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Abstract. Why are probabilistic roadmap (PRM) planners “probabilistic”? This paper 
establishes the probabilistic foundations of PRM planning – something that, surprisingly, 
has not been done before – and re-examines previous work in this context. It shows that 
the success of PRM planning depends mainly and critically on the assumption that the 
configuration space C of a robot often verifies favorable “visibility” properties not di-
rectly dependent on the dimensionality of C. A promising way of speeding up PRM plan-
ners is to extract partial knowledge on such properties during roadmap construction and 
use it to adjust the sampling measure continuously.   
1. Introduction 
Probabilistic roadmap (PRM) planners [CLH+05] solve seemingly difficult 
motion planning problems such as the one in Figure 1, where the robot’s 
configuration space C is 6-D and the environment consists of tens of 
thousands of triangles. While an algebraic planner would be over-
whelmed by the high cost of computing an exact representation of the 
free space F, defined as the collision-free subset of C, a PRM planner 
builds only an extremely simplified representation of F, called a prob-
abilistic roadmap. The nodes of the roadmap R are configurations sam-
pled from F with a suitable probability measure. The edges of R are sim-
ple collision-free paths, e.g., straight-line segments, between the sampled 
configurations.  PRM planners work surprisingly well in practice. Why?  

This question leads 
us to establish the 
probabilistic founda-
tions of PRM planning 
– something that, sur-
prisingly, has not been 
done before – and re-
examine previous work 
in this context. We em-
phasize the distinction 
between a sampling measure, a notion firmly rooted in the probability 
theory, and a sampling source, with the intent to identify the key compo-
nents determining the efficiency of PRM planning. The main issues ad-
dressed in this paper are summarized below: 

Figure 1: A practical motion planning problem. 

• Why is PRM planning “probabilistic”? A foundational choice in 
PRM planning is to avoid computing an exact representation of F. So the 
planner never knows the exact shape of F. At any moment during plan-
ning, many hypotheses on F are consistent with the configurations sam-
pled so far. The probability measure for sampling F reflects this uncer-
tainty. Hence, PRM planning trades the cost of computing F exactly 
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against the cost of dealing with uncertainty. This choice is beneficial 
only if a small roadmap can represent the shape of F well enough to an-
swer motion-planning queries correctly.  
• Why does PRM planning work well? One can think of the nodes of 
a roadmap as a network of guards watching over F. To guarantee that a 
PRM planner converges quickly, F should satisfy favorable “visibility” 
properties. Perhaps the main contribution of PRM planning is to reveal 
that many free spaces encountered in practice satisfy such properties, 
despite their high algebraic complexity. Since visibility properties can be 
defined in terms of volume ratios over certain subsets of F, they do not 
directly depend on dim(C), the dimensionality of C. This explains why 
PRM planning scales up reasonably well when dim(C) increases.  
• How important is the sampling measure? In every PRM planner, a 
probability measure prescribes how sampled configurations are distrib-
uted over F. Since visibility properties are usually not uniformly favor-
able over F, this measure plays a critical role in the efficiency of PRM 
planning by allocating a higher density of samples to regions with poor 
visibility properties. Existing PRM planners use mostly simple, heuristic 
estimates of visibility properties, but experiments show that they dra-
matically improve the performance of PRM planning.  
• How important is the sampling source?  A PRM planner also needs 
a source S of uniformly distributed pseudo-random or deterministic num-
bers for sampling C. For example, a planner may use S to pick a point 
uniformly from [0,1]dim(C) and then maps the point into C according to a 
given probability measure. The source S has only a limited effect on the 
efficiency of PRM planning. When dim(C) is small, low-discrepancy or 
low-dispersion deterministic sources achieve some speedup over pseudo-
random sources [LBL04]. The speedup is, however, very modest com-
pared to that achieved by good sampling measures. It also fades away 
quickly, as dim(C) increases. 

This paper does not introduce any new PRM planner or sampling 
strategy. Instead, its contribution is to articulate a coherent framework 
centered on the probabilistic foundations of PRM planning and evaluate 
several ideas, considered separately before, in this framework. It brings 
new understanding of what makes PRM planning effective, which in turn 
may help us to design better planners in the future. 
2. Why is PRM planning “probabilistic”? 
For many robots, computing an exact representation of the free space F 
takes prohibitive time, but fast, exact algorithms exist to test whether a 
given configuration or path is collision-free. PRM planners use two 
probes based on such algorithms to access geometric information from 
the configuration space C:  
• For any q ∈ C, FreeConf(q) is true if and only if q ∈ F. 
• For any pair q, q’∈ C, FreePath(q,q’) is true if and only if q and q’ 
can be connected with a straight-line path lying entirely in F. 
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The choice of using only these two probes is foundational for PRM 
planning. Since a PRM planner does not compute the exact shape of F, it 
never gains this information. So, it acts just like a robot building a map 
of an unknown environment. At any moment, many hypotheses on F are 
consistent with the information gathered so far by the probes, and each 
hypothesis has some probability of being correct. The probabilistic na-
ture of PRM planners comes from the fact that this uncertainty is mod-
eled implicitly by a probability measure over the hypotheses. 

In this paper, we use the following scheme, which we call Basic-
PRM, as a reference planner. Like the original PRM planner [KSLO96], it 
operates in two stages, roadmap construction and query. 
• Roadmap construction. The procedure below takes a single input 
argument N, the number of nodes of the roadmap R to be constructed. 
The nodes of R are collision-free configurations sampled from F. The 
edges represent collision-free straight-line paths between the nodes. 
 
 
 
 
 
 
 
 
 

 

Most PRM planners use better sampling strategies than the uniform ran-
dom one in Line 2, as well as better connection strategies in Lines 4–5.   

 

Procedure Roadmap-Construction(N) 
1. repeat until N nodes have been generated 
2. Sample a configuration q from C uniformly at random. 
3. if FreeConf(q) is true  then add q as a new node of R. 
4. for every node q’ of R  such that  q’ ≠ q do 
5. if FreePath(q, q’) is true  then add (q, q’) as a new edge of R. 
6. return R. 

A sampling strategy (π, S) is characterized by a probability measure 
π that prescribes how sampled configurations are distributed over C and 
a source S of uniformly distributed pseudo-random or deterministic num-
bers. We will show in Sections 4–5 that designing good sampling meas-
ures is one of the most promising ways to speed up PRM planning.  
• Roadmap query. A query is defined by two configurations q1 and q2 
in F. Given a roadmap R, the procedure Roadmap-Query tries to con-
nect each qi, i=1,2, to a corresponding node vi of R. For each qi, it sam-
ples uniformly at random K configurations so that for each such configu-
ration q, FreePath(qi,q) is true. It then checks whether there is a node vi 

of R such that FreePath(q,vi) is true. If either q1 or q2 cannot be con-
nected to a node of R, Roadmap-Query returns FAILURE. Otherwise, it 
searches for a path in R between v1 and v2.. If one is found, it returns a 
path between q1 and q2.  Otherwise, it returns NO PATH. 

If Roadmap-Query returns a path, the answer is always correct, 
but the NO PATH answer may not be correct, as disconnected components 
of R may lie in the same connected component of F. The answer FAILURE 
means that R is insufficient to answer the query.  
3. Why does PRM planning work well? 
In general, Basic-PRM may return incorrect NO PATH or FAILURE an-

 3



swers, but the efficiency of PRM planners in practice indicates that these 
outcomes have low probability γ. Experiments show that even in com-
plex geometric environments, γ  often converges to 0 quickly, as N, the 
number of roadmap nodes, increases (see, e.g., Figure 2). Yet one can 
also easily construct apparently simple environments where PRM plan-
ners perform terribly (Figure 3). Together these two examples suggest 
that many environments encountered in practice satisfy favorable proper-
ties that PRM planners exploit well. What are these properties?  
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Figure 2: The experimental convergence rate of Basic-PRM.  The plot shows the per-
centage of unsuccessful outcomes out of 100 independent runs for the same query, as the 
number of roadmap nodes increases. 
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We now review results from [KLMR95, HLM97], showing that if F sat-

isfies a rather general visibility property, called expansiveness, then Ba-
sic-PRM answers planning queries correctly with high probability. In 
the following, the phrase “with high (low) probability in n” means that 
the probability converges to 1 (0) at an exponential rate, as n increases.  

Figure 3: A difficult example for PRM planning. F consists of two rectangular chambers 
connected by a narrow corridor. The plot shows the average running time for Basic-
PRM to connect the two query configurations, as the corridor width decreases. 

3.1. Visibility in the free space 
We say that two points q and q’ in F see each other if FreePath(q, q’) is 
true. The visibility set of q∈F is the set V(q) = { q’∈F | FreePath(q, q’) 
is true}. The definition of visibility set is extended to any set M of points 
in F by setting V(M) = ∪q∈M V(q).  
Definition 1. Given a constant ε ∈ (0,1], a point q∈F is ε-good if it sees 
at least an ε-fraction of F, i.e., if μ(V(q)) ≥ ε×μ(F), where μ(S) denotes 
the volume of S for any S ⊆ C. F is ε-good if every point q∈F is ε-good.   
Definition 2. A roadmap R provides adequate coverage of an ε-good 
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free space F if the subset of F not seen by any node of R has volume at 
most (ε/2)μ(F). 
Theorem 1 [KLMR95]. If F is ε-good, then with high probability in N, 
Roadmap-Construction generates a roadmap that provides adequate 
coverage of F.  
Theorem 2 [KLMR95]. If a roadmap provides adequate coverage of F, 
then Roadmap-Query returns FAILURE with low probability in K. 

Adequate coverage only protects us from FAILURE, but does not pre-
vent an incorrect NO PATH answer, because ε-goodness is too weak to im-
ply anything on roadmap connectivity. A stronger property is needed to 
“link” a visibility set to its complement in F. 
Definition 3. Let F’ be a connected component of F, G be any subset of 
F’, and β be a number in (0,1]. The β-LOOKOUT of G is the set of all 
points in G that see at least a β-fraction of the complement of G in F’:  

β-LOOKOUT(G) = {q ∈ G | μ(V(q)\G) ≥ β×μ(F’ \G)}. 
Suppose that the volume of β-LOOKOUT(G) is at least α×μ(G). If ei-

ther α or β is small, then it would be difficult to sample a point in G and 
another in F’\G so that the two points see each other, hence to build a 
roadmap that represents the connectivity of F’ well. This happens in the 
free space of Figure 3 when the corridor is very narrow. These considera-
tions lead to the concept of expansiveness.  
Definition 4:  Let ε, α, and β  be constants in (0,1]. A connected compo-
nent F’ of F is (ε,α,β)-expansive if (i) every point q∈F’ is ε-good and (ii) 
for any set M of points in F’, μ(β-LOOKOUT(V(M))) ≥  α×μ(V(M)). F is 
(ε,α,β)-expansive, if its connected components are all (ε,α,β)-expansive. 
 

Theorem 3 [HLM97]: If F is (ε,α,β)-expansive, then with high probabil-
ity in N, Roadmap-Construction generates a roadmap whose con-
nected components have one-to-one correspondence with those of F. 

Expansiveness guarantees that the visibility set V(M) of any set M of 
points in a connected component F’ of F has a large lookout. So it is easy 
to sample at random a set of configurations and construct a roadmap that 
provides good coverage of F and represent the connectivity of F well. 
The values of ε, α, and β measure the extent to which F is expansive.  
For example, if F is convex, then ε=α=β=1. The larger these values are, 
the smaller N needs to be for Basic-PRM to answer queries correctly. 
Although for a given motion planning problem, we often cannot compute 
these values in advance, they characterize the nature of free spaces in 
which PRM planning works well.  
3.2. What does the empirical success of PRM planners imply? 
In practice, a small number of roadmap nodes are often sufficient to an-
swer queries correctly. This frequent success suggests that the main rea-
son for the empirical success of PRM planners is that free spaces encoun-
tered in practice often satisfy favorable visibility properties, such as ex-
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pansiveness. PRM planners scale up well when dim(C) increases, because 
visibilities properties can be defined in terms of volume ratios over sub-
sets of F and do not directly depend on dim(C). So, the empirical success 
of PRM planning says as much about the nature of motion-planning prob-
lems encountered in practice as about the algorithmic efficiency of PRM 
planning. The fact that many free spaces, despite their high algebraic 
complexity, verify favorable visibility properties is not obvious a priori. 
An important contribution of PRM planning is to reveal this fact.  

We have no proof that expansiveness is the minimal property that F 
must satisfy for PRM planners to work well, but few alternatives exist 
(e.g., path clearance and Lipschitz ε-RB) and they are more specific. 
However, since the values of ε, α, and β are determined by the worst 
configurations and lookouts in F, they do not reflect the variation of visi-
bility properties over F. This is precisely what non-uniform sampling 
measures described below try to exploit. 
4. How important is the sampling measure?  
Most PRM planners employ non-uniform sampling measures that dra-
matically improve performance. To illustrate, Figure 4 compares the av-
erage running times of three versions of Basic-PRM using sampling 
strategies with different measures: the uniform strategy, the two-phase 
connectivity expansion strategy [KSLO96], and the Gaussian strategy 
[BOvdS99]. The last two strategies perform much better than the uniform 
one. How can such improvement be explained? What information can a 
PRM planner use to bias the sampling measure to its advantage?  
 

   
 
 

 
 
 
 
 
 
 

Figure 4: Comparison of three strategies 
with different sampling measures. The plot 
shows the average running times over 30 
runs on the problem in Figure 3, as the 
corridor width decreases. 

If nothing is assumed on F, all hypotheses on the shape of F are 
equally likely.  There is no reason to sample one region of C more 
densely than another, and the uniform sampling measure is the best that a 
PRM planner can use. More generally, with no prior assumptions, there is 
little that we can say about the expected performance of PRM planners. If 
we persist in using PRM planners, it must be that F is expected to satisfy 
certain favorable properties. Note here the analogy with the theory of 
PAC learning, where one can expect to learn a concept from examples 
only if the concept is assumed to have a simple representation. Similarly, 
we can expect a PRM planner to work well – i.e., to “learn” the shape of 
F from sampled configurations –  only if we assume that F satisfies fa-
vorable visibility properties, which allow it to be adequately represented 
by a small roadmap. 

0

2

4

6

8

1000

0.030 0.025 0.020 0.015 0.010

corridor width

tim
e 

(s
ec

on
ds

)

uniform
00 connectivity expansion

Gaussian
00

00

00

 6



Now, if F is expansive, can non-uniform sampling measures work 
better than the uniform one? Since visibility properties are not uniformly 
favorable over F, a PRM planner should exploit the partial knowledge 
acquired during roadmap construction to identify regions with poor visi-
bility properties and adjust the probability measure to sample these re-
gions more densely. Now not only is the sampling measure non-uniform 
over F, but also it changes over time. In each sampling operation, the 
optimal measure is the one that minimizes the expected number of re-
maining sampling operations needed to reach a good roadmap.  

The problem of 
constructing good sam-
pling measures is still 
poorly understood. Ex-
isting strategies mostly 
rely on simple, heuristic 
estimates of visibility 
properties, for instance: 
• The two-phase con-
nectivity expansion 
strategy [KSLO96] builds 
an initial roadmap by 
sampling C uniformly at random. While doing so, it identifies the nodes 
that frequently fail to connect to other nodes nearby. Then the strategy 
samples more configurations around these identified nodes. The final 
distribution of sampled configurations is denser in regions having poor 
visibility. See the circled region in Figure 5a.                          

Figure 5: Sampled configurations generated by      
(a) the two-phase connectivity expansion strategy 
and (b) the Gaussian strategy.

(b)(a)

• In each sampling operation, the Gaussian strategy [BOvdS99] sam-
ples a pair of configurations, whose distance between them is chosen 
according to the Gaussian measure. If exactly one configuration lies in F, 
this configuration is retained as a roadmap node. Otherwise, both con-
figurations are discarded. This strategy yields a distribution of sampled 
configurations that is denser near the boundary of F (Figure 5b). The in-
tuition is that regions with poor visibility often lie near the boundary.  

Figure 4 shows that these two strategies are effective in exploiting 
the non-uniformity of visibility properties in F. When the corridor width 
is small, regions near the corridor have poor visibility, and the non-
uniform strategies achieve huge speedup over the uniform one. As the 
corridor width increases, visibility properties become more uniformly 
favorable. The benefit of non-uniform sampling then decreases.  

These two non-uniform strategies are chosen here for illustration 
purposes only. Others have been proposed (see [CLH+05] for a survey), 
including one that exploits visibility properties explicitly [SLN00]. Ex-
periments show that they usually achieve major speedup over the uni-
form strategy. Connection strategies (not discussed here for lack of 
space) also exploit visibility properties in F to improve efficiency. 
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5. How important is the sampling source? 
We have mentioned in Section 2 that a sampling strategy (π, S) is charac-
terized by a probability measure π and a source S. The most commonly 
used source in PRM planning is the pseudo-random source Sran. Given a 
fixed seed, Sran generates a deterministic sequence of numbers that ap-
proximate closely the statistical properties of true random numbers. In 
particular, a pseudo-random sequence is slightly irregular to simulate the 
effect that each number is chosen independently. In the proofs of Theo-
rems 1–3, this independence guarantees that samples spread evenly over 
F according to the uniform measure. However, deterministic sources can 
achieve the same goal, sometimes even better [LBL04]. A familiar deter-
ministic source is a grid. In this section, we compare pseudo-random and 
deterministic sources. We also compare the impact of sampling sources 
and sampling measures on the overall efficiency of PRM planning. 

In our experiments, we use a pseudo-random source Sran as well as 
two deterministic sources, the Halton sequence Shal and the incremental 
discrepancy-optimal sequence Sopt, both of which have been reported to 
often outperform Sran [GO02, LBL04]. We then pair each source with two 
probability measures, the uniform measure πU and the measure πG used 
in the Gaussian strategy. This leads to six sampling strategies 
{πU,πG}×{Sran,Shal,Sopt}, each embedded in a distinct version of Basic-
PRM to be tested experimentally. 

 
  
 
 
 
 
 
 
 
 
 

Figure 6: Comparison of six 
sampling strategies on the prob-
lem of Figure 3 when (a) the 
corridor width is set to 0.03 and 
(b) the width decreases. 

πU πG 

 
• The sampling measure versus the sampling source. Figure 6a 
compares the six strategies on the example in Figure 3, when the corridor 
width is set to 0.03. Each table entry gives the ratio of the running time 
of the uniform random strategy (πU,Sran) versus that of the strategy of the 
entry. So, the table reports the speedup over (πU,Sran). The running times 
for (πU,Sran) and (πG,Sran) are averaged over 30 independent runs. The 
second column (πU) shows that Shal and Sopt indeed achieve some speedup 
over Sran, but far greater speedup is achieved by switching to πG. Fur-
thermore, the advantage of Shal and Sopt over Sran observed with πU van-
ishes when we switch to πG. These results are reinforced in Figure 6b, 
which plots the running times of the six strategies, as the corridor width 
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decreases. The three curves bundled together at the bottom of the plot all 
correspond to strategies using πG, demonstrating the importance of the 
sampling measure on the overall efficiency of the planner. Similar results 
have been obtained on more realistic problems, e.g., the one in Figure 8, 
in which a 6-degrees-of-freedom robot manipulator needs to access the 
bottom of a car through the narrow space between the lift supports. 

 πU πG 
Sran 1.0 40.3 
Shal 3.9 33.2 
Sopt 0.9 42.2 
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• Dependence on dimensionality. The main theoretical basis for de-
terministic sources is that that they minimize criteria such as discrepancy 
or dispersion. Yet the computational cost of maintaining a fixed discrep-
ancy or dispersion increases exponentially with dim(C) [Mat99]. When 
dim(C) ≥ 6, roadmaps are necessarily sparse, just like very low resolu-
tion grids. Hence, the advantage that deterministic sources can possibly 
achieve over pseudo-random sources fades away as dim(C) increases. 
Figure 8 gives an example, showing the running times of the six strate-
gies as dim(C) increase from 3 to 8.  The robot is a planar linkage with a 
mobile base. We increase dim(C) by adding more links. Figure 8 shows 
that the running time of (πU,Sopt) increases quickly with dim(C). The in-
crease is slower with (πU,Shal) and even slower with (πU,Sran). It is inter-
esting to observe that (πU,Shal) performs slightly better than (πU,Sran) 
when dim(C) ≤ 6, but worsens afterwards (see the inset in the plot). The 
three strategies using πG all have only moderate increases in running 
times. As dim(C) increases, visibility properties become less uniformly 
favorable over F, and the advantage of  πG over πU grows. 

For lack of space, we cannot present all our experimental results or 
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the experimental setup, but all the results show that the sampling meas-
ure is far more important than the sampling source in determining the 
efficiency of PRM planners. 
6. Conclusion 
The success of PRM planning depends mainly and critically on the as-
sumption that, in practice, free spaces often verify favorable visibility 
properties. Non-uniform sampling measures dramatically improve the 
efficiency of PRM planning by exploiting these properties. In contrast, 
the choice of sampling sources has only small impact.  

This paper suggests that a promising way to speed up PRM planning 
is to design better sampling strategies (and perhaps connection strategies 
as well) by exploiting the partial knowledge acquired during roadmap 
construction to adjust the sampling measure continuously. Initial work in 
this direction has appeared recently [BB05, HSS05]. Another possibility is 
to design probes FreeConf and FreePath that return a local description 
of F, rather than only a binary outcome, allowing the planner to better 
identify regions with poor visibility.  
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