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Abstract

Privacy is becoming an increasingly important issue in
many data mining applications. This has triggered the de-
velopment of many privacy-preserving data mining tech-
niques. A large fraction of them use randomized data dis-
tortion techniques to mask the data for preserving the pri-
vacy of sensitive data. This methodology attempts to hide
the sensitive data by randomly modifying the data values of-
ten using additive noise. This paper questions the utility of
the random value distortion technique in privacy preserva-
tion. The paper notes that random objects (particularly ran-
dom matrices) have “predictable” structures in the spectral
domain and it develops a random matrix-based spectral fil-
tering technique to retrieve original data from the dataset
distorted by adding random values. The paper presents the
theoretical foundation of this filtering method and extensive
experimental results to demonstrate that in many cases ran-
dom data distortion preserve very little data privacy.

1. Introduction

Many data mining applications deal with privacy-
sensitive data. Financial transactions, health-care records,
and network communication traffic are some exam-
ples. Data mining in such privacy-sensitive domains is fac-
ing growing concerns. Therefore, we need to develop data
mining techniques that are sensitive to the privacy is-
sue. This has fostered the development of a class of data
mining algorithms [2, 9] that try to extract the data pat-
terns without directly accessing the original data and
guarantees that the mining process does not get suffi-
cient information to reconstruct the original data.

This paper considers a class of techniques for privacy-
preserving data mining by randomly perturbing the data
while preserving the underlying probabilistic properties. It
explores the random value perturbation-based approach [2],

a well-known technique for masking the data using ran-
dom noise. This approach tries to preserve data privacy by
adding random noise, while making sure that the random
noise still preserves the “signal” from the data so that the
patterns can still be accurately estimated. This paper ques-
tions the privacy-preserving capability of the random value
perturbation-based approach. It shows that in many cases,
the original data (sometimes called “signal” in this paper)
can be accurately estimated from the perturbed data using
a spectral filter that exploits some theoretical properties of
random matrices. It presents the theoretical foundation and
provides experimental results to support this claim.

Section 2 offers an overview of the related literature on
privacy preserving data mining. Section 3 presents the mo-
tivation behind the framework presented in this paper. Sec-
tion 4 describes the random data perturbation method pro-
posed in [2]. Section 5 presents a discussion on the eigen-
values of random matrices. Section 6 presents the intuition
behind the thoery to separate out random component from a
mixture of non-random and random component. Section 7
describes the proposed random matrix-based filtering tech-
nique . Section 8 applies the proposed technique and reports
its performance for various data sets. Finally, Section 9 con-
cludes this paper.

2. Related Work

There exists a growing body of literature on privacy-
sensitive data mining. These algorithms can be divided
into several different groups. One approach adopts a dis-
tributed framework. This approach supports computation of
data mining models and extraction of “patterns” at a given
node by exchanging only the minimal necessary informa-
tion among the participating nodes without transmitting the
raw data. Privacy preserving association rule mining from
homogeneous [9] and heterogeneous [19] distributed data
sets are few examples. The second approach is based on



data-swapping which works by swapping data values within
same feature [3].

There is also an approach which works by adding ran-
dom noise to the data in such a way that the individual data
values are distorted preserving the underlying distribution
properties at a macroscopic level. The algorithms belong-
ing to this group works by first perturbing the data using
randomized techniques. The perturbed data is then used to
extract the patterns and models. The randomized value dis-
tortion technique for learning decision trees [2] and associ-
ation rule learning [6] are examples of this approach. Ad-
ditional work on randomized masking of data can be found
elsewhere [18].

This paper explores the third approach [2]. It points out
that in many cases the noise can be separated from the per-
turbed data by studying the spectral properties of the data
and as a result its privacy can be seriously compromised.
Agrawal and Aggarwal [1] have also considered the ap-
proach in [2] and have provided a expectation-maximization
(EM) algorithm for reconstructing the distribution of the
original data from perturbed observations. They also pro-
vide information theoretic measures (mutual information)
to quantify the amount of privacy provided by a randomiza-
tion approach. Agrawal and Aggarwal [1] remark that the
method suggested in [2] does not take into account the dis-
tribution of the original data (which could be used to guess
the data value to a higher level of accuracy). However, [1]
provides no explicit procedure to reconstruct the original
data values. Evfimievski et al. [5, 4] and Rizvi [15] have
also considered the approach in [2] in the context of asso-
ciation rule mining and suggest techniques for limiting pri-
vacy breaches. Our primary contribution is to provide an
explicit filtering procedure, based on random matrix theory,
that can be used to estimate the original data values.

3. Motivation

As noted in the previous section, a growing body of pri-
vacy preserving data mining techniques are adopting ran-
domization as a primary tool to “hide” information. While
randomization is an important tool, it must be used very
carefully in a privacy-preserving application.

Randomness may not necessarily imply uncertainty.
Random events can often be analyzed and their prop-
erties can be explained using probabilistic frameworks.
Statistics, randomized computation, and many other re-
lated fields are full of theorems, laws, and algorithms
that rely on probabilistic characterization of random pro-
cesses that often work quite accurately. The signal pro-
cessing literature [12] offers many filters to remove white
noise from data and they often work reasonably well. Ran-
domly generated structures like graphs demonstrate inter-
esting properties [7]. In short, randomness does seem to

have “structure” and this structure may be used to com-
promise privacy issues unless we pay careful attention.
The rest of this paper illustrates this challenge in the con-
text of a well-known privacy preserving technique that
works using random additive noise.

4. Random Value Perturbation Technique: A
Brief Review

For the sake of completeness, we now briefly review the
random data perturbation method suggested in [2] for hid-
ing the data (i.e. guaranteeing protection against the recon-
struction of the data) while still being able to estimate the
underlying distribution.

4.1. Perturbing the Data

The random value perturbation method attempts to pre-
serve privacy of the data by modifying values of the sensi-
tive attributes using a randomized process [2]. The authors
explore two possible approaches — Value-Class Member-
ship and Value Distortion — and emphasize the Value Dis-
tortion approach. In this approach, the owner of a dataset re-
turns a value ������� , where ��� is the original data, and � is a
random value drawn from a certain distribution. Most com-
monly used distributions are the uniform distribution over
an interval �	��

��
�� and Gaussian distribution with mean����� and standard deviation � . The � original data val-
ues ����������������� �!��" are viewed as realizations of � indepen-
dent and identically distributed (i.i.d.) random variables # � ,$ �&% �(')������� �!� , each with the same distribution as that of
a random variable # . In order to perturb the data, � inde-
pendent samples � � �!� � ������� ��� " , are drawn from a distribu-
tion * . The owner of the data provides the perturbed values
� � �+� � �!� � �,� � ����������� " �+� " and the cumulative distri-
bution function -/.103254 of * . The reconstruction problem is
to estimate the distribution -768039�4 of the original data, from
the perturbed data.

4.2. Estimation of Distribution Function from the
Perturbed Dataset

The authors [2] suggest the following method to estimate
the distribution - 6 0:��4 of # , given � independent samples; � � ���<�,�5� , $ �=% �('>������� �!� and -/.�0:�?4 . Using Bayes’
rule, the posterior distribution function -A@6 0:��4 of # , given
that #B�C* �D; , can be written as

- @6 03�E4 �GF/HIEJBK .L0 ; �NM?4 K 6O0PMQ4!RSM
F JIEJBK .L0 ; �NM?4 K 6O0PMQ4!RSM �



which upon differentiation with respect to � yields the den-
sity function

K @6 0:��4 � K .L0 ; � ��4 K 6O03�E4
F JI�J K .L0 ; �NMQ4 K 6O0:M?4 RQM �

where K 6O0!� 4 , K .L0!� 4 denote the probability density function
of # and * respectively. If we have � independent samples
� � �C� � � ; � , $ �G% � ')������� ��� , the corresponding posterior
distribution can be obtained by averaging:

K @6 03�E4 � %
�

"�
��� � K . 0 ; � � ��4 K 6 03�E4

F JI�J K . 0 ; � �NMQ4 K 6 0:M?4 RQM � (1)

For sufficiently large number of samples � , we expect the
above density function to be close to the real density func-
tion K 6 0:��4 . In practice, since the true density K 6 03�E4 is un-
known, we need to modify the right-hand side of equation
1. The authors suggest an iterative procedure where at each
step � �G% �('>������� � the posterior density K�� I �6 0:��4 estimated
at step �7� % is used in the right-hand side of equation 1. The
uniform density is used to initialize the iterations. The iter-
ations are carried out until the difference between succes-
sive estimates becomes small. In order to speed up compu-
tations, the authors also discuss approximations to the above
procedure using partitioning of the domain of data values.

5. Randomness and Patterns

The random perturbation technique “apparently” distorts
the sensitive attribute values and still allows estimation of
the underlying distribution information. However, does this
apparent distortion fundamentally prohibit us from extract-
ing the hidden information? This section presents a dis-
cussion on the properties of random matrices and presents
some results that will be used later in this paper.

Random matrices [13] exhibit many interesting proper-
ties that are often exploited in high energy physics [13], sig-
nal processing [16], and even data mining [10]. The random
noise added to the data can be viewed as a random matrix
and therefore its properties can be understood by studying
the properties of random matrices. In this paper we shall de-
velop a spectral filter designed based on random matrix the-
ory for extracting the hidden data from the data perturbed
by random noise.

For our approach, we are mainly concerned about distri-
bution of eigenvalues of the sample covariance matrix ob-
tained from a random matrix. Let * be a random �	� � ma-
trix whose entries are * � � , $ � % ������� �
� , � �G% ���������!� , are
i.i.d. random variables with zero mean and variance � � . The
covariance matrix of � is given by � � �
 *A@ * . Clearly, �
is an ��� � matrix. Let � ��� � ����������� � " be the eigen-

values of � . Let

- "E039�4 � %
�

"�
��� � # 039 ��� � 4 �

be the empirical cumulative distribution function (c.d.f.) of
the eigenvalues � � , 0 % � $ � ��4 , where

# 039�4 ��� % 9�� �
� 9�� �

is the unit step function. In order to consider the asymp-
totic properties of the c.d.f. -<"�039�4 , we will consider the di-
mensions � � �N0�� 4 and � � �70�� 4 of matrix � to be
functions of a variable � . We will consider asymptotics
such that in the limit as ���! , we have �N0�� 4"�# ,
�70�� 4$�% , and


'&)(+*" &)(+* �-, , where ,.� % . Under these
assumptions, it can be shown that [8] the empirical c.d.f.
- "E0:9�4 converges in probability to a continuous distribution
function -0/10:9�4 for every 9 , whose probability density func-
tion (p.d.f.) is given by

K / 039�4 � � /01 &)2 I�35476 8 *9& 3:4�;�<�I 25*�
=?>A@ 2 �CBED F"�C9G�H�7BEIKJ� otherwise �
(2)

where �7BED F and �7BEIKJ are as follows:

� BED F � � � 0 % � %ALNM ,A4 � �� BEI
J � � � 0 % � %AL M ,A4 � � (3)

Further refinements of this result and other discussions can
be found in [16].

6. Separating the Data from the Noise

Consider an �O� � data matrix # and a noise matrix *
with same dimensions. The random value perturbation tech-
nique generates a modified data matrix #QP � #,� * . Our
objective is to extract # from #0P . Although the noise matrix
* may introduce seemingly significant difference between
# and #0P , it may not be successful in hiding the data.

Consider the covariance matrix of # P :
#$RP #SP � 0 # �C* 4TR
0 # �C* 4� #$R # �C*UR/#B�B#$R *D� *VR * � (4)

Now note that when the signal random vector (rows of # )
and noise random vector (rows of * ) are uncorrelated, we
have W � # R * � � W � * R # � � � . The uncorrelated assump-
tion is valid in practice since the noise * that is added to
the data # is generated by a statistically independent pro-
cess. Recall that the random value perturbation technique
discussed in the previous section introduces uncorrelated



noise to hide the signal or the data. If the number of ob-
servations is sufficiently large, we have that # R *�� � and
* R #�� � . Equation 4 can now be simplified as follows:

# RP #0P � # R # �C* R * (5)

Since the correlation matrices # R # , # RP #SP , and * R * are
symmetric and positive semi-definite, let

#$R<# � , H
�
H ,URH �

# RP # P � , P � P , RP � and

* R * � ,�� � � , R� � (6)

where , H � ,'P)� , � are orthogonal matrices whose column
vectors are eigenvectors of # R # , # RP #SP , * R * , respec-
tively, and

�
H ,
� P , � � are diagonal matrices with the corre-

sponding eigenvalues on their diagonals.
The following result from matrix perturbation theory

[20] gives a relationship between
�
H ,
� � , and

� � .
Theorem 1 [20] Suppose � ��� &	� * � � �
� &�� * � ����� � "�� &�� * �� , 
������ ��� �!��� are the eigenvalues of # R # , # RP #SP , and
* R * , respectively. Then, for

$ � % ���������!� ,� � � & P * � � � � � & H * � � "�� & � * � � � � & H * � � ��� & � * � �
This theorem provides us a bound on the change in the
eigenvalues of the data correlation matrix # R # in terms of
the minimum and maximum eigenvalues of the noise corre-
lation matrix * R * . Now let us take a step further and ex-
plore the properties of the eigenvalues of the perturbed data
matrix # P for large values of � .

Lemma 1 Let data matrix # and noise matrix * be of size� � � and # P � #��,* . Let , H � , P � ,�� be orthogonal
matrices and

�
H ,
� P , � � be diagonal matrices as defined

in 6. If � L � �� then
� P ��� �

H
� R � � � where ���, RP , H .

Proof:
Using Equations 5 and 6 we can write,

, P � P ,URP � , H
�
H ,URH � ,�� � �A,UR�� � P � ,URP , H
�
H , RH , P � ,URP ,�� � �A,UR� , P��� �

H
� R � ,URP ,�� � �A,UR� , P (7)

Let the minimum and maximum eigenvalues of * be� BED F�� & � * and � BEI
J�� & � * respectively. It follows from equation
2 that � L � �  all the eigenvalues in

� � become identical
since ����� 
! " � /#" J � BEIKJ�� & � * � ����� 
! " � /$" J � BED F�� & � * �
� � (say). This implies that, as � L � �  ,

� � � � �
% ,
where % is the ��� � identity matrix. Therefore, if the num-
ber of observations � is large enough (note that, in prac-
tice, number of features � is fixed), * R * � ,�� � �A, R� �
� � ,��A, R . � � �&% . Therefore Equation 7 becomes

� P ��� �
H
� R � ,URP , P � � , RP , P� P ��� �

H
� R � � �Q� (8)

'
If the norm of the perturbation matrix * is small, the

eigenvectors ,'P of # RP #SP would be close to the eigen-
vectors , RH , H of # R # . Indeed, matrix perturbation the-
ory provides precise bounds on the angle between eigen-
vectors (and invariant subspaces) of a matrix # and that
of its perturbation #QP � # � * , in terms of the norms
of the perturbation matrix * . For example, let 039 H � � H 4be an eigenvector-eigenvalue pair for matrix # R # and( �*) * R * ) � � � BEIKJ 0 * R * 4 be the two-norm of the per-
turbation, where � BEI
J 0P* R * 4 is the largest singular value
of * R * . Then there exists an eigenvalue-eigenvector pair
039 P � � P 4 of # RP # P satisfying [20, 17]

+-,/. 010 039 H �!9NPS4 � ' (
2 � ( �

where
2

is the distance between � H and the closest eigen-
value of # R # , provided ( � 2

. This shows that the eigen-
values of # R # and # R3 # 3 are in general close, for small
perturbations. Moreover,

4 � H � 965 #SP 9 H 4 � ' ( �
2 � ( �

where 9 5 is the conjugate-transpose of 9 . Consequently, the
product � � , RP , H , which is the matrix of inner prod-
ucts between the eigenvectors of # R # and # RP #SP would be
close to an identity matrix; i.e., � � , RP , H

7 % . Thus
equation 8 becomes

� P 7 � H � � � � (9)

Suppose the signal covariance matrix has only a few
dominant eigenvalues, say � ��� & H * � ���:� � ��8 � & H * , with� � � & H * � ( for some small value ( and

$ �:9 � % ������� �!� .
This condition is true for many real-world signals. Suppose��8 � & H *<; � ��� & � * , the largest eigenvalue of the noise covari-
ance matrix. It is then clear that we can separate the sig-
nal and noise eigenvalues

�
H ,
� � from the eigenvalues

� P
of the observed data by a simple thresholding at � ��� & � * .

Note that equation 9 is only an approximation. However,
in practice, one can design a filter based on this approxima-
tion to filter out the perturbation from the data. Experimen-
tal results presented in the following sections indicate that
this provides a good recovery of the data.

7. Random Matrix-Based Data Filtering

This section describes the proposed filter for extracting
the original data from the noisy perturbed data. Suppose ac-
tual data # is perturbed by a randomly generated noise ma-
trix * in order to produce # P � # � * . Let � P�� � �>= �5�@?�� ,
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Figure 1. Estimation of original sinusoidal
data with known random noise variance.

$ � % �('>������� �
� , be � (perturbed) data points, each being a
vector of � features.

When the noise distribution - . 0:�?4 of * is completely
known (as required by the random value perturbation tech-
nique [2]), the noise variance � � is first calculated from
the given distribution. Equation 2 is then used to calcu-
late � 
 � 2 and � 
 � " which provide the theoretical bounds
of the eigenvalues corresponding to noise matrix * . From
the perturbed data, we compute the eigenvalues of its co-
variance matrix � , say � � � � �H� ���:� � � " . Then we
identify the noisy eigenstates ��� � � � � � �����:�S� � � such
that � � � � 
 � " and � � � � 
!� 2 . The remaining eigen-
states are the eigenstates corresponding to actual data. Let,� � = diag ( � ��� � � � � ��������� � � ) be the diagonal matrix with
all noise-related eigenvalues, and

� � be the matrix whose
columns are the corresponding eigenvectors. Similarly, let�
H be the eigenvalue matrix for the actual data part and

�

H be the corresponding eigenvector matrix which is an
� � 9 matrix ( 9 � � ). Based on these matrices, we de-
compose the covariance matrix � into two parts, ��� and��� with � � ����� ��� , where ��� � � � � � � R� , is the co-
variance matrix corresponding to random noise part, and� � � �

H
�
H
� RH , is the covariance matrix corresponding to

actual data part. An estimate
	# of the actual data # is ob-

tained by projecting the data # P on to the subspace spanned
by the columns of

�

H . In other words,
	# � # P � H

� RH .

8. Experimental Results

In this section, we present results of our experiments
with the proposed spectral filtering technique. This section
also includes discussion on the effect of noise variance on
the performance of the spectral filtering method.
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Figure 2. Distribution of eigenvalues of ac-
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Figure 3. Spectral filtering used to estimate
real world audio data. Waveform of a audio
signal is closely estimated from its perturbed
version.

8.1. Estimation with Known Perturbing Distribu-
tion

We tested our privacy breaching technique using several
datasets of different sizes. We considered both artificially
generated and real data sets. Towards that end, we gener-
ated a dataset with 35 features and 300 instances. Each fea-
ture has a specific trend like sinusoidal, square, and triangu-
lar shape, however there is no dependency between any two
features. The actual dataset is perturbed by adding Gaussian
noise (with zero mean and known variance), and our pro-
posed technique is applied to recover the actual data from
the perturbed data. Figure 1 shows the result of our spec-
tral filtering for one such feature where the actual data has
a sinusoidal trend. The filtering technique appears to pro-



vide an accurate estimate of the individual values of the
actual data. Figure 2 shows the distribution of eigenvalues
of the actual and perturbed data. It also identifies the esti-
mated noise eigenvalues and the theoretical bounds � BEIKJ
and �7BED F . As we see, the filtering method accurately dis-
tinguishes between noisy eigenvalues and eigenvalues cor-
responding to actual data. Note that the estimated eigenval-
ues of actual data is very close to eigenvalues of actual data
and almost overlap with them above � BEIKJ . The eigenvalues
of actual data below � BED F are practically negligible. Thus,
the estimated eigenvalues of the actual data capture most of
the information and discard the additive noise.
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Figure 4. Plot of the individual values of a
fraction of the dataset with ‘Triangular’ distri-
bution. Spectral filtering gives close estima-
tion of individual values.

The random matrix-based filtering technique can also
be extended to datasets with a single feature, i.e when the
dataset is a single column vector. The data vector is per-
turbed with a noise vector with the same dimension. The
perturbed data vector is then split into a fixed number of
vectors with equal length and all of these vectors are ap-
pended to form a matrix. The spectral filtering technique is
then applied to this matrix to estimate the original data. Af-
ter the data matrix is estimated, its columns are concate-
nated to form a single vector.

We used a real world single feature data set to verify the
performance of the spectral filtering. The dataset used is the
scaled amplitude of the waveform of an audio tune recorded
using a fixed sampling frequency. The tune recorded is
fairly noise free with % ���S��� sample points. We perturbed
this data with additive Gaussian noise.

We define the term Signal-to-Noise Ratio (SNR) to quan-
tify the relative amount of noise added to actual data to per-
turb it:
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Figure 5. Reconstruction of the ‘Triangu-
lar’ distribution. Perturbed data distribution
does not look like a triangular distribution,
but reconstructed distribution using spectral
filtering resembles the original distribution
closely.

SNR � Variance of Actual Data
Noise Variance

� (10)

In this experiment, the noise variance was chosen to
yield a signal-to-noise ratio of 1.3. We split this vector of
perturbed data into � � columns, each containing '�� � points
and applied the spectral filtering technique to recover the
actual data. The result is shown in Figure 3. For the sake
of clarity, only a fraction of dataset is shown, and estima-
tion error is plotted for that fraction. As shown in Figure
3, the perturbed data is very different from the actual data,
whereas the estimated data is a close approximation of the
actual data. The estimation performance is similar to that
for a multi-featured data (see Figure 1).

8.2. Comparison With Results in [2]

The proposed spectral filtering technique can estimate
values of individual data-points from the perturbed dataset.
This point-wise estimation can then be used to reconstruct
the distribution of actual data as well. The methods sug-
gested by [2, 1] can only reconstruct the distribution of the
original data from the data perturbed by random value dis-
tortion; but it does not consider estimation of the individual
values of the data-points. The spectral filtering technique,
on the other hand, is explicitly designed to reconstruct the
individual data-points and hence, also the distribution of the
actual dataset.

We tried to replicate the experiment reported in [2] using
our method to recover the triangular distribution. We used a
vector data of %��S����� values having a triangular distribution
as shown in Figure 2 in [2]. The individual values of actual



data are within 0 and 1 and are independent of each other.
We added Gaussian random noise with mean � and standard
deviation � �,� � ' � to this data and split the data vector into
� � columns, each having ' ��� values. We then applied our
spectral filter to recover the actual data from the perturbed
data. Figure 4 shows a portion of the actual data, their val-
ues after distortion, and their estimated values. Note that the
estimated values are very close to the actual values, com-
pared to the perturbed values. Using the estimate of indi-
vidual data-points, we reconstruct the distribution of the ac-
tual data. Figure 5 shows estimation of the distribution from
the estimated value of individual data-points. The distribu-
tion of the perturbed data is very different than the actual
triangular distribution, but the estimated distribution looks
very similar to the original distribution. This shows that our
method recovers the original distribution along with indi-
vidual data-points, similar to the result reported in [2]. The
estimation accuracy is greater than

� ��� for all datapoints.
Since spectral filtering can filter out the individual values of
actual data and its distribution from a perturbed represen-
tation, it breaches the privacy preserving protection of the
randomized data perturbation technique [2].

8.3. Effect of Perturbation Variance and the In-
herent Random Component of the Actual
Data

Quality of the data recovery depends upon the rela-
tive noise content in the perturbed data. We use the SNR
(see equation (10)) to quantify the relative amount of noise
added to actual data to perturb it. As the noise added to
the actual value increases, the SNR decreases. Our exper-
iments show that the proposed filtering method predicts the
actual data reasonably well up to a SNR value of 1.0 (i.e.%������ noise). The results shown in Figure 1 corresponds to
an SNR value nearly 2, i.e. noise content is about � ��� . Fig-
ure 4 shows a data-block where the SNR is % � � . As the SNR
goes below 1, the estimation becomes too erroneous. Fig-
ure 6 shows the difference in estimation accuracy as the
SNR increases from 1. The dataset used here has a sinu-
soidal trend in its values. The top graph corresponds to '�� �
noise (SNR = 4.3), whereas the bottom graph corresponds
to %������ noise (SNR = 1.0).

Another important factor that affects the quality of re-
covery of the actual data is the inherent noise in the actual
dataset (apart from the perturbation noise added intention-
ally). If the actual dataset has a random component in it,
and random noise is added to perturb it, spectral filtering
method does not filter the actual data accurately. Our ex-
periments with some inherently noisy real life dataset show
that the eigenvalues of signal and noise no longer remains
clearly separable since the their eigenvalues may not be dis-
tributed over two non-overlapping regimes any longer.
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Figure 6. A higher noise content (low SNR
)leads to less accurate estimation. SNR in the
upper figure is 1, while that for the lower fig-
ure is 4.3.

We have performed experiments with artificial dataset
with specific trend in its value as well as real world dataset
containing a random component. Figure 1 in fact shows that
our method gives a close estimation of actual data when
the dataset has some specific trend (sinusoid). We also ap-
plied our method to “Ionosphere data” available from [14],
which is inherently noisy. We perturbed the original data
with random noise such that mean SNR is same as the arti-
ficial dataset, i.e. % � % . Figure 7 shows that recovery quality
is poor compared to datasets having definite trend.

However, this opens up a different question: Is the ran-
dom component of the original data set really important as
far as data mining is concerned? One may argue that most
data mining techniques exploit only the non-random struc-
tured patterns of the data. Therefore, losing the inherent ran-
dom component of the original data may not be important
in a privacy preserving data mining application.

9. Conclusion and Future Work

Preserving privacy in data mining activities is a very im-
portant issue in many applications. Randomization-based
techniques are likely to play an important role in this do-
main. However, this paper illustrates some of the challenges
that these techniques face in preserving the data privacy. It
showed that under certain conditions it is relatively easy to
breach the privacy protection offered by the random pertur-
bation based techniques. It provided extensive experimental
results with different types of data and showed that this is
really a concern that we must address. In addition to raising
this concern the paper offers a random-matrix based data
filtering technique that may find wider application in devel-
oping a new perspective toward developing better privacy-
preserving data mining algorithms.
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Figure 7. Spectral filtering performs poorly
on a dataset with a random component in its
actual value. However, it is not clear if loos-
ing the random component of the data is a
concern for data mining applications.

Since the problem mainly originates from the usage of
additive, independent “white” noise for privacy preserva-
tion, we should explore “colored” noise for this application.
We have already started exploring multiplicative noise ma-
trices in this context. If # be the data matrix and * be an
appropriately sized random noise matrix then we are in-
terested in the properties of the perturbed data #EP � # *
for privacy-preserving data mining applications. If * is a
square matrix then we may be able to extract signal using
techniques like independent component analysis. However,
projection matrices that satisfy certain conditions may be
more appealing for such applications. More details about
this possibility can be found elsewhere [11].
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