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ON THE PROBABILITY THAT A RANDOM ±1-MATRIX 
IS SINGULAR 

JEFF KAHN, JANOS KOMLOS, AND ENDRE SZEMEREDI 

1. INTRODUCTION 

1.1. The problem. For Mn a random n x n ± I-matrix ("random" meaning 
with respect to uniform distribution), set 

Pn = Pr (Mn is singular). 

The question considered in this paper is an old and rather notorious one: What 
is the asymptotic behavior of Pn ? 

It seems often to have been conjectured that 

(1) 2 n-i Pn = (1 +o(I))n /2 , 

that is, that Pn is essentially the probability that Mn contains two rows or two 
columns which are equal up to a sign. This conjecture is perhaps best regarded 
as folklore. It is more or less stated in [14] and is mentioned explicitly, as a 
standing conjecture, in [20], but has surely been recognized as the probable truth 
for considerably longer. (It has also been conjectured ([17]) that Pn /(n 2r n ) -+ 

00 .) 

Of course the guess in (1) may be sharpened, e.g., to 

the right-hand side being essentially the probability of having a minimal row or 
column dependency of length 4. 

Despite the availability of the natural guess (1), upper bounds on Pn have 
net been easy to come by. That Pn -+ 0 was shown by Koml6s in 1963 (but 
published somewhat later [12]). This is a discrete analogue of the fact that the 
variety of singular real matrices has Lebesgue measure 0, and should be quite 
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obvious. It is somewhat surprising that no trivial proof is known. A simpler 
proof (based, like the original proof, on Sperner's theorem ([24] or, e.g., [7])), 
giving the bound Pn = O(I/,fii) , was offered in [14] (see also [1], XIV.2). 

Here we give an exponential bound. 

Theorem 1. There is a positive constant e for which Pn < (1 - e)n . 

We prove this with e = .001 for n ~ no' While this could be improved 
somewhat, a proof of (1) seems to require substantial new ideas. 

Let m ij , i, j ~ 1, be chosen at random from {± I} independently of each 
other (an infinite random matrix). Let Mn be the finite matrix (m jj )l<:;.i,j<:;.n' 

Our return to the estimation of Pn was motivated in part by a question 
proposed by Benji Weiss: Is it true that :E Pn < 00 ? 

The point of the question is that an affirmative answer (as provided by our 
Theorem 1) implies, via the Borel-Cantelli Lemma, that with probability 1 only 
finitely many of the Mn are singular. 

A few additional applicatiuns and extensions are mentioned in Section 4. Of 
the extensions, the most interesting is perhaps Corollary 4(b), which, improv-
ing a result of Odlyzko [20], says that for an appropriate constant C, n - C 
random {±l}-vectors are not only (a.s.) independent, but in fact span no other 
{± 1 }-vectors. 

The problem of estimating Pn turns out to be closely related to questions 
arising in various other areas, e.g., geometry (Furedi [4]), threshold logic (Zuev 
[27]), and associative memories (Kanter-Sompolinsky [11]). Consequences of 
Theorem 1 for some of these are also discussed in Section 4. 

For more on the by now vast literature on random matrices see, e.g., Girko 
[6] or Mehta [16]. See also Odlyzko [20] for a few problems more or less related 
to the present work. 

In the remainder of this section we sketch the main points in the proof of 
Theorem 1. Let us in particular draw the reader's attention to Theorem 2, 
which is central to the proof of Theorem 1, and seems also to be of independent 
interest. 

1.2. Linear algebra. For Q E Rn - {Q} , let 

p(Q) = Pr (§tQ = 0), 

where §. is drawn uniformly from {± I} n , and denote by Ea the event "M Q = 

Q", where M = Mn is a random n x n ± I-matrix. Thus, Pr(Ea ) = [P(Q)t, 
and Pn = Pr(U{Ea: Q E Zn - {Q}}). -

Of course "Boo Ie's inequality" Pn ::; :E Pr(Ea) gives nothing here. For Q's 
with very small p(Q) , the following trivial lemma gives a usable lower bound. 
(This is just the case k = n of Lemma 2 below, but we prove it separately both 
by way of illustration and because it plays a special role in what follows.) 
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Lemma 1. For any PO' 0 < Po < 1 , 

Pr(U{E!!:P(ff)s,;Po}):S npo· 

Proof. The inequality is implied by the following observation. Let L j denote 
the event "the ith row of M is a linear combination of the other n - 1 rows". 
Then, Pr([u{Ea: P(ff) :s po}] n L;) :s po. Indeed, Po is an upper bound on 
the probability of this event conditioned on any values in the other n - 1 rows, 
since for such matrices the set {ff: P(ff) :s PO' M ff = Q} is determined already 
by those n - 1 rows. Taking total probability gives the bound po. 0 

To deal with large P(ff)'S, we must somehow exploit dependencies among the 
Ea's. A framework for doing so, based on the idea that linearly dependent ff'S 
tend to be annihilated by the same M's, is given by the following lemma. (For 
S c Rn ,dim(S) is the dimension of the subspace spanned by S.) 

Lemma 2. Let S be a subset of Rn - {Q}, k = dim(S), and p(S) = max{p(ff): 
ff E S}. Then, 

( n) n-k+l Pr(U{E!!:ffES}):S k-l p(S) . 

This is proved in Section 3.3. The factor (k~l) is somewhat wasteful. We 
will eventually substitute for Lemma 2 a more technical variant (Lemma 4) 
which gives a slightly better value of e in Theorem 1. 

1.3. Subspaces. In the proof of Theorem 1 we will try to cover Zn \ {Q} by 
a small number of subspaces of moderate dimensions, and simply add up the 
bounds in Lemma 2 (or rather Lemma 4). That is, we will use the estimate 

(2) Pn = Pr(U{E!!: ff E Zn \ {Q}}) :s L Pr(U{E!!: ff E SJ), 
j~O 

where {Sj} is an appropriate cover of Zn \ {Q} , and use Lemma 4 to bound 
the summands. We will choose So = {ff: P(ff) :s po} (po ~ (1 - e)n), so 
dim(So) = n. But for i f. 0, dim(Sj) will be roughly yn, with y < 1 a 
CO;lstant to be specified later. 

It is perhaps most natural here to try to use S;'s of the form S(/) = n{.fl.: 
.f E I} , where 1 is a set of linearly independent vectors from {± 1 } n , the idea 
being that if ff E Zn satisfies .fl ff = 0 for many .f E {± 1 } n , then g should lie 
in many S(I)'s. While this seems not quite to work, something similar does 
lead to usable S;'s. Namely, our subspaces will be of the above form S(/) with 
1 a set of about (1 - y)n linearly independent vectors from {-I, 0, + I} n , 
each with exactly d non-zero components, for some d ~ J.ln with J.l a small 
constant. 

To show that a moderate number of such subspaces can cover Zn , we use a 
probabilistic construction (Lemma 5). 
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Definition. Let Vd be the set of vectors f E {-I, 0, + 1 } n with exactly d non-
zero coordinates. A d-sum in ~ is an expression of the form E7=1 eiai , where 
f E ~. We write 

and 
ad(~) = lI:d(~)I· 

The analogue of p(~) for d-sums is 

Pd(~) = ad(~)/lVdl = ad(~)/ ((;)2d) . 

1.4. A Halasz-type inequality. As noted above, we may place all ~'s for which 
p(~) is small- p(~) < Po ~ (1 - e)n , say-in a single set So' which by Lemma 1 
contributes only npo to the bound (2). 

The crucial question posed by Lemma 2 (or Lemma 4) is: What can be said 
about ~'s for which p(~) is large? 

For example, as observed by Erdos [2] in connection with the "Littlewood-
Offord Problem", Sperner's Theorem ([24] or, e.g., [7]) implies that if p(~) is 
much bigger than n -1/2 , then ~ has relatively small support. 

A second example is given by a theorem of Sarkozy and Szemeredi [23], 
which says that if al ' ••• ,an are distinct, then 

p(~) = O(n -3/2). 

(The precise bound here is a celebrated result essentially due to Stanley; see [25], 
[21].) So if p(~) is much bigger than n-3/ 2 , then ~ must have many repeated 
entries. (Incidentally, one can use this with Lemma 2 to show Pn = O(n-3/2) , 
which already answers the question of Weiss mentioned earlier. This was in 
fact our starting point.) 

For smaller values of p(~), some deep theorems of Halasz [8, 9] apply. They 
say, roughly, that if p(~) is much bigger than n-(2r+I)/2, then there must be 
considerable duplication among the sums ±ai ± ... ± a; . 

I , 

We give here a more abstract condition, which says that for d much less 
than n, p(~) = Pn(~) tends to be significantly less than Pd(~). This is perhaps 
the most important step in the proof of Theorem 1. 

In terms of random walks, the result says roughly the following. Let al ,.·., an 
be integers and J1. E (0, !). Then the probability that a random walk with step 
sizes at ' ... ,an returns to the origin at time n is less by a factor O(..fii) than 
the corresponding probability for the "lazy" walk which at the ith step moves 
a; or -a j , each with probability J1., and otherwise remains where it is. 

While this is certainly the case for ordinary random walks, it is somewhat 
surprising that such a relation between Pn and Pd can be established for ran-
dom walks with arbitrary step sizes, since in such generality it is hopeless to 
determine, or even to give reasonable estimates for, individual values of Pn • 

Let supp(~) be the number of non-zero components in ~. 
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Theorem 2. Let A < 1 be a positive number, and let k be a positive integer such 
that 4Ae < 1 . If g E zn - {Q}, then 

(3) p(_a) ~ [ 1 + _1_e -CI-4).)SUPP(Q)/C4k2)] Q ( ) 
k (1 - 4Ak2) 1 - 4.1. ). g , 

where Q = Q). (g) is defined as 

~ (n) -). d -). n-d Q = ~ d (Ae ) (I-Ae) Pd(g)· 
d=O 

The choice k = (12.1.)-1 /2 leads to the following corollary. 

Theorem 3. There exists (for each A) K(A) such that if (12.1.)-1 /2 is integral 
and supp(g) ;::: K(A) , then 

where Co < 5.2. 

Remark. Set f..l = Ae -).. The weight function in Q is a binomial distribution 
which is highly concentrated around the expected value f..ln. Hence, typically, 
only the terms Pd(g) with d ~ f..ln matter. Thus, Theorem 3 roughly says the 
following. Let f..l > 0 be small. If a1 ' ... , an are non-zero integers, and many 
(more than a (1 - f..l)n proportion) of the 2n signed sums of the a's are 0, then, 
for some d ~ f..ln , an even larger (by a factor v' n / d) proportion of the (;) 2d 
signed sums of d terms are O. 

We just mention two illuminating examples: 

Example 1 (verified for us by Imre Ruzsa [22]). If a j = t' , a a positive inte-
ger, then (for large enough d, n) p(g) '" cn-a - 1/2 , while Pd(g) '" en-ad- 1/2 . 

Example 2. If the a j are random integers chosen from the range {I, 2, ... , M}, 
then p(g) '" e/(Myfi) and Pd(g) '" c/(MVd). 

Now fix a positive constant e' , and set 

q).(g) = max{Pd(g): Id - f..lnl < e'n}. 

By the Chernoff bound, 

(4) 

where 

Q).(g) ~ q).(g) + L (;)l(1 - f..l)n-d 
Id-tml:::>:e'n 

< () 2 -DIV(Il,e')n 
q). g + e , 

DIV(f..l, e') = min{D(f..l + e'IIf..l), D(f..l- e'IIf..l)} 

{ D(f..l- e'IIf..l) if f..l ~ 1/2 , 
= D(f..l + e'IIf..l) if f..l> 1/2 , 
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with D(xILu) = x log(x / fl) + (1 - x) log« 1 - x)/(l - fl)) , the information the-
oretical divergence of x from fl. 

Thus, under the conditions of Theorem 3 we have, provided supp(g) > K(A) , 

(5) 

with Co < 5.2. 

1.5. Sketch of the proof of the main theorem. The proof of Theorem 2, using 
ideas of Halasz, is given in Section 2. In Section 3, we complete the proof 
of Theorem 1. The argument (ignoring g's of small support, which are easily 
handled directly) will go roughly as follows. 

We fix a small A (eventually Ii108) and e somewhat smaller (.002). Vectors 
g with peg) < (1 - e)n are placed in So' 

For the remaining vectors, as indicated earlier, we use S/s based on d-sums 
and having dimension yn, where d takes various values in the vicinity of An 
andy=en/d. 

The crucial difference between d-sums and full sums is in the factor Vi.: for 
given (J, the number of S/s used to cover g's with q;.(g) = Pd(g) and (Jd(g) ~ 
(J behaves roughly like «(d)2d /(J)(I-y)n ~ Pd(g)-(I-y)n ; the binomial coefficient 
in Lemma 2 turns out not to be too important; and the factor (Vi.)(I-y)n from 
p n- k+1 is small enough to give the desired exponential bound. 

2. PROOF OF THEOREM 2 

Recall that 
n 

(6) II cos (}:i = 2-n L cos(e l (}:I + ... + en(}:n) , 
i=1 

where the sum is over ~ E {± 1 } n • This gives, for any g E Rn , 

1 [27C 
peg) = 2-n 2n Jo L cos«e1a l + ... + enan)t) dt 

Ii. (7) 
I [27C n 

= 2n Jo II cos(a;l)dt. 
o i=1 

Remark. The reader may notice that the integrand on the right-hand side of (7) 
is the Fourier transform of the distribution of 2:7=1 eiai , where ~ is chosen 
uniformly from {± I} n • This is not by accident. Esseen's concentration lemma 
[3] says that for any finite measure fl, 

sup 1 fl(dx) ~ c [ 14>(t)1 dt , 
y Ix-yl~1 Jltl~1 

where 4>(1) is the Fourier transform 4>(t) = J eitx fl(dx) and c is an absolute 
constant. 
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This remark may be used to generalize Theorem 1 to random matrices with 
arbitrary independent identically distributed non-degenerate entries. (For such 
a generalization of the result of [12], see [13].) 

Returning to (7) and using the inequality Ixl ~ e-(I-X2)/2 together with 
1 - cos2 a = (1 - cos(2a»j2 and the integrality of a; we have 

p(gJ ~ 2~ fo27C exp { -~ ~(1 - cos(a;f»} dt. 

Setting 
1 n 

f(t) = "4 :2)1 - cos(a;t» , 
;=1 

we define 
1 

T(x) = {t E (0, 2n): f(t) ~ x} and g(x) = 2n IT(x)1 

(1·1 stands for Lebesgue measure). 
Using this f and g, we can rewrite our estimate as 

(8) p(gJ ~ -21 r27C e-f(t)dt = r27C roo -21 e-Xdxdt = roo e-Xg(x)dx. 
n 10 10 1 f(t) n 10 

The following inequality of Halasz ([8], see also [9]) is at the heart of our 
proof. For any x > 0 and positive integer k, 

(9) 2 g(x) ~ g(k x)jk 

provided g(ex) < 1, which certainly holds if ex ~ supp(g)j4 since 
2~ f;7C f(t) dt = supp(g)j4 and f is not constant. 

For the convenience of the reader, we sketch Halasz's proof of (9). For a 
fixed integer k ~ 2, let T*(x) = {t1 + ... + tk: t; E T(x)} (addition modulo 
2n). Then (9) follows from 

(10) 

(11) 2~ IT*(x)1 ~ min{kg(x) , I}. 

The set containment (10) follows from 

1 - cos(a) = 2sin2 (~) 

and 

sin' (t n;) ., (t 1 sin n;l), ., k t sin' n;. 
For the proof of (11), see [8]. (Alternatively, it is an easy consequence of the 
Cauchy-Davenport Theorem (e.g., Halberstam-Roth [10])). 
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We return to the proof of Theorem 2. Let us fix a positive number A < 1 . 
First we use Chernoff's method to show 

(12) 4Ax" g(X) ~ e Q. 

By Markov's inequality, 

g(x) = 2~ I {I E (0, 2x): exp {A ~ COS(ail)} ;, exp {A(. - 4x)} } I 

~ exp {-A(n - 4x)} 2~ 1021C exp {A ~ cos(ajt)} dt. 

Using the inequality 

/,z ~ /' _ A(1 - z) for Izl ~ 1 , 

recalling I-l =7' Ae -A , and then using (6), we have 

exp {A ~ COs(ajt)} ~ II (/' - A + Acos(ajt)). 

Thus, 

Ax" 1 (21C -A-A 
g(x) ~ e 21l io II(1-Ae +Ae cos(ajt»dt 

1 121C d 
AX ~ ~ d n-d II = e ~ ~ I-l (1 -I-l) 21l cos(aj/)dt 

d jt <,,·<jd 0 j=1 

_ Ax" ~ d(1 )n-d (Jd(g) _ Ax" ~ (n) d( 1 )n-d () -e ~I-l -I-l -d- -e ~ d I-l -I-l Pd g, 
d 2 d 

proving (12). 
Now, let k be a positive integer with 4Ae < 1. Let us write S = 

supp(g)/(4k2) and split the estimate (8) as 

p(g) ~ 1000 e -x g(x) dx = loS e -x g(x) dx + fsoo e -x g(x) dx. 

We start with the second integral. By (12), 

roo -x roo -x 4Ax" Q -(1-4A)S is e g(x)dx ~ is e e Qdx = 1 _ 4A e . 

In the domain of the first integral we have e x ~ k 2 S = supp(g) /4. Thus 
(9) applies, and with (12) yields 

is -x is 1 2 -x Q is -(1-4Ak2 )x Q e g(x)dx ~ -kg(k x)e dx ~ -k e dx ~ 2 ' 
o 0 0 k(I-4Ak) 

proving Theorem 2. 0 
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3. PROOF OF THEOREM 1 

We assume throughout that n is large enough to support our approximations. 
We generally treat large real numbers as integers without comment; if the reader 
prefers, replacing each such number by its floor, say, removes this imprecision 
without affecting any of the arguments. 

3.1. a's with many O's. We first dispose of the easy case of g's with many O's. 
The following observation is from [14] (see also [1], p. 348, Lemma to). 

For all K, 

Pr(U{E~: supp(g) ~ K}) 

(13) 
< f: (~) (k: 1) [2-k (Lk~2J) r-k

+
1 

k=2 

In particular, 

(14) Pr (U{E~:SUPP(g) < n-310~n}) < n32-n • 

Remark. This can easily be improved to the true value (1 + 0(1))n22-n , e.g., by 
substituting (z:=~) for (k~I) in (13). Thus, vectors g with at least 3n/log2 n 
O's do not obstruct a proof of (1). 

3.2. An Odlyzko-type lemma. We need one more easy observation, which gen-
eralizes Theorem 2 of [20]. (Recall that Vd is the set of {-I, 0, + 1 }-vectors 
with exactly d non-zero coordinates.) 

Lemma 3. If S is a D-dimensional subspace of Rn • then 

( 15) d (D) i IS n Vdl ~ F(D, d):= L i 2. 
i=D-n+d 

Proof Without loss of generality, the set of restrictions of vectors in S to the 
coordinates {I, ... ,D} is of dimension D. Thus different vectors in S n Vd 
have different restrictions to these coordinates, each a {-I, 0, 1 }-vector with 
between D - n + d and d nonzero coordinates. This gives (15). 0 

The case D = n is Odlyzko's result, which we state for future reference as 

Corollary 1. For V a subspace of Rn and r. chosen uniformly at random from 
{±I}n. 

Pr(r. E Vl.) ~ 2- dim(V). 

3.3. Back to Lemma 2. As mentioned earlier, a little more care with Lemma 2 
eventually gives a somewhat better e in Theorem 1. 
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Lemma 4. Suppose the k-dimensional subset S of Rn and numbers p, e" satisfy 

( 16) p(S) ~ p, 

together with the technical conditions 

( 17) p < e" < 1/2, 

( 18) -I -e"n -2 p 2 < n . 

Then (jor large enough n), 

( n ) n-k+1 
Pr(U{Efl.: f! E S}) < e"n p . 

Proofs of Lemmas 2 and 4. Let r l , ... ,rn be the rows of M. A necessary 
condition for the event Es := U{Ea : f! E S} is that there be at most k - 1 
indices j E [n] for which -

(19) dim (s n n. rt) < dim (s n n rt) . 
I~l I<l 

Call the event in (19) Fj • For Ie [n], let HI be the event {Sn niEI d =I {Q}}. 

Proof of Lemma 2. The discussion to this point implies 

But for any J c [n], 

(20) . Pr (H[n1V n n F j ) ~ Pr (n FjlH[nlV) ~ p(S)IJI. 
lEJ lEJ 

To see this, fix (and condition on) rows r j , j rt. J, satisfying H[nlV' Then 
F j implies that rj lies in (S n nl<j rt).L , so in particular is orthogonal to any 
given f! E S n nl<j rt. Since the latter occurs with probability at most p(S) , 
and the rows are chosen independently, we have (20). The lemma follows. 0 

Proof of Lemma 4. We just elaborate the preceding proof a little. Note we may 
assume 

(21 ) " " en~k~n-en, 

since otherwise the conclusion follows from Lemma 2. 
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Given I c [n] with III ::; k - 1 ,set J = [n] \ I , 

Thus 

(22) 

GI = HI nnFi' 
iEI 

FI = G I n n Fj" 
jEJ 

For j E J let t(j) = II \ [J]I. Our basic inequality is 

(23) Pr(FI ) ::; Pr (n F)GI ) ::; II min{2- t(J)-1 ,p(S)} =: f(I) 
jEJ jEJ 

To see this, fix rows !:.i' i E I, satisfying GI . Then F j requires that 

(24) 

Now G[ implies that 

so by Corollary 1, (24) occurs with probability at most rt(J)-1 . But (24) also 
requires that !:'j be orthogonal to any given Q E S n nl<j d ' so occurs with 
probability at most p(S). This gives (23). 

Consider first I of size k - 1. Set m = k - e" n and suppose lIn [m]1 = i. 
Then t(j) ~ k - 1 - i for j E J n [m] , and so, by (23), 

f(I) ::; 2-(k-i)(m-i)p(S)n-k-m+i+l. 

Letting I vary, this gives 

L{f(l): I c [n], III = k-l} 

(25) < t (7) (k n_ ~ ~ i)2-(k-i)(m-i)p(S)n-k-m+i+l 

1=0 

( n - m ) n-k+l < (1 + 0(1)) k _ 1 - m p . , 

the second inequality by (16), (18). 
For smaller I, notice that for any I elf c [n], 
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Thus (see (22)) 
k-l 

Pr(Es ) $ L: L:{f(I): I C [n], III = k - 1 - t} 
t=O 

k-l ( n ) 

$ ~ t~~) /L:{f(l): I c [n], III = k -I} 

(26) (1 (1» ~ (k-~-t) t ( n - m ) n-k+l 
< +0 ~ (n)P k-l-mP 

t=O k-l 

(27) ( n ) n-k+l < "P . e n 
The inequality (26) is from (25), while (27) is a consequence of (17) and (21). 0 

3.4. A random construction. We can now construct the sets Sj for use in Lemma 
4. Our basic parameters are A., J.l = A.e -;., e, and e' = Cl.J.l , all small positive 
constants. We assume first of all that 

(28) 1 -DIV(p, e') -e > e . 

(As mentioned earlier, we also assume n is large.) 
Then Theorem 2 (see (5» guarantees that for any g with 

(29) q;.(g) > (1 - e)n and supp(g) > K(A.) , 

we have the crucial inequality 

(30) p(g) < 5.2VI q;. (g). 

Let us fix (temporarily) two integers d and a with 

(31 ) Id - J.lnl < e'n 

and 

(32) 

where N = Nd = IVdl = (~)2d . 
For such d and a, we also define the sets 

M(d, a) = {g E Zn - {Q}: supp(g) > K(A.) , q;.(g) = Pd(g) , and ad(g) = a}. 

As mentioned above, vectors g in any of the sets M(d, a) satisfy (30). 
Define in addition 0 = d/n, J' = e/o, and D = (1 - y)n. We will choose 

the parameters so that d $ D /2, that is, 

(33) y$I-20, 

implying that F(D, d) < 2(~)2d . Note also that, since J' < I, 

(34) (l_y),5 < I-e. 
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We will cover M(d, a) by a number of sets Si' each consisting of g's which 
are orthogonal to some D linearly independent vectors from J.d. 

Lemma 5. There exist m < (1 + 0(1)) (~)D log (~) and WI' ... , Wm, each a 
set of D linearly independent vectors from Vd , such that any a-subset of Vd 
contains at least one of the ff';. 

Remark. If we don't require that the elements of ff'; be independent, then 
Lemma 5 becomes a special case of a hypergraph covering result of Lovasz [15] 
(see also Ftiredi [5] for a survey of this and related topics). In the present 
situation we use Lemma 3 to show that the independence requirement doesn't 
really cause any trouble. 

Proof Fix L C J.d with ILl = a, and set q = a IN. Let WI"" ,wD be 
chosen uniformly and independently from Vd , and set 

F = {WI' ... ,W D are linearly independent elements of l:}. 

We show that 
Pr(F) = (1 - o(I))qD. 

Since Pr(w l , ••• ,wD E L) = qD , it's enough to show 

(35) Pr(Flw l , ••• , wD E L) = 1 - 0(1). 

This probability is just P := Pr(v i ' ..• , vD are linearly independent), where 
VI' ... , vD are drawn uniformly and independently from L. By Lemma 3, 

D 

P> 1- 'LPr(vi E (VI' ... ,Vi_I)) 
i=1 
D 

~ 1 - 'L F (i - 1 , d) I a 
i=1 

> 1 - DF(D, d)la. 

But, writing (x)s for x(x - 1)··· (x - s + 1) and using (32), (33), 

F(D d)la < 2 (D)d < 2(1 - y)d = 2 [(1 - y)o]n 
, (n)d(l-et (l-et l-e 

So (35) follows from (34). 
This gives the lemma: For appropriate m < (1 + 0(1)) (~)Dlog(~), if 

WI' .. , , Wm are uniformly and independently chosen D-subsets of Vd , then 
the expected number of a-subsets of Vd containing no independent ff'; is 

(N) D m a (1-(I-o(I))q) < 1, 

so in particular there exist ff';'s as in the statement of the lemma. D 
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3.S. Defining the S/s. With notation as in Section 3.4, let WI' ... , Wm be as 
in Lemma S and set 

l-Sj = (W}) n M(d , a). 

Suppose also that the constant e" satisfies 

(36) e" > -log2(1 - e). 

Then applying Lemma 4 with S = Sj and k = D, p = S.2Via IN, and using 
(30) we have 

Pr(U{E{!: {!:. E Sj}) < (e~n}S.2/IaIN)D 

and (since m < (Nla)D N) 

Pr(U{Ea: {!:. E M(d, an) < N( ~ )(S.2/I)D 
(37) - e n 

< eXP2[(H2(c5) + c5 + H2(e") + (1 - y) log2(S.2/I))n] =: md. 

Thus we have 

(38) Pr(U{E{!: supp({!:.) > K(A) , q). ({!:.) > (1 - e)n}) < L Ndmd , 

where the sum is over d satisfying (31). 
The factor N in (38) is much more than is necessary, and, though this makes 

only a small difference in our final bound, we modify the argument as follows 
to reduce it. 

Partition [(1 - e)n N, N] into intervals of the form 1= {a: (1 + 1/n/ < a $ 
(1 + 1/n/+ I } and use Lemma S to cover UaE1M(d, a) rather than an individ-
ual M(d, a). This has essentially no effect on any of the above calculations, 
and allows us to replace (38) by, for example, 

(39) Pr(U{E{!: supp({!:.) > K(A) , q). ({!:.) > (1 - e)n}) < n2 L md • 

Finally, set 

So = {{!:. E Zn - {Q}: q).({!:.) $ (1 - e)n OR supp({!:.) $ K(An 

= Zn - {Q} - ud aM(d, a). 

By (S) and (28), the conditions q).({!:.) $ (1 - e)n, supp({!:.) > K(A) , with our 
eventual choice A = 1 I 108 , imply 

(40) 

Thus, by Lemma 1 and (14) 
n 3-n Pr(U{E{!:{!:.ESo}) < n(1-e) + n 2 , 

and finally, 

(41 ) 2~ n 3-n Pn < n L md + n(1 - e) + n 2 . 
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3.6. Choosing the parameters. It remains to set the parameters. Essentially this 
amounts to choosing A and a = e' / f1. , the other values then being dictated by 
(28), (31), (33), and (36). 

A convenient, if not quite optimal choice, is A = 1/108 (k = 3) (f1. = Ae -A), 
a =.S (e' = .Sf1.), e" = .01 , and e = 0.002 (i.e., something a little bigger than 
0.001). 

It is then straightforward to check that for any (1 - a)f1. :s: f5 :s: (1 + a)f1. and 
y = e / f5 , the expression 

" r:; 1 H2(f5) + f5 + H2(e ) + (1 - y) log2(S.2vA) = -log2 md n 
in (37) is less than log2(1 - e). (Its values at the extremes f5 = (1 ± a)f1. are 
less than log2(1 - e), and its second derivative with respect to f5 is positive 
between the extremes.) 

Thus the bound in (41) is essentially equal to its second term and we have 
Theorem 1. 0 

4. CONCLUDING REMARKS 

It would be of considerable interest to say more about the distribution of 
det(Mn)' Viewed "up close", the distribution is not very nice-for instance it's 
easy to see that det(Mn) is always divisible by 2n- I -but it seems reasonable 
to expect some kind of limit distribution. The log-normal law for random 
determinants (Girko [6], Theorem 6.4.1) doesn't apply here, for the entries 
don't satisfy Em~ = 3. 

It is not hard to see, based on the above results, that for any b, 

(42) 

(Briefly, this is because: If we define p*(q) = maxcPr(lq = c), then the 
bound of Theorem 2 applies to p*(q). (Multiplying the integrands in (7) by 
cos(ct) gives Pr(lq = c) in place of p(q), and the rest of the proof goes 
through as is.) This implies, as in the proof of Theorem 1, that wi~h probability 
at least 1 - (1 - et the first n - 1 rows, II"" ,In-I' of M annihilate a 
unique q, which satisfies p*(q) > (1 - e)n . On the other hand, given any such 
II' ... ,In-I and q, Pr(det(M) = b) :s: p*(q) for any b.) 

However, (42) should be far from the truth, which we believe to be that 
(except when b = 0) the probability in (42) is exp[-n(nlogn)]. 

It is also not hard to see that (37) together with (13) implies the following 
extensions. 

Corollary 2. For any y > 0 there are constants C and e·> 0 so that 

Pr(Mnq = Q for some q with supp(q) > C and p(q) > (1 _ e*)n) < yn. 

Corollary 3. For every y > 0 there is a constant C such that 

Pr(rank(Mn) < n - C) < yn. 
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Corollary 4. There is a constant C so that if r :5 n - C and 1L I , ••• ,1Lr are 
chosen (uniformly, independently) at random from {±I}n, then 

(a) Pr(1L I , ••• , 1Lr are linearly dependent) = (1 + 0(1)) 2(;)Tn, 
(b) Pr«(1LI' ... ' 1Lr} n {±I}n =I {1L1' ... ,1Lr}) = (1 + 0(1)) 4(;)(i)n. 

(The precise error term in (a) is (1 + 0(1))8(~)(i)n , while (b) has an error 
term O(Uo)n).) 

Part (b) improves a result of Odlyzko [20]-studied in connection with a 
question on associative memories [11]- which gives the same bound provided 
r < n - IOn /log n. As he observes, the error term 0« ?o t) is not best possible. 

We conjecture that the conclusions of Corollary 3 hold provided r:5 n - 1 , 
but expect that proving this will be about the same as proving (1). 

Denote by Tn the number of threshold functions of n variables, that is, 
functions f: {±I}n -+ {±1} of the form 

with a j E R. The behavior of log Tn was considered beginning in the late 
1950s by various authors who established the bounds m < log2 Tn < n2 • (See 
Muroga [18] for details, related results, and references.) More recently, Zuev 
[27] showed, using results from [26] and [20], that log2 Tn '" n2 • His precise 
bound is 

(43) 
T > ( 2n )2-<n-lOn/log n) 

n - n - 10n/logn 
2 2 = eXP2[n - IOn /logn - O(nlogn)), 

whereas an upper bound is 

(44) 

Using Corollary 4(b) in place of [20] improves the lower bound (43) to 
eXP2[n2 - n log2 n - O(n)). Moreover, if the conjecture that one may replace 
r :5 n - C by r:5 n - 1 in the corollary is true, then a slight elaboration of the 
argument of [27] gives the asymptotics, not just of log Tn ' but of Tn itself: it 
would be asymptotic to the left-hand side of (44). 

As pointed out by Furedi [4]; Theorem 1 also gives some improvement in 
the bounds of that paper, namely, if n = Oed) and XI' .•. ,xn are chosen 
uniformly and independently from {± 1 } d , then 

h(n, d) 2 d 
Pr(Q ¢ conv{xl ' ... ,Xn }) = 2n- 1 + Oed (1 - e) ), 

where h(n, d) = 'L1=o (nil) . 
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ABSTRACT. We report some progress on the old problem of estimating the prob-
ability, Pn , that a random n x n ± I-matrix is singular: 
Theorem. There is a positive constant e for which Pn < (I - et . 

This is a considerable improvement on the best previous bound, Pn = 
O( I /.../Ti) , given by Komlos in 1977, but still falls short of the often-conjectured 
asymptotica1 formula Pn = (I + 0(I))n221- n . 

The proof combines ideas from combinatorial number theory, Fourier anal-
ysis and combinatorics, and some probabilistic constructions. A key ingredient, 
based on a Fourier-analytic idea of Halasz, is an inequality (Theorem 2) re-
lating the probability that f! E Rn is orthogonal to a random f E {± I } n 
to the corresponding probability when f is random from {-I, 0, I} n with 
Pr(e; = -I) = Pr(e; = I) = p and e/s chosen independently. 
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