA notion can be described by the following game: in the Setup phase, the chal-
lenger runs KG(1λ) to generate a pair of public and private keys, gives the public key to
the adversary but keeps the private key. The adversary can freely encrypt any message of
his choice using the public key. The adversary chooses two different messages m0, m1
and gives them to the challenger which flips a coin b ∈ {0, 1} and gives Epk(mb; r) to
the adversary. The adversary has to output a guess b′ for b and his advantage of winning
the game is defined as

∣
∣Pr[b′ = b] − 1

2

∣
∣. If the advantage of winning the above game

is negligible in the security parameter λ for all PPT adversaries, then the scheme is
IND-CPA secure.

5.2 Concealed Data Aggregation from Public Key Homomorphic Encryption

Assume there are n source nodes in total. Suppose there exists a semantically se-
cure public-key homomorphic encryption scheme (KGHE , EHE , DHE , AHE) with
homomorphism on operator ⊗. We can construct a semantically secure CDA scheme,
tolerating up to n − 1 compromised nodes, with aggregation function of the form:
f(mi, mj) = mi ⊗ mj . The construction is as follows: (The headers are included
in the following description for completeness; they are not needed in the construction.
In fact, all these hdri’s are the empty set φ.)

Key Generation (KG). Run KGHE(1λ) to generate (pk, sk). Set the CDA decryption
key dk = sk and each one of the CDA encryption keys to be pk, that is, eki =
pk, ∀i ∈ [1, n].

Encryption (E). Given a plaintext data mi, toss the random coins ri needed for EHE

and output ci = EHE
pk (mi; ri). Set the header hdri = φ. Output (hdri, ci).

Decryption (D). Given an encrypted aggregate c and its header hdr, run DHE using
the private key sk to decrypt c and output x = DHE

sk (c) as the plaintext aggregate.
Aggregation (Agg). Given two CDA ciphertexts (hdri, ci) and (hdrj , cj), the aggre-

gation can be done using the homomorphic property of the encryption scheme.
Generate cl = AHE(ci, cj) and hdrl = hdri ∪ hdrj . Output (hdrl, cl).

Correctness. Without loss of generality, we consider the case with only two plaintext
messages mi and mj and ignore the header part as it is always equal to φ. The corre-
sponding ciphertexts for mi and mj are ci = EHE

pk (mi; ri) and cj = EHE
pk (mj ; rj) for

some random coins ri, rj . If the aggregation is done using Agg as described above, the
aggregation result cl should be equal to EHE

pk (mi ⊗ mj ; s) for some s. In essence,
this value is EHE

pk (f(mi, mj), s) . With the correctness property of the homomor-
phic encryption scheme, DHE

sk (cl) should give back mi ⊗ mj which is the aggregate
f(mi, mj).

The security of the CDA construction is best described by the following theorem.
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Theorem 1. For a total of n source nodes, the above CDA construction is semanti-
cally secure against any collusion of at most n − 1 compromised nodes, assuming that
the underlying homomorphic encryption scheme is semantically secure. The advantage
for any PPT adversary in breaking the semantic security of the CDA construction is
bounded above by the advantage achievable (by all PPT adversaries) in breaking the
semantic security of the underlying homomorphic encryption scheme.

Proof. It is trivial that security against n − 1 compromised nodes implies security
against t < n − 1 compromised nodes, and the advantages are related by a constant
factor with respect to λ. Hence, we consider the case with n − 1 compromised nodes.

We prove by contradiction. Assume the underlying homomorphic encryption is se-
mantically secure, that is, all PPT algorithms have negligible advantage to break the
semantic security of the scheme. Suppose there exists a PPT adversary A which, in
coalition with n − 1 nodes, can break the semantic security property of the CDA con-
struction with non-negligible advantage. We show how to use A to construct another
algorithm A′ to break the semantic security of the homomorphic encryption as follows:

Algorithm A′
Setup. Receive the public key pk from the challenger and pass it to the n source nodes.

Allow the adversary A to choose any n − 1 nodes to corrupt.
Query. Since no private key is needed for encryption, no OE query is necessary.
Challenge. In the challenge phase, receive from A two sets of plaintext messages

M0 = {m01, m02, . . . , m0n} and M1 = {m11, m12, . . . , m1n} . Since A has
corrupted n − 1 nodes, |M0| and |M1| have to be equal to n. Compute x0 =
f(m01, m02, . . . , m0n) and x1 = f(m11, m12, . . . , m1n) and output x0, x1 to the
challenger for a challenged ciphertext c. (Note that the constraint posed on the chal-
lenge in Definition 1 in Section 4.1 assures that x0 �= x1.)

Guess. Let the challenged ciphertext c = EHE
pk (xb; r) for some unknown random coins

r where b ∈ {0, 1} is unknown. Pass c as the challenge for A. When A outputs b′,
output b′ as a guess for b to the challenger.

In the above simulation, the challenge c is generated by first aggregating the plaintext
and then encrypting the plaintext aggregate with some random coins r. In a real attack,
each mbi ∈ Mb is encrypted with some random coins ri and the resulting ciphertexts
are then aggregated to generate c, which in essence is the ciphertext for the plaintext ag-
gregate encrypted with some random coins s whose relationship with ri’s is unknown.
If these ri’s are independently picked at random, then the resulting randomness s would
have the same distribution as a randomly picked r. Hence, the distributions of the chal-
lenge c generated by the two processes are indistinguishable. In other words, the view
of the adversary A in the above simulation is essentially the same as that in a real attack.

Let AdvCDA-IND-CPA
A (λ) be the advantage of the adversary A in breaking the semantic

security of the CDA construction. The advantage AdvHE-IND-CPA
A′ (λ) of A′ in breaking

the semantic security of the underlying homomorphic encryption is then:

AdvHE-IND-CPA
A′ (λ) = AdvCDA-IND-CPA

A (λ).

If AdvCDA-IND-CPA
A (λ) is non-negligible, so is AdvHE-IND-CPA

A′ (λ) (a contradiction). ��
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6 Security Analysis of Existing Schemes

In this section, we analyze two practical schemes in the literature in the proposed secu-
rity model, and propose modifications to one of them in Section 6.3.

6.1 WGA [26]

WGA uses Domingo-Ferrer’s symmetric-key homomorphic encryption as a building
block. Each source node uses the same encryption key ek and the sink’s decryption
key dk = ek. When there is no compromised node, if the underlying symmetric-key
homomorphic encryption is semantically secure, then WGA achieves semantic security.
The analysis is straightforward. Suppose there is an adversary A which can break the
semantic security of WGA. It is trivial that A can be used as a subroutine of another
algorithm A′ to break the semantic security of the underlying encryption. Besides, any
encryption oracle query from A can be answered easily by A′ using the query result
from the challenger of the underlying encryption scheme; in other words, the view to A
in this simulation is indistinguishable from that in the real attack.

However, as few as one node is compromised, the adversary knows the decryption
key and can gain the knowledge of all future aggregates by just passive eavesdropping,
that is, not even one-wayness can be achieved if there exists compromised nodes.

6.2 CMT [3]

CMT can be considered as a practical modification of the Vernam cipher or one-time
pad [25] to allow plaintext addition to be done in the ciphertext domain. Basically,
there are two modifications. First, the exclusive-OR operation is replaced by an addition
operation. By choosing a proper modulus, multiplicative aggregation is also possible in
CMT.6 Second, instead of uniformly picking a key at random from the key space, the
key is generated by a certain deterministic algorithm (with an unknown seed) such as
a pseudorandom function [11]. As a result, the information-theoretic security (which
requires the key be at least as long as the plaintext) in the Vernam cipher is replaced
with a security guarantee in the computational-complexity theoretic setting in CMT.

The operation of the CMT scheme is as follows: (The description could be slightly
different from the original scheme [3] as the procedures to generate the encryption keys
from a pseudorandom function are filled in.) Let p be a large enough integer used as the
modulus. Assume the key length is λ bits. Then p could be 2λ. Besides, global random
coins are used in CMT, that is, the sink chooses and broadcasts a public nonce to all
nodes.

In the following description, let F = {Fλ}λ∈N be a pseudorandom function family
where Fλ = {fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ is a collection of functions indexed
by a key s ∈ {0, 1}λ. For details on pseudorandom functions, [11] has a comprehen-
sive description. Loosely speaking, given a function fs from a pseudorandom function
ensemble with unknown key s, any PPT distinguishing procedure allowed to get the
values of fs(·) at (polynomially many) arguments of its choice should not be able to

6 CMT can achieve either additive or multiplicative aggregation but not both at the same time.
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tell (with non-negligible advantage in λ) whether the answer of a new query (with the
argument not queried before) is supplied by fs or randomly picked from {0, 1}λ.

Key Generation (KG). Randomly pick K ∈ {0, 1}λ and set it as the decryption key
dk. For each i ∈ [1, n], eki = fK(i) is the encryption key for source node si with
identity i.

Encryption (E). Given an encryption key eki, a plaintext data mi and a broadcast
nonce r from the sink, output ci = (mi + feki(r)) mod p. Set the header hdri =
{i}. Output (hdri, ci). Note: each r has to be used once only.

Decryption (D). Given the ciphertext (hdr, c) of an aggregate and a nonce r used in
the encryption, generate eki = fK(i), ∀i ∈ hdr. Output the plaintext aggregate
x = (c −

∑

i∈hdr feki(r)) mod p.
Aggregation (Agg). Given two CDA ciphertexts (hdri, ci) and (hdrj , cj), compute

cl = (ci + cj) mod p and hdrl = hdri ∪ hdrj and output (hdrl, cl).

How good the CMT scheme achieves IND-CPA security relies on how good the un-
derlying key generation function is as a pseudorandom function. As a consequence,
the required modulus size is determined mainly by the parameters of the conjectured
pseudorandom function family used, rather than the size of the largest plaintext aggre-
gate. There are various constructions of pseudorandom functions [18,19,15,2], each of
which is based on a different computational assumption and requires different compu-
tational resources; it is therefore difficult to evaluate the efficiency of the CMT scheme
without seeing the actual implementation. The security of the CMT can be summarized
by the following theorem.

Theorem 2. The CMT scheme is semantically secure against any collusion with at most
n − 1 compromised nodes, assuming Fλ = {fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ is a
pseudorandom function.

Proof. Without loss of generality, we prove the security of a modified version of CMT
in which each encryption key is uniformly picked from {0, 1}λ, compared with keys
generated by a pseudorandom function in the actual CMT scheme. We then provide a
justification why the inference applies to the actual CMT implementation.

Indistinguishability Property of a Pseudorandom Function. Assume f is taken from
a pseudorandom function. Then for a fixed input argument x and and an unknown, ran-
domly picked key K , the following two distributions are computationally indistinguish-
able provided that polynomially many (say q) evaluations of fK(·) have been queried:

{y = fK(x) : y}, {y ← {0, 1}λ : y}.

That is, the output fK(x) is computationally indistinguishable from a randomly picked
number from {0, 1}λ to any PPT distinguisher who has knowledge of the input argu-
ment x and a set of polynomially many 2-tuples (xi, fK(xi)) where xi �= x. More
formally, for any PPT distinguisher D,

|Pr[y = fK(x) : D(x, y) = 1] − Pr[y ← {0, 1}λ : D(x, y) = 1]| < ε(λ)

where ε(λ) is a negligible function in λ.
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Suppose there exists a PPT adversary D which can break the semantic security of
CMT with non-negligible advantage AdvCMT

D . We show in the following how D can
be used to construct an algorithm D′ which can distinguish the above distributions with
non-negligible advantage. Assume the key K in question is unknown to D′.

Algorithm D′

Setup. Allow the adversary D to choose any n − 1 sources to corrupt. Randomly pick
n−1 encryption keys eki ∈R {0, 1}λ and pass them to the adversary. Assume node
n is uncorrupted. The encryption key for node n is taken to be K , the key of the
pseudorandom function D′ is being challenged with. That is, K is unknown to D′.

Query. Upon receiving an encryption query 〈ij , mj〉 with nonce rj , return
cj = (fekij

(rj) + mj) mod p if ij �= n. Otherwise, pass rj to query the pseudo-
random function to get back fK(rj) and reply with cj = (fK(rj) + mj) mod p.

Challenge. In the challenge phase, receive from D two sets of plaintext messages
M0 = {m01, m02, . . . , m0n} and M1 = {m11, m12, . . . , m1n}.
Randomly pick a number w and output it to the pseudorandom function challenger
to ask for a challenge. Note w is the nonce used for CDA encryption in the challenge
for D. The pseudorandom function challenger flips a coin b ∈ {0, 1} and returns
tb, which is fK(w) when b = 0 and randomly picked from {0, 1}λ when b = 1.
These two cases corresponds to the two distributions discussed above.
Randomly flip a coin d ∈ {0, 1}, and return the challenge ciphertext cd to D where
cd =

∑n
i=1 mdi +

∑n−1
i=1 feki(w) + tb.

Guess. D returns its guess b′. Return b′′ which is 0 when b′ = d and 1 otherwise.

Obviously, if D is PPT, then D′ is also PPT. Denoting the expression
∑n

i=1 mdi +
∑n−1

i=1 feki(w) by Xd, the challenge passed to D can be expressed as cd = Xd + tb.
When b = 0, tb = fK(w); when b = 1, tb is a randomly picked number from {0, 1}λ.
In the following discussion, we denote the output of D on input cd by D(cd). The
probability of success for D′ to distinguish between fK(w) and a random number is:

PrPRF
D′ [Success] = Pr[b′′ = b]

= 1
2{Pr[b′′ = 0|b = 0] + Pr[b′′ = 1|b = 1]}

= 1
4{Pr[b′′ = 0|b = 0, d = 0] + Pr[b′′ = 0|b = 0, d = 1]

+Pr[b′′ = 1|b = 1, d = 0] + Pr[b′′ = 1|b = 1, d = 1]}
= 1

4{Pr[D(t0 + X0) = 0] + Pr[D(t0 + X1) = 1]
+Pr[D(t1 + X0) = 1] + Pr[D(t1 + X1) = 0]}

= 1
4{Pr[D(t0 + X0) = 0] + Pr[D(t0 + X1) = 1]

+1 + Pr[D(t1 + X0) = 1] − Pr[D(t1 + X1) = 1]}
= 1

4{2PrCMT
D [Success] + 1

+(Pr[D(t1 + X0) = 1] − Pr[D(t1 + X1) = 1])}.

Note that t0+X0 and t0+X1 are valid CMT ciphertexts for the two challenges plaintext
sets M0 and M1 respectively. In the last step, we make use of the fact that the probability
of success for D to break the semantic security of CMT is given by:

PrCMT
D [Success] =

1
2
Pr[D(t0 + X0) = 0] +

1
2
Pr[D(t0 + X1) = 1].
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Rearranging terms, we have

4PrPRF
D′ [Success] = 2PrCMT

D [Success] + 1
+Pr[D(t1 + X1) = 1] − Pr[D(t1 + X0) = 1]
4(PrPRF

D′ [Success] − 1
2 ) = 2(PrCMT

D [Success] − 1
2 ).

+Pr[D(t1 + X1) = 1] − Pr[D(t1 + X0) = 1]

Taking absolute value on both sides and substitute AdvPRF
D′ = |PrPRF

D′ [Success]− 1
2 |

and AdvCMT
D = |PrCMT

D [Success] − 1
2 |, we have

2AdvPRF
D′ +

1
2

|Pr[D(t1 + X1) = 1] − Pr[D(t1 + X0) = 1]| ≥ AdvCMT
D .

Since t1 is a randomly picked number, {t1 + X0} and {t1 + X1} are identically
distributed. That is, for any PPT algorithm D, Pr[D(t1+X0) = 1] = Pr[D(t1+X1) =
1]. Hence,

2AdvPRF
D′ (λ) ≥ AdvCMT

D (λ).

Note also that:

∣
∣Pr[y=fK(x) : D′(x, y)=1] − Pr[y ← {0, 1}λ : D′(x, y) = 1]

∣
∣ = 2AdvPRF

D′ (λ).7

If AdvCMT
D is non-negligible in λ, then so is AdvPRF

D′ . As a result, if D can break the
semantic security of CMT with non-negligible advantage, D′ could distinguish between
the output of pseudorandom function f and a random number. Equivalently, |Pr[y =
fK(x) : D′(x, y) = 1] − Pr[y ← {0, 1}λ : D′(x, y) = 1]| is non-negligible (a
contradiction to the indistinguishability property of a pseudorandom function).

The above security argument applies to the actual CMT implementation since the
view of the adversary D in the above simulation is in essence the same as that in the ac-
tual CMT scheme. For each one of the n−1 corrupted node, the encryption key is fK′(i)
( 1 ≤ i ≤ n − 1) for some randomly picked master key K ′. By the property of pseudo-
random function, fK′(i) is indistinguishable from a randomly picked key (as used in the
above simulation game) for all PPT distinguisher algorithms. For the uncorrupted node,
its output for encryption is now ffK′ (n)(x) instead of fK(x) (with randomly picked K)
as used in the above simulation game. It can be shown by a contrapositive argument that,
for fixed n and given x, the two distributions are computationally indistinguishable, that
is,

{K ′ ← {0, 1}λ : (x, ffK′ (n)(x))} c≡ {K ← {0, 1}λ : (x, fK(x))}.

The argument is as follows: Assume f is a pseudorandom function. That is, A =
{K ′ ← {0, 1}λ : fK′(n)} is indistinguishable from B = {K ← {0, 1}λ : K} for

7 The derivation is as follows.
�
�Pr[y = fK(x) : D′(x, y) = 1] − Pr[y ← {0, 1}λ : D′(x, y) = 1]

�
�

=
�
�1 − Pr[y = fK(x) : D′(x, y) = 0] − Pr[y ← {0, 1}λ : D′(x, y) = 1]

�
�

=
�
�1 − 2PrPRF

D′ [Success]
�
�

= 2 ·
�
�PrPRF

D′ [Success] − 1
2

�
�

= 2 · AdvPRF
D′ (λ)
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all PPT distinguishers. If there exists a PPT distinguisher D which can distinguish be-
tween X = {K ′ ← {0, 1}λ : (x, ffK′ (n)(x))} and Y = {K ← {0, 1}λ : (x, fK(x))},
we can use D to distinguish between A and B. The idea is when we receive a challenge
s which could be from A or B, we send x and fs(x) as a challenge for D. If s belongs
to A, (x, fs(x)) belongs to X , and if s belongs to B, (x, fs(x)) belongs to Y . We could
thus distinguish X from Y (a contradiction). ��

6.3 A Hashed Variant of CMT

As discussed in the previous section, when pseudorandom functions are used to gen-
erate encryption keys for CMT, the modulus size has to be revised and the advantage
of short ciphertext in CMT is lost. In order to maintain the same ciphertext size, the
output of the pseudorandom function can be hashed down by some good hash function
h : {0, 1}λ → {0, 1}l where λ is the security parameter for the pseudorandom func-
tion and l is the size of the maximum plaintext aggregate. Instead of using the output
of the pseudorandom function directly for encryption, its hashed value is input to the
encryption algorithm. For a given plaintext mi, a nonce r and an encryption key ei, the
ciphertext of the hashed CMT is: ci = (mi + h(fei(r))) mod p′ where |p′| = l. The
decryption algorithm is modified accordingly to hash the output of the pseudorandom
function and then subtract the hash values from the ciphertext.

Requirement on the Hash Function. In order to preserve semantic security for the
hashed CMT scheme, the hash function h : {0, 1}λ → {0, 1}l needs to satisfy the
following property: {t ← {0, 1}λ : h(t)} has a uniform distribution over {0, 1}l.

We can actually view h as a length-compressing function which matches the out-
put length of a pseudorandom function with the size of the modulus in use. While the
idealized hash function in the random oracle model is sufficient to fulfill the above
mentioned requirement, it is probably more than necessary.

Note that for an ideal pseudorandom function family, h might simply be imple-
mented by truncating the pseudorandom function output to fit the modulus size. How-
ever, to take into account of the imperfectness of the conjectured pseudorandom
function families used in practice, it could be preferable if the pseudorandom func-
tion output is divided into small segments which are then combined by taking exclusive
OR. Of course, the output size of the pseudorandom function has to be a multiple of the
modulus size to implement this approach.

Security of the Hashed CMT. Only a few modifications to the security proof in Sec-
tion 6.2 are needed in order to prove the security of the hashed variant.

First, in the algorithm D′, all cipertexts are now generated using the hashed val-
ues of the pseudorandom function outputs or replies from the challenger of D′. With
such changes, we now denote the expression

∑n
i=1 mdi +

∑n−1
i=1 h(feki(w)) by Xd. Of

course, the modulus size would be l instead of λ.
Second, the challenge passed to D would be: cd = Xd + h(tb). Then the derivation

for the advantage expressions is essentially the same as that for CMT.
Third, the security proof of CMT relies on the fact that {t1 ← {0, 1}λ : t1 + X0}

and {t1 ← {0, 1}λ : t1 + X1} are identical distribution. On the contrary, to prove the
security of hashed CMT, we need the following distributions to be identical:
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{t1 ← {0, 1}λ : h(t1) + X0}, {t1 ← {0, 1}λ : h(t1) + X1}.

If h fulfills the requirement mentioned above, then {t1 ← {0, 1}λ : h(t1)} is the uni-
form distribution over {0, 1}l. Consequently, the above two distributions are identical.
This thus conclude the proof that hashed CMT is semantically secure.

The modification of the hash variant of CMT shares similarities with the hashed
Diffie-Hellman scheme to get rid of the group encoding problem [4,9] in the algebraic
group used. While the hash function has to be modeled as a random oracle in order
to prove the security of the hashed Diffie-Hellman scheme, the security proof of CMT
applies to the hash variant of CMT without relying on the random oracle model. The
main reason for the difference is: in the security proof for the hashed Diffie-Hellman
scheme, the random oracle is used for answering queries to the decryption oracle, while
in hashed CMT, no decryption oracle access is allowed in the security model as we only
prove hashed CMT achieves semantic security.

7 Conclusions

In this paper, we give a rigorous treatment to the CDA problem. More specifically, we
extend standard privacy notions to cover the CDA scenario which is a multiple-sender
cryptosystem and supports aggregation. We also give a generic CDA construction based
on any semantically secure public key encryption scheme and prove that it achieves se-
mantic security. Besides, we analyze the security of two existing constructions, namely
WGA and CMT, in the proposed model. We also propose a hashed variant of CMT to
achieve security and efficiency simultaneously. As future work, we will study security
model for aggregate authenticity; however, secure versions of the natural extension of
MAC [2] (supporting message aggregation) may not exist. The reason is that if such a
MAC scheme exists, it can be used to construct, from any semantically secure CDA, an
IND-CCA2 secure CDA (which may not be achievable).
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