
On the Probabilistic Verification of Time

Constrained SysML State Machines

Abdelhakim Baouya1(B), Djamal Bennouar2, Otmane Ait Mohamed3,
and Samir Ouchani4

1 CS Department, Saad Dahlab University, Blida, Algeria
baouya.abdelhakim@gmail.com

2 CS Department, University of Bouira, Bouria, Algeria
dbennouar@gmail.com

3 ECE Department, Concordia University, Montreal, Canada
otmane.aitmohamed@concordia.ca

4 SnT Center, University of Luxembourg, Walferdange, Luxembourg
samir ouchani@yahoo.com

Abstract. Software and hardware design of complex systems is becom-
ing difficult to maintain and more time and effort are spent on verification
than on construction. One of the reason is the number of constraints that
must be hold by the system. Recently, Formal methods such as proba-
bilistic approaches gain a great importance in real-time systems verifi-
cation including avionic systems and industrial process controllers. In
this paper, we propose a probabilistic verification framework of SysML
state machine diagrams extended with time and probability features.
The approach consists of mapping a SysML state machine diagrams to
PRISM input language. To ensure the correctness of proposed approach,
we capture the semantics of both SysML state machine diagrams and
their generated PRISM code. We demonstrate the approach efficiency
by analyzing PCTL temporal logic on ATM case study.

Keywords: Sysml state machine diagram · MARTE · Probability ·
Time

1 Introduction

Constraints on system design in terms of functionality, performance, availabil-
ity, reliability and time to market are becoming more stringent. Therefore, the
design and implementation of successful systems, represents the prime concerns
of systems engineering (SE) but reveals several challenges [9]. Indeed, from one
side the systems are becoming increasingly complex, in the other side the market
pressure for rapid development of these systems makes the task of their designs
a challenge. Thus, the evaluation and the correctness of systems at early stage
of design reduces the design cost such as maintenance time and effort. Recently,
the need of automated verification techniques to cope with errors is imminent,
especially when time and probability are incorporated.

c© Springer International Publishing Switzerland 2015
H. Fujita and G. Guizzi (Eds.): SoMeT 2015, CCIS 532, pp. 425–441, 2015.
DOI: 10.1007/978-3-319-22689-7 33

426 A. Baouya et al.

The probabilistic verification is used to verify systems whose behavior is
unpredictable, unreliable, especially stochastic in nature. The verification of such
systems can be focused on either qualitative or quantitative properties [4]. Quan-
titative properties puts the constraints on a certain event, e.g. the probability of
processor failure in the next 3 hours is at a least 0.88, while qualitative properties
assert that certain event will happen surely (i.e. Probability=1).

In this paper, we are interested in the formal verification of probabilistic sys-
tems under time constraints modeled as SysML state machine diagram extended
with probability and time features of MARTE profile [13]. The overview of our
framework is depicted in Fig. 1. It takes State machine diagrams and PCTL prop-
erties as input. Our approach is based on representing state machine diagram
to an equivalent PRISM model (Probabilistic Timed Automata). The PRISM
model checker verifies PCTL properties on the resulting model. We extract the
adequate semantics model related to state machine diagram then, we present
the underling semantics related to the produced PRISM model. Furthermore,
we show tht the relation between both semantic preserves the satisfiability of
PCTL properties.

The remainder of this paper is structured as follows: Sect. 2 discusses the
related work. Section 3 describes SysML state machine diagram. Sections 4 and 5
provide syntax and semantic meaning of probabilistic and timed state machine
diagrams. The syntax and semantics of PRISM Model Checker is presented in
Sect. 6. Section 7 provides a mapping mechanism from state machine diagram
into the input language of the probabilistic model checker PRISM. The app-
roach soundness is proved in Sect. 8. Section 9 illustrates the application of our
mapping rules on Automatic Teller Machine (ATM) case study. Section 10 draws
conclusions and lays out the future works.

Fig. 1. A SysML State machine diagram verification approach

2 Related Work

In this section, we present the recent works related to the verification of behav-
ioral models then we compare them with our proposed approach.

Doligalski and Adamski [8] propose a verification and simulation of UML
State Machine. For this purpose, two mapping mechanisms are defined. The
first consists on mapping the original model to Petri network for verification

Quantitative Verification 427

according the requirements. However, probability and time verification are not
considered. When the requirements are satisfied, the second mapping occurs to
generate VHDL or Verilog description for simulation. Huang et al. [11] propose
a verification of SysML State Machine Diagram by extending the model with
MARTE [13] features to express the execution time. The tool has as input the
State Machine Diagram and as output timed automata expressed in UPPAAL
syntax [5]. UPPAAL uses Computational Tree Logic (CTL) properties to check if
the model is satisfied with liveness and safety properties. Ouchani et al. [17] pro-
pose a verification framework of SysML activity diagram. The authors address
a subset of SysML activity diagram artifacts with control flow. The different
artifacts have been formalized and mapping algorithm has been proposed to
translate these artifacts to PRISM input language. The transformation result
is a probabilistic automata to be checked by PRISM. Timing verification is not
considered. Kaliappan et al. [12] propose a verification approach for system work-
flow especially in communication protocol. The approach takes as input three
UML diagrams: state machine diagram, activity diagram and sequence diagram.
State machine diagram or activity diagram is converted into PROMELA code
as a protocol model and its properties are derived from the sequence diagram as
Linear Temporal Logic (LTL). Pajic et al. [18] develop a framework for verifica-
tion and generation of real time applications either in C/C++code for software
or in Hardware description language (HDL) like VHDL or Verilog. The focus
of the work is a development of model translation tool from UPPAAL [5] to
Stateflow (UPP2SF). The checked UPPAAL model is translated to Stateflow
using Simulink which provides full support for C/C++ and HDLs. Ando et al.
[3] propose a verification approach of SysML state machine diagram. The dia-
grams are translated to communication sequential process description (CSP)
and they apply the PAT [20] model checker to check the CSP models against the
LTL properties. The paper proposes a mapping rules of different state machine
artifacts. However, time and probability are not addressed.

Compared to the existing works Table 1, our contribution improves the ver-
ification of SysML State Machine diagram by extending state machine with
elements of UML MARTE profile to support time and probability. From the
comparison, we observe that few of them formalize the behavioral model and
prove the soundness of their proposed verification approaches. Moreover, our
verification framework is efficient as it preserves all properties.

Table 1. Comparison with the related work.

Approach Formalization Probability Time Soundness Automation

[8], [3], [12]
√

[11], [18]
√ √

[17]
√ √ √ √

Our
√ √ √ √ √

428 A. Baouya et al.

Fig. 2. A subset of State machine diagram artifacts

3 SysML State Machine Diagram

SysML State Machine diagram (SMD) is a graph-based diagram where states
nodes are connected by states edges (i.e.transition)[1]. Figure 2 shows the set of
interesting artifacts used for verification in this paper. The behavior of a state
machine is specified by a set of regions, each of which defines its own set of
states. The states in any one region are exclusive; that is, when the region is
active, exactly one of its substates is active. A region starts (resp. stops) exe-
cuting when it initial (resp. final) pseudo-state becomes active. When a state is
entered, an (optional) entry behavior is executed. Similarly on exit, an optional
exit behavior is executed. While in a state, a state machine can execute a do

behavior. Transitions are defined by triggers, guards, and effects. The trigger
cause a transition from the source state when the guard is valid, and the effect is
a behavior executed once the transition is triggered (opac behavior). In addition,
the control nodes supports a junction, choice, join, fork, terminate and history
pseudo-state node. A junction splits an incoming transition into multiple out-
going transitions realizes a static conditional branch, as opposed to a choice
pseudo-state which realizes a dynamic conditional branch. To illustrate how a
probability value is specified, the transition leaving choice nodes are annotated
with the ≪ GaStep ≫ stereotype using the element prob of MARTE profile [13].
The time is specified by applying the stereotype ≪ resourceUsage ≫ with ele-
ment execT ime to specify the maximum and the minimum value of the time
duration written as (value, unit, min/max), where min, max are integer values.
We present in Definition 1, the formal definition of Probabilistic and timed SMD.
Then, we propose a property that explains the state transition in SMD.

Definition 1. Probabilistic and timed SysML state machine diagrams is a tuple
S = (i, fin,N ,X, E, Inv, Enab, Prob), where:

– i is the initial node,
– fin = {⊙,×} is the set final nodes,
– N is a finite set of state machine nodes,

Quantitative Verification 429

– X is a set of clocks,
– E is a set of events,
– Inv : N → N is the invariant constraint that represents the maximum clock

value supported by state clock,
– Enab: N → N is an enabling condition that represent the minimum clock

value for state transition,
– Prob : ({i} ∪ N) × E → Dist(N × 2X) is a probabilistic transition function

that assigns for each state s ∈ N and α ∈ E a discrete probability distribution
µ ∈ Dist(2x × N).

Property 1. There are two possible ways in which a SMD can proceed by taking
a transition (State transition) or by letting time progress while remaining in a
state (Delay transition):

– State transition : for s, s′,∈ N , α ∈ E s
α,t
→p s′ when Enab(s) ≤ t ≤ Inv(s).

– Delay transition : for s ∈ N , α ∈ E s
α,t
→ s when t ≤ Inv(s).

S ::= ǫ | l : i
n

 N
N ::= N | l : F (N , N) | l : D(p, g, N , N) | On

 N | H(S) | l : ⊙| l : ×
O ::= sB | s(Sentry, Ssub, Sexit) | s(Sentry, Sdo, Sexit) | J (x1, x2) | M(x1, g1, N)
B ::=↑ S | ǫ

Fig. 3. Syntax of State Machine Calculus (SMC).

4 Syntax

Based on the SysML textual specification standard [1], we formalize SysML
state machine diagrams by developing a calculus called State Machine Calculus

(SMC) which is proposed in Fig. 3 that offers more flexibility than the graph-
ical notation defined in the standard. In Table 2, each state machine diagram
artifact is represented formally by its related SMC term. In SMC syntax, two
main syntactic concepts are defined: marked and unmarked terms. A marked
term is typically used to denote a reachable configuration. A configuration is
characterized by the set of tokens locations in a given term. An unmarked SMC
term corresponds to the static structure of the diagram.

To support tokens we augment the “Over bar” operator with integer value
n such that the N

n
denotes the term N marked with n tokens. Furthermore,

we use a prefix label l : for each node to uniquely reference it in the case of a
backward flow connection. Particularly, labels are useful for connecting multiple
incoming flows towards junction and join nodes. Let L be a collection of labels
ranged over by l; l0; l1,.. and N be any node (except initial) in the SMD. We
write l :N to denote a l -labeled state N . It is important to note that nodes with
multiple incoming edges (e.g. join and junction) are visited as many times as

430 A. Baouya et al.

Table 2. Formal Notation of SysML state Machine Artifacts

they have incoming edges. Thus, as a syntactic convention we use only a label
(i.e. l) to express a SMC term if its related node is encountered already. We
denote by D(g,N ,N) and D(p, g,N ,N) to express a non-probabilistic and a
probabilistic choices, respectively.

5 Semantics

For the workflow observation on SMD, we use structural operational semantics
[14] and [15] to formally describe how the computation steps of SMC atomic
terms take place. An element α is the label of the event triggering state transition,
x(y) inputs an object name on x and stores it in y to represent the effects of
transition and τ represents a silent event. An element t is the time for state
transition and p is a probability value such that p ∈]0, 1[. The general form of

a transition is S
t,α/b(y)
−−−−−→p S′. The probability value specifies the likelihood of a

given transition to occur and it is denoted by P (S, t, α, S′) where min ≤ t ≤ max
(max,min ∈ N). The case of p = 1 presents a non-probabilistic transition and

it is denoted simply by S
t,α
−−→ S′. For simplicity, we denote by S[N] to specify

N as a sub-term of S and by |S| to denote a term S without tokens. For the

Quantitative Verification 431

call behavior case of s ↑ N , we denote S[s ↑ N] by S ↑s N and “*” is used to
refers to the recent active substate in the state in case of shallow history. In the
sequel, we describe the operational semantic rules of the SMC calculus.
Ax-1 l : i N

l
→1 l : i N . This axiom introduces the execution of S by putting

a token on i.
Ax-2 l : i N

l
→1 l : i N . This axiom propagates the token in the marked term

i into its outgoing N .
Ax-3 ∀n > 0, m ≥ 0 l : sm N

n l
→1 l : sm+1 N

n−1

. This axiom propagates the
token from the global marked term to s.
Ax-4 l : sm+1 N

n t,α/b(y)
→ 1 l : sm N

n
. When event occurs; this axiom propagates

the token from the marked term s to N after t time units and the effect b(y)
inputs a name on b and stores it in y.
Ax-5 ∀n > 0 l : s ↑ S

n
 N

l
→1 l : s ↑ S

n−1
 N . This axiom propagates the token

from the global marked term to s.

Ax-6 S[l′:⊙]
l′
→1|S|

l:s↑Sn
N

l′
→1 l:s↑|S|nN

. The derivation rule Ax-6 finishes the execution of a

call behavior and moves the token to the succeeding term N .

Ax-7 S
t,α
→ pS′

l:s↑Sn
N

t,α
→ p l:s↑S′n

N
. The derivation rules Ax-7 and Ax-8 present the effect

on s ↑ Sn when S or N executes an action a with a probability p.

Ax-8 N
t,α
→ 1N′

l:s↑Sn
N

t,α
→ p l:s↑Sn

N′
.

Ax-SUB Ssub[l′:⊙]
l′
→1|Ssub|

l:s(Sentry,Ssub,Sexit)N
l′
→1 l:s(Sentry,|Ssub|,Sexit)N

. The derivation rule Ax-

SUB finishes the execution of “Sub” behavior and moves the token to the EXIT
behavior.
Ax-HIST l : N l′ : H(S∗, S)

n l
→ l : N l′ : H(S, S)

n
. Ax-HIST is a shallow history;

backs to the most recent active substate of its containing state.
FRK-1 ∀n > 0 l : F (N1, N2)

n l
→1 l : F (N1, N2)

n−1
. The FRK-1 axiom shows the

multiplicity of the arriving tokens according to the outgoing sub-terms.

FRK-2 N1
t,α
→ N′

1

l:F (N1,N2)
t,α
→ l:F (N′

1,N2)
. The FRK-2 derivation rule illustrates the changes

on a fork term when its outgoing trigger a state.
CHOICE-1 ∀n > 0 l : D(g, N1, N2)

n g,α
→ l : D(g, N1, N2)

n−1
. The axiom CHOICE-

1 describes a non-probabilistic choice where a token flows through the edge
satisfying its guard.
CHOICE-2 ∀n > 0 l : D(p, g, N1, N2)

n g,α
→ p l : D(p, g, N1, N2)

n−1
. The axiom CHOICE-

2 describes a probabilistic decision where a token flows through the edge satis-
fying its guard with probability p.
MRG-1 l : N l′ : M(x, g1, N1, y, g2, N2)

n l
→ l : N l′ : M(x, g1, N1, y, g2, N2)

n
. MRG-1

is a transition with a probability of value 1 to put a token coming from the
sub-term N on a junction labeled by l.
MRG-2 l : l′ : M(x, g1, N1, y, g2, N2)

n l,g1→ 1 l : l′ : M(x, g1, N1, y, g2, N2)
n
. MRG-2 is a

transition with a probability of value 1 to present a token flowing from a junction
labeled by l to the sub-term N1 an the guard g1 is true.
MRG-3 l : S[l′ : M(x, g1, N1, y, g2, N2), lx]

l
→ l : S[l′ : M(x, g1, N1, y, g2, N2), lx]. MRG-3

shows the junction enabled when token arrived at one of its pins.

432 A. Baouya et al.

JOIN-1 l : N l′ : J(x, y)
n l

→1 l : N l′ : J(x, y)
n
. JOIN-1 represents a transition

with a probability of value 1 to activate the pin x in a join labeled by l’.
JOIN-2 l : l′ : J(x, y) N

n τ
→ l : l′ : J(x, y) N

n
. JOIN-2 represents a transition

with a probability of value 1 to move a token in join to the sub-term N .
JOIN-3 l : S[l′ : J(x, y) N , lx]

τ
→ l : S[l′ : J(x, y) N , lx]. JOIN-3 shows the join

input enabled when token arrived at one of its pins.
FFIN S[l : ×]

l
→ S[l : ×]. This axiom states that if the sub-term l : × is reached in

S then a transition of probability one is enabled to produce a term describing
the termination of a flow.
AFIN S[l : ⊙]

l
→ |A|. This axiom states that if the sub-term l : ⊙ is reached then

no action is taken later by destroying all tokens.

6 PRISM Formalization

In this section, our formalization focus on probabilistic timed automata (PTA)
that extends the standard probabilistic automata (PA). The PRISM model
checker supports the PTA with the ability to model real-time behavior by adding
real-valued clocks (i.e. clocks variable) which increases with time and can be reset
(i.e. updated).

A Timed Probabilistic System (TPS) that represents a PRISM program (P)
is composed of a set of “m” modules (m > 0). The state of each module is
defined by the evaluation of its local variables VL. The global state of the system
is defined as the evaluation of local and global variables: V=VL ∪ VG. The
behavior of each module is described as a set of statements in the form of:
[act]guard → p1 : u1.. + pn : un, which means, for the action act if the guard
g is true, then, an update ui is enabled with a probability pi. The update ui

is a set of evaluated variables expressed as conjunction of assignments (V ′
j =

valj)&..&(V ′
k = valk) where Vj ∈ VL U VG and valj are values evaluated via

expressions denoted by eval, eval: V → R U {True, False}. The formal definition
of a command is given in Definition 2.

Definition 2. A PRISM command is a tuple c = < a, g, u >.

– act is an action label.
– guard is a predicate over V.
– u = {(pi, ui)} ∃m > 1, i < m, 0 < pi < 1,

∑m
i pi = 1 and u =

{(v, eval(v)) : v ∈ Vl}.

The set of commands are associated with modules that are parts of a system
and it definition is given in Definition 3.

Definition 3. A PRISM module is tuple M = <Vl, Il, Inv, C>, where:

– Vl is a set of local variable associated with a module,
– Inv is a time constraint of the form vl ⋊⋉ d\ ⋊⋉∈ {≤,≥} and d ∈ N,
– Il is the initial value of Vl.
– C= {ci, 0 < i ≤ k} is a set of commands that define the module behavior.

Quantitative Verification 433

To describe the composition between different modules, PRISM uses CSP
communication sequential process operators [10] such as Synchronization, Inter-
leaving, Parallel Interface, Hiding and Renaming. Definition 4 provides a formal
definition of PRISM system.

Definition 4. A PRISM system is tuple P = <V, Ig, exp, M, CSPexp>, where:

– V = Vg

∐m
(i=1) Vli is the union of a set local and global variables.

– Ig is initial values of global variables.
– exp is a set of global logic operators: - , ∗, /, +,−, <,<=, >=, >, =, ! =, !, &,

| , <=> , => , ? (condition evaluation: condition ? a : b means “if condition
is true then a else b”).

– M is a set of modules composing a System.
– CSPexp is CSP algebraic expression:

• M1 || M2 : alphabetised parallel composition of modules M1 and M2
(synchronising on only actions appearing in both M1 and M2)

• M1 ||| M2 : asynchronous parallel composition of M1 and M2 (fully inter-
leaved, no synchronisation)

• M1 |[a,b,...]| M2 : restricted parallel composition of modules M1 and M2
(synchronising only on actions from the set a, b,...)

• M /{a, b, ...} : hiding of actions a, b, ... in module M
• M {a ← b, c ← d, ...} : renaming of actions a to b, c to d, etc.

6.1 PRISM Semantics

The probabilistic timed automata of a PRISM program P is based on the atomic
semantics of a command C denoted by [[c]]. The latter is a set of transitions
defined as follows: [[c]] = {(s, a, µ)|s |= g} where µ is a distribution over S such
that µ(s, vt) = {|0 ≤ pi ≤ 1, v ∈ V, s′(v) = eval(V)|}. The stepwise behavior of
PRISM is described by the operational semantic as follows:
INIT 〈Vi, init(Vi)〉 → 〈Vi([[init(Vi)]]),−〉INIT initializes variables. For a module
Mi, init returns the initial value of the local variable vi ∈ Vi.
LOOP 〈Vi,−〉 → 〈Vi〉 This axiom presents a loop in a state without changing
variables evaluations. It can be applied to avoid a deadlock.
UPDATE 〈Vi, v

′
i = eval(V)〉 → 〈Vi([[vi]])〉 UPDATE axiom describes the exe-

cution of a simple assignment for a given variable vi. Its evaluation is updated
in Vi of Mi.
CNJ-UPD

〈

V, v′
i = eval(V) ∧ v′

j = eval(V)
〉

→ 〈V ([[vi]], [[vj]])〉 CNJ-UPD
implements the conjunction of a set of assignments.
PRB-UPD1 〈Vi, p : v′

i = eval(V)〉 →p 〈Vi([[vi]])〉 0 < p < 1.
PRB-UPD2

〈

V, p : v′
i = eval(V) ∧ v′

j = eval(V)
〉

→p 〈V ([[vi]], [[vj]])〉 0 < p <
1 PRB-UPD1 and PRB-UPD2 describe probabilistic updates.

ENB-CMD1 V |=g,Inv(V)
〈V,M([a]g→pi:ui)〉→μ ENB-CMD1 enables the execution of a prob-

abilistic command.
ENB-CMD2 V |=g,Inv(V) V �g′,Inv′(V)

〈V,[a]g→u;[a′]g′→u′〉
a
→〈V ([[u]]),[a′]g′→u′〉

ENB-CMD2 enables the exe-

cution of a command in a module.

434 A. Baouya et al.

ENB-CMD3 V |=g,Inv(V) V �g′,Inv′(V)

〈V,[a]g→u;[a′]g′→u′〉
a
→〈V ([[u]]),[a′]g′→u′〉

ENB-CMD3 solves the non-

determinism in a module by following a policy.

SYNC
〈Vi,ci〉

a
→μi 〈Vj ,cj〉

a
→μj

〈Vi∪Vj ,Mi||Mj〉
a
→μi.μj

SYNC derivation rule permits the synchronization

between modules on a given action a.

INTERL 〈Vi,Mi(ci)〉
aj
→μ

〈V,Mi|| |Mj〉
aj
→μ

INTERL derivation rule describes the interleaving

between modules.

6.2 Property Specification in PRISM

In order to perform model-checking, a property should be specified. We selected
PCTL to express such property. Formally, its syntax is given by the following
BNF grammar:
ϕ : :=true | ap |ϕ ∧ ϕ |¬ϕ | P⊲⊳p[ψ] ,
ψ : :=ϕ ∪≤k ϕ | ϕ ∪ ϕ ,

Where “ap” is an atomic proposition, P is a probabilistic operator. p ∈
[0, 1] and “⋊⋉”∈ <,≤, >,≥. Bound until means that a state satisfying ϕ2 is
eventually reached and that, at every time-instant prior to that, ϕ1 is satisfied.
The time-bounded variant has the same meaning, where the occurrence of ϕ2
occur within time k. To specify the satisfaction relation of a PCTL formula a
class of adversaries (Adv) has been defined [16] to solve the nondeterminism
decision.

7 The Verification Approach

This section describes the transformation of SysML state machine diagrams S
into a PTA written in PRISM input language. Listing. 1 propose a mapping
function Γ that takes as input the SMC terms defined in Table 2 to produce a
PRISM commands. The action label of a command is the label of its related
term n. The guard of this command depends on how the term is activated and
minimal clock valuation. The flag related to the term is its label l that is initial-
ized to false except for the initial node it is true which conforms to the premise
of the SMC rule Ax-1. The updates of the command deactivate the propositions
of the term, activate that ones related to its successors, reset the clock variable
of its successors. The functions L(n), Start(Si) and E (Si), return the label of the
initial term n , the initial and final term of Si, respectively. Each PRISM code
generated for each state machine diagram starts from module Si and terminates
with endmodule. The call of substates transitions (line 30 and 31) synchronize

with the initial (line 42) and the final (line 44) transition, respectively to enable
the internal transitions of substate. The final transition (line- 38) reset the local
variables to false. However, the PTA model in PRISM model checker does not
support the shared variables. To overcome, we use the implication operator to
set the proposition to true as shown in line 31 and line 42. The clock vari-
able x is used as guarded condition for state successors activation. In line 34,

Quantitative Verification 435

the next node is activated when the clock x >= min and x <= max defined in
the invariant clause within the module as follows:

invariant (l = true) ⇒ (x ≤ max) endinvariant

1 Γ : S → P

2 Γ (S) = ∀n ∈ S, L(n == i) = true, L(n �= i) = false , Case n o f

3 [l : i → N] ⇒ // the c l ock x i s r e s e t to 0

4 in { [l] l →(l’= f a l s e)&(L(N) ’= true)&(x′ = 0)}∪Γ (N); end

5 [l : M(x, y, g1, N1, g2, N2)] ⇒

6 in { [lx]lx → (l′x = false)&(lg1)′ = true)}∪ Γ (N1) ∪ Γ (N2)∪

7 { [ly]ly → (l′y = false)&(l′g2 = true)}∪

8 { [lg1]lg1 & g1 → (l′g1 = false)&L(N1)′ = true) & (x′ = 0)}∪

9 { [lg2]lg2 & g2 → (l′g2 = false) & L(N2)′ = true) & (x′ = 0)}

10 end

11 [l : J(x, y) → N] ⇒

12 in { [l]lx ∧ ly → (l′x = false)&(l′y = false)&(L(N)′ = true)&(x′ = 0)} end

13 [l : F (N1, N2)] ⇒

14 in { [l]l → (l′ = false)&(L(N1)′ = true)&(L(N2)′ = true)&(x′
1 = 0)&(x′

2 = 0)}∪Γ (N1) ∪ Γ (N2)

15 end

16 [l : D(p, g, N1, N2)] ⇒

17 Case (p) o f

18] 0 , 1 [⇒

19 in { [l]l → p : (l′ = false)&(l′g = true) + (1 − p) : (l′ = false)&(l′¬g = false)}∪Γ (N1) ∪ Γ (N2)∪

20 { [lg]lg → (l′g = false) & (L(N1)′ = true) & (x′
1 = 0)}

21 { [l¬g]l¬g → (l′¬g = false)& (L(N2)′ = true) & (x′
2 = 0)} end

22 Otherwise ⇒

23 in { [l]l → (l′ = false)&(l′g = true)}∪{ [l]l → (l′ = false) & (l′¬g = true)}∪Γ (N1) ∪ Γ (N2)∪

24 { [lg]lg → (l′g = false) & L(N1)′ = true)&(x′
1 = 0)}∪

25 { [l¬g]l¬g → (l′¬g = false)& L(N2)′ = true)&(x′
2 = 0)} end

26 [l : sB
t

→ N] ⇒

27 Case (B) o f

28 ↑ Si ⇒

29 in

30 { [l]l → (l′ = false)}∪Γ (N)∪

31 { [L(E(Si))]((L(N) = false) ⇒ true) → (L(N)′ = true)&(x′ = 0)}∪Γ ′(Si)

32 end

33 ǫ ⇒ // minimal time f o r s t a t e t r a n s i t i o n

34 in { [l]l & (t >= min) → (l′ = false) & (L(N)′ = true) & (x′ = 0)}end

35 [l : ×] ⇒

36 in [l]l → (l′ = false) ; end

37 [l : ⊙] ⇒

38 in [l]l → & l∈L(L(N)′ = false) ; end

39 Γ ′ : S → P

40 Γ (Si) = ∀m ∈ Si, L(m) = false ,

41 [l : i → N] ⇒

42 in { [l] ((L(Start(Si)) = false) => true) → (L(Start(Si))
′ = true)} ∪

43 { [L(Start(Si))] L(Start(Si)) → (L(Start(Si))
′ = false) & (L(N)′ = true) }∪Γ (N); end

44 [l : ⊙] ⇒ in [L(E(Si))]L(E(Si)) → (L(E(Si))
′ = false) ; end

Listing 1. PRSIM Commands Generation

8 The Transformation Soundness

Our aim is to prove the soundness of the transformation algorithm Γ by showing
that the proposed algorithm preserves the satisfiability of PCTL properties. Let
S be a SMC term and MS is its corresponding PTA constructed by the SMD
operational semantics denoted by S such that X (S) = MS . For the program P

resulting after transformation rules, Let Mp its corresponding PTA constructed

436 A. Baouya et al.

Fig. 4. The transformation soundness.

by PRISM operational semantics denoted X ′ such that X ′(P) = MP . As illus-
trated in Fig. 4, proving the soundness of Γ algorithm is to find the adequate
relation R between MS and MP .

To define the relation MSRMP , we have to establish a step by step corre-
spondence between MS and MP . First, we introduce the notion of the timed
probabilistic bisimulation relation [6,19] in Definitions 6 and 7. This relation is
based on the probabilistic equivalence relation R defined in Definition 5 where
δ/R denotes the quotient space of δ with respect to R and ≡R is the lifting of
R to a probabilistic space.

Definition 5 (The equivalence ≡R). If R is an equivalence on δ, then the
induced equivalence ≡R on Dist(δ×2x) is given by: µ≡Rµ′ iff µ(δ, d) ≡R µ(δ, d′).

Definition 6 (Timed Probabilistic Bisimulation Relation). A binary
relation R over the set of states of PTAs is timed bisimulation iff whenever
s1Rs2, α is an event and d is a delay:

– if s1
d,α
→ µ(s1,d) there is a transition s2

d′,α
→ µ(s2,d

′), such that s1Rs2. The
delay d can be different from d’;

– two states s, s’ are time probabilistic bisimilar, written s ∼ s′, iff there is a
timed probabilistic bisimulation related to them.

Definition 7 (Timed Probabilistic Bisimulation of PTAs). Probabilistic
Timed automata A1 and A2 are timed probabilistic bisimilar denoted (A ∼ A′)
iff their initial states in the union of the probabilistic timed transition systems
T(A1)and T(A2) generated by A1 and A2 are timed probabilistic bisimilar.

For our proof, we stipulate herein the mapping relation R denoted by MSRMP

between a SMC term S and its corresponding PRISM term P.

Definition 11 (Mapping Relation). The relation MSRMP between a SMC
term S and a PRISM term P such that Γ (S) = P is a timed probabilistic
bisimulation relation.

Finally, proving that Γ is sound means showing the existence of a timed proba-
bilistic bisimulation between MS and MP .

Lemma 1 (Soundness). The mapping algorithm Γ is sound, i.e. MS ∼ MP .

Quantitative Verification 437

Proof 1: We prove MS ∼ MP by following a structural induction on SMC
terms and their related PRISM terms. For that, let e1, e

′
1 ∈ XS and e2, e

′
2 ∈ XP .

We distinguish the following cases where L(s) takes different values:

1. L(e1) = l : x N such as x = {i, s} =⇒ ∃e1
d,α
−−→1 e′

1, L(e1’)= l : x N .

For L(e2) = Γ (L(e1)), we have L(e2)=〈L(x),¬L(N)〉 then ∃e2
d′,α
−−→1 e′

2 where
L(e′

2) = 〈¬L(x), L(N)〉.

2. L(e1) = l : D(g1,N1,N2)
n

then ∃e1
g1,α
−−−→1 e′

1, L(e′
1)= l : D(g1,N1,N2)

n−1
.

For L(e2) = Γ (L(e1)), we have L(e2)=〈l,¬lN1
,¬lN2

〉 then ∃e2
g1,α
−−−→1 s′

2 where
L(e′

2) = 〈¬l, lN1
,¬lN2

〉.

3. L(e1) = l : ⊙ then ∃e1
α
−→1 e′

1, L(e1’)= l : ⊙. For L(e2) = Γ (L(e1)), we have

L(e2)=〈l〉 then ∃e2
α
−→1 e′

2 where ∀li ∈ L : L(e′
2) = 〈¬li〉.

From the obtained results, we found that µ(e1, d) = µ(e2, d
′) = 1 then e1 ∼

e2. In addition, the unique initial state of MS is always corresponding to the
unique initial state in MP . By studying all SMC terms, we find that MS ∼ MP ,
which confirms that Lemma 1 holds.

In the following, we show that the mapping relation preserves the satisfiability
of PCTL properties. This means, if a PCTL property is satisfied in the resulting
model by a mapped function Γ then it is satisfied by the original one.

Proposition 1 (PCTL Preservation). For two PTAs MS and MP such that
Γ (S) = P where MS ∼ MP . For a PCTL property φ, then: (MS � φ) ⇐⇒
(MP � φ).

Proof 2: The preservation of PCTL properties is proved by induction on the
PCTL structure and its semantics. Since MS ∼ MP and by relying to the
semantics of each PCTL operator ζ ∈ {U, U≤k, F, P⊲⊳p}, we find that (MS � ζ)
⇐⇒ (MP � ζ) which means: (MS � φ) ⇐⇒ (MP � φ).

9 Case Study

In the following, we present a case study [7] describing an automated teller
machine (ATM). We perform the verification of this design with respect to prede-
fined properties including time constraints and [2] is the corresponding generated
code.

The ATM interacts with a potential customer (user) via a specific interface and
communicates with the bank over an appropriate communication link. A user that
requests a service from the ATM has to insert an ATM card and enter a personal
identification number (PIN). The card number and the PIN need to be sent to the
bank for validation. If the credentials of the customer are not valid, the card will be
ejected. Otherwise, the customer will be able to carry out one or more transactions
(e.g., cash advance or bill payment). The card will be retained in the ATM machine

438 A. Baouya et al.

Fig. 5. ATM state machine diagram

during the customers interaction until the customer wishes for no further service.
Figure 5 shows the SysML state machine diagram of the ATM system.

ATM state machine encloses four substates: IDLE, Verification, Eject, and
Operation. The IDLE is the default initial substate of the top state. The Verifi-
cation state represents the verification of the cards validness and authorization.
VerifiyCard and VerifyPin substates have interval time]3s, 5s[,]4s, 5s[respec-
tively (s for seconds). The SMD could let time progress while remaining in Veri-
fiyCard and VerifyPin states until 5 seconds and the transition is triggered or the
transition is triggered just after both states minimal time is attained (after time
progress). The probability to get pin and card validated is 0.7 and 0.8, respec-
tively. The Eject state depicts the phase of termination of the users transaction.
The Operation state is a composite state that capture several functions related
to banking operations. These are the Selectaccount, Payment, and Transaction.
When Selectaccount is active, and the user selects an account, the next transition
is enabled and the Payment is entered. The Payment state has two substates;
for cash advancing and bill payment. It represents a two-item menu. Finally,
the Transaction state captures the transaction phase and includes three sub-
states: CheckBal for checking the balance, Modify for modifying the amount,
if necessary, and Debit for debiting the account. Each one of the Payment
and Transaction states contains a shallow history pseudostate. If a transition

Quantitative Verification 439

targeting a shallow history pseudostate is fired, the most recently active sub-
state in the composite state containing the history connector is activated.

In order to check the correctness of the ATM system, we propose to verify
two functional requirements at specific time or at different time stamps k. They
are expressed in PCTL as follows:

1. The maximum probability value that the modification occurs during the Bill
Payment after k=5 time units: Pmax =?[F≤k(BillPAY & Modify))].

2. The maximum probability value to get the card and pin validated after
k time units: Pmax =?[F≤k(CardV ALID & PinV ALID)].

The maximum probability value for the modification that occurs during the
Bill payment is equal to 0.3 when k equal to 5 (time units). The verification
results of the second property are shown in Fig. 6. After 4 time units (seconds),
the verification results converge to 0.3. However, the verification time for the
first property took 246.3 s due to the state explosion during the model checking.

Fig. 6. Property2

10 Conclusion

In this paper, we presented a formal verification approach of probabilistic sys-
tems modeled by using SysML state machine diagram. For this purpose, the
approach maps state machine into the input language of the probabilistic model
checker PRISM. We proposed a calculus dedicated to this diagram that cap-
tures precisely their underlying semantics. In addition, we formalized PRISM
language by showing its semantics. Thus, we proved the soundness of our pro-
posed approach by defining adequately the relation between the semantics of
the mapped diagrams and the resulting PRISM models. In addition, we proved
the preservation of the satisfiability of PCTL properties. Finally, we have shown
the effectiveness of our approach by applying it on a case study representing
an ATM state machine diagram where time and probability are evaluated using
PCTL properties. The presented work can be extended in the following two
directions. First, we want to transform our behavioral diagram to its equiva-
lent HDL (hardware description language) code for RTL verification. Second,
we want to validate our approach on different real case studies.

440 A. Baouya et al.

References

1. OMG Systems Modeling Language (Object Management Group SysML). O. M.
Group (Ed.) (2012)

2. Abdelhakim, B.: State machine diagram verification (2015). https://github.com/
gitmodelcheking/ATM/blob/master/ATM.nm

3. Ando, T., Yatsu, H., Kong, W., Hisazumi, K., Fukuda, A.: Formalization and
model checking of SysML state machine diagrams by CSP#. In: Murgante, B.,
Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O.,
Gervasi, O. (eds.) ICCSA 2013, Part III. LNCS, vol. 7973, pp. 114–127. Springer,
Heidelberg (2013)

4. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

6. Ben-Menachem, M.: Reactive systems: modelling, specification and verification.
SIGSOFT Softw. Eng. Notes 35(4), 34–35 (2010)

7. Debbabi, M., Hassane, F., Jarraya, Y., Soeanu, A., Alawneh, L.: Probabilis-
tic model checking of SysML activity diagrams. In: Debbabi, M., Hassane, F.,
Jarraya, Y., Soeanu, A., Alawneh, L. (eds.) Verification and Validation in Sys-
tems Engineering, pp. 153–166. Springer, Berlin (2010)

8. Doligalski, M., Adamski, M.: UML state machine implementation in FPGA
devices by means of dual model and verilog. In: 11th IEEE International Confer-
ence on Industrial Informatics, INDIN 2013, 29–31 July 2013, Bochum, Germany,
pp. 177–184 (2013)

9. Gajski, D.D., Abdi, S., Gerstlauer, A., Schirner, G.: Embedded System Design:
Modeling, Synthesis and Verification, 1st edn. Springer Publishing Company
Incorporated, New York (2009)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

11. Huang, X., Sun, Q., Li, J., Pan, M., Zhang, T.: An MDE-based approach to
the verification of SysML state machine diagram. In: Proceedings of the Fourth
Asia-Pacific Symposium on Internetware, Internetware 2012, pp. 9:1–9:7. ACM,
New York (2012)

12. Kaliappan, P.S., König, H., Kaliappan, V.K.: Designing and verifying commu-
nication protocols using model driven architecture and spin model checker. In:
International Conference on Computer Science and Software Engineering, CSSE
2008, Volume 2: Software Engineering, 12–14 December 2008, Wuhan, China, pp.
227–230 (2008)

13. Mallet, F., de Simone, R.: MARTE: a profile for RT/E systems modeling, analysis-
and simulation? In: Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops,
SimuTools 2008, 3–7 March 2008, Marseille, France, p. 43 (2008)

14. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, New York (1999)

15. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking the probabilistic
π-calculus. In: Proceedings of the 4th International Conference on Quantitative
Evaluation of Systems (QEST 2007), pp. 169–178. IEEE Computer Society (2007)

https://github.com/gitmodelcheking/ATM/blob/master/ATM.nm
https://github.com/gitmodelcheking/ATM/blob/master/ATM.nm

Quantitative Verification 441

16. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43(2), 164–190 (2013)

17. Ouchani, S., Mohamed, O., Debbabi, M.: A probabilistic verification framework
of sysml activity diagrams. In: IEEE 12th International Conference on Intelligent
Software Methodologies, Tools and Techniques (SoMeT), vol. 246, pp. 165–170,
September 2013

18. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: From verification to
implementation: a model translation tool and a pacemaker case study, pp. 173–184
(2012)

19. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Lee, I., Smolka, S. (eds.) CONCUR ’95: Concurrency Theory. Lecture Notes in
Computer Science, vol. 962, pp. 234–248. Springer, Heidelberg (1995)

20. Sun, J., Liu, Y., Dong, J.: Model checking CSP revisited: introducing a process
analysis toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. Communications
in Computer and Information Science, vol. 17, pp. 307–322. Springer, Heidelberg
(2008)

	On the Probabilistic Verification of Time Constrained SysML State Machines
	1 Introduction
	2 Related Work
	3 SysML State Machine Diagram
	4 Syntax
	5 Semantics
	6 PRISM Formalization
	6.1 PRISM Semantics
	6.2 Property Specification in PRISM

	7 The Verification Approach
	8 The Transformation Soundness
	9 Case Study
	10 Conclusion
	References

