ON THE PROBABILITY THEORY OF ARBITRARILY LINKED EVENTS
By HiLpa GEIRINGER

1. Introduction. The classical Poisson problem can be stated as follows:
Let p1, p2, - -+ p. be the probabilities of n independent events E, , E,, --- E,
respectively; i.e. the probability of the simultaneous occurrence of E; and E;
is equal to p;p;, that of E;, E;, E; is equal to p;p;p« and so on. We seek the
probability P,(z) that z of the events shall occur. If, py = p. = .- = p,
the problem is known as the Bernoulli problem.

More generally the n events may be regarded as dependent. Let p,; be the
probability of the simultaneous occurrence of E; and E;; p:;i that of E;, E;, E,
and finally ps..., that of Ey, E., --- E,. There shall arise again the problem
of determining the probability P,(z) that z of the n events will take place.'
Furthermore the asymptotic behaviour of P,(x) for large n can be studied; and
we shall especially be interested in the problem of the convergence of P.(x)
towards a normal distribution or a Poisson distribution.

Even in the general case which we just explained, the sums

n

S] = Z i, SZ = Zl Dijy = Sn = Pi2-..n

i=1 1,]=

of our probabilities differ only by constant factors from the factorial moments
MY MP, ... MY of P,(x). For we have

S, = }'Mf.") = }'Zx(x —1) - (x—v+ 1)P.(2).
Starting from this remark the author has, in earlier papers, (8, 9, 10] established
a theory of the asymptotic behaviour of P,(r), making use of the theory of
moments. The criterion for the convergence of P,(x) towards the normal—or
the Poisson—distribution consists of certain conditions’ which the S, must
satisfy.

In the following section a concise statement of the whole problem will be
given, independently of the author’s earlier publications. For the convergence
towards the normal distribution we shall be able to establish a theorem under
wider conditions in a manner which seems to. be simpler. Finally, some appli-
cations of the theory will be considered.

1 See, for instance, references [1]-[7] at end of paper.
2 Using the ‘“theorem of the continuity of moments,” Professor v. Mises [11] established

sufficient conditions for the convergence of P.(z) towards a Poisson distribution in the
case of the problem of “iterations.”” However, his reasoning can be applied to the general
case without much difficulty.
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2. Formulation of the problem. Let us consider the n-dimensional collective
(Kollectiv) consisting of a sequence of any n trials. In the simplest case these
trials will be alternatives, i.e. for every trial there will exist only two results,
which we may denote by “occurrence,” “non-occurrence’ or by “1,” “0.” The
single trial may eventually be composed in various manners. For instance
we may draw m > 7 times from an urn, which contains counters, bearing in
arbitrary proportions numbers from 0 to 9. The first “event” E; may consist
of the fact that the first three extracted counters bear even numbers; the second
trial E; will be regarded as successful, if the sum of the counters extracted at
the second, third and fourth drawings is greater than five, etc. In every case
the result of the n trials will be expressed by n numbers, each of them equal to
Oor 1. Theresult (1, 1,0,0,0, --- 1), for instance, means that the first, the
second, and the last trial were successful, the third, fourth, - .. unsuccessful,
and we have an arithmetical probability distribution v(z; , z2, - -+ Za) (& = 0, 1;
k=12, ... n), where

¢y 2 (e, za) = L

Instead of the 2" — 1 values of v we will deal with certain groups of partial
sums of them; the first is

Z Zv(xl,x2’ ...xi_l,l,z“_l...x") = p; (1,= 1, 2, n)

where p; is the probability that the i-th trial will be successful. In an analogous
manner let p;; be the probability that the ¢-th and the j-th trial are both sucess-
ful, p:jx the probability that the i-th, j-th and k-th trials are simultaneously
successful. Let us provisionally denote by = an (n — 1)-tuple sum over all
variables, except z;, by Z” an (n — 2)-tuple sum over all variables except z;
and z; etc. We shall then have:

P = E(i)v(xl’ cee T, l’xi_H, xn)

(O]
Pi; = Z v(xly st Tix, 1: Tiyry +*Tj-1, 17 Tjtr,y * - xn)

2)

Prz..n = (1,1, ... 1),

In the following these probabilities p;, pi;, pij: - - - will be assumed as directly
given. There are

G+ (m)+ () -2

values of this kind and it is easily seen, that the partial sums (2) are linearly
independent.

If, especially, the probability v(z,, z2, - -+ z.) depends only on the number
of zeros amongst z;, &z, - - Za, i.e. if



262 HILDA GEIRINGER

v(1,0, ... 0) = v(0,1,0, -.-0) = ... = (0,0, --- 1)
(1,1, .. 0) = 9(1,0,1, --- 0) = ... =9(0,0,---0,1,1)

[

|

<
—~
(=)
(=}

the value of p; is independent of 7, the value of p;; independent of ¢ and j,
and so on:

Pr=P2 = ' = Pn

Pr=1Ps =" """ = DPrin
In the particular case of tndependent events we have only to deal with n
probabilities, namely p1, pz, --- p.. We have indeed p;; = pip;; Pix =

PiPPk - P12..on = D1P2 ** Pn .
In the case of chains however, we need only know (2n — 1) values, namely

DL, D2, -+ Pn; Pz, Pss, -+ Pu,n. The other pi;; and the pijp, -+ Pua..n
can be expressed in terms of the above probabilities.

Returning now to the general case it is easily seen that in the expression for
P,(x) the p;, p;; --- will appear only in the following combinations

1reen leeen
3) 8.0 =1, 8.(1) = 2 i, 8.2 = Z Diiy -+ 8a(n) = Pra...n.

Indeed, at the basis of the solution of the ‘“problem of sums,” there are the
following relations [11] between the S,(z) and the P,(z).

@ s - 5 (%) P Gz

=z

The linear equations (4) may be solved (by recurrence) for the P,(z) and we
find the important result that

) P = 3 (<07 (2) 5.6

=z

Let M? be the z-th factorial moment of P,(z), i.e.
(6) MP =2 s@—1) - (z—z+1)Pa).

Making use of (4) and (6) we obtain
) M = 218.(2).

Our aim is to obtain information concerning the asymptotic behaviour of P,(z)
by studying that of the moments of P,(z). The moments however are easily
seen to be given in terms of the S,(z2).

3. The asymptotic behavior of P,(r). Convergence towards the normal dis-

tribution.
a. THE PrincipAL THEOREM. According as the mean value
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n

(8) ML = 8,(1) = an = 2 2Pa(x)
=1

remains bounded or not for indefinitely increasing n, there are two types of
passage to a limit. In the first case the distribution will converge (under certain
conditions) towards a Poisson distribution; in the second case it will approach
(under certain conditions) a normal distribution. As regards the convergence
towards the Poisson distribution the author has published [9] a sufficient
condition which seems to be quite simple and general. We shall, however, not
resume this problem in the present paper.

We propose, indeed, to prove in the following pages a new theorem concerning
the convergence of

Val@) = 22 Pa(d)
t<z

towards a normal distribution.

For this purpose we introduce the following function of the discontinuous
variablez = 0, 1,2, ... n
z4+18:0z+1)

S.(2)

n

. . z+18
or, more concisely written g, = — — é“
z

9) ga(2) =

, where S,(2) is defined by (3). Put-

ting 2 = a,u, let us consider
(10) gn(anu) = hn(u)

where u is regarded as a continuous variable in the interval from Q0 toe. (e > 0.)
Denoting the variance of z for V.(z) by M, = s5 we shall prove the
TuarorEM: Let the function h.(u), defined by (10) satisfy the following conditions:

() If n is sufficiently large, h,(u) admits derivatives of every order in the interval

(07 e)
(ii) Atwu = 0, the first derivative of h.(u) has a limit, for n — oo, which is different
from —1.

(iii) If w 1s in the interval (0, ¢€) the k-th derivative of hn(u) remains, for every k,
inferior to a bound N which vs independent of n.
Then

vy
11). lim Va(a. + ys:V'2) = I—_f e da
n—+0 '\/7!' —o0
We shall see that in many applications these conditions may reasonably be
assumed as satisfied.
b. DEMONSTRATION OF THE THEOREM.
In order to prove the principal theorem, stated above, we shall at first deduce
some properties of the (finite) differences of g.(2) (z = 0, 1, - - -) from the assump-
tions (i), (i), (iii) which deal with the derivatives of h,(u). Indeed, the «-th
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difference of g.(z) with respect to 2z, (which contains the values of g.(z) for
z2=0,1, ... «), differs only by the factor a, from the «-th divided difference of
ha(u), with respect to u (which is formed by the values of h,(u) for u = 0,
&1— y e 5— . Let n > « and so large that «/a, < e; then all u-values used in
the formation of the «-th divided difference of h,(w) will be in the interval (0, ¢).
Now, as it is well known, the absolute value of any divided difference of order «
can not be larger than the largest derivative in an interval which contains all
the abscissae, used in the formation of the divided difference. But according
to hypothesis (iii) the x-th derivatives of h,(u) in (0, ¢) are all inferior to N, .
Therefore® we have

(12) | a5A%ga(z) | < N,

and for every vy > 0

(13) lim o Y A®g.(2) = 0.
n—+w 2=0

On the other hand from condition (ii) it follows, as is easily seen, that

(14) vlai-rvralo anzéogn(z) = Qn [gn(l) - gn(o)] =C 75 _1
The equations (13) and (14) imply but finite differences of g.(2).

Let us now introduce certain new moments F, which we could call “factorial
moments about the mean.”’” They are indeed related to the factorial moments
M® in exactly the same way as the moments M, about the mean are related
to the moments M, about the origin. Writing, S., a and g, instead of S,(z),
a» and g,(2), we set

F, = A’ (M(v)av—z) - M(v) _ l'M(v—l)a + <;) M(v—z)a2 — e+ d
z=0
(15)
= V!Sy bl v!S,_la + (;) (V —_ 2)!8,_20,2 [ = a’

where, particularly,
(16) Fo = 1, F, =0.

From (15) we have:

M(v) = y!SV = Z F,,_,(:) P
z=0

)
=F, + vF,,_la + (;)F,_zaz + -+ (V 1 2>F2av-2 + a

Let. us begin by proving the following

3 If we only want to deduce (13) it is sufficient to suppose that N, (without being inde-
pendent of n) increases more slowly than any power of a. .
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Lemma 1: It follows from (13) and (14) that we have for the F, defined by (15)
F_G_{O if »odd

(18) lim - (v = 1) if »even.

n— wa’

First we conclude from (15) and (14) that (18) is true for » = 1 and » = 2.
In order to prove (18) for every v, we shall point out, that

(19) tim 2 6 — etim Trt =23 )
Setting
S.zt MY

(20) fz=gg—1 and m, = pr _—a—;—
we get.

_ Man
(21) ge = ot
and

Am: = mzfs-

(22) . (z=10,1,2,---)

AN'm, = A7 (m.f.)
But according to (15) we have

(23) A m, = 1 F,

z2=0 a’

and therefore

@ % = " N7 mf) = & 2 fupb M, = 2 S g‘: a0 A%,

(@+BzZzv—1;asv—1,8=v—1)

Here we have made use of the fact that the x-th difference of a product wv can
be transformed in a finite sum =8 ,A*uA’ where o and 8 are non-negative integers

and @ < x, 8 < «. | If we concern ourselves with derivatives and not with finite
differences, we have, o + 8 = xk and S5 = (2)) Suppose
a+pB>v—1.

Then 8 = v — «; therefore, as » > « we have 8 > V-—%—?. Since A"fz = Afq,

the product a?®~ “’Aﬂf, converges toward zero, in accordance with (13), whereas the

2=0

factor Sqg %’: remains bounded for every &« < ». Now suppose
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at+B=v—1.

—a
5"
Thus a**¥A®, converges again towards zero, whereas the other factors are

z=0

bounded as before. Next,if « = » — 1, then 8 = 0 and A’f, = fo = 0. Thus
z=0

Then 8 =v — 1 — a. Firstleta<u—2;thenﬁ=v—-1—-a>v

the corresponding term of our sum is equal to zero. Finally if @« = v — 2,
then 8 = 1, and Sos = v — 1. The corresponding term of the sum (24) will be

Fos . F,_
(V - 1) llm T—'—z)‘ h_l}:o aﬁofz (V - l)C hm g(y :)

which completes the proof of Lemma I.

We shall now establish a relation between the factorial moments about the
mean F, and the ordinary moments about the mean M,. To an expression
of the form

(25) ca’F,
(where the constant ¢ is independent of ) let us attribute a “weight” p + %.

Then we shall prove the following lemma
LemMa I1: Let v = 2u(v even), v = 2a 41 (v odd) and

v!

(26) @ = = 201 200!
Then
®
(27) M, — Zo @,a"F,,
=
is equal to a finite sum of terms of the form (25), each of which has a weight less
than v/2.

To prove this lemma we begin by expressing the M, in terms of the factorial
moments M®. We shall then express the M® by the F,. Now, let s,. be
the ‘“Stirling numbers of second kind,” i.e., putting

(28) ‘ @ =gz —1)-.-(—2+1)
we have
(29) = Z sux(‘_‘) (z = 0’ 1) 2) o ')

k=0

Then by an elementary calculation we obtain

B0) M, = Z Mo I:s,,,, — YaSp_1y1 + ( >a2s,,_2,.,_2 — -t (V)a"].

p=0

If we now introduce the F, we get
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v—1 v—p
v - —p—1
e BR[O
—p—2
0 (i) P PO

Furthermore we may easily verify that

(7227)-C70)-070 7

(31)

@2) 1 2 1
(v — P — (@ .. (v—r—p)
+2!( , )x + i(——v_r_p)!x .
But the s, forz = 0, 1, 2, ... are equal to the values of a polynomial in 2, of
2x
degree 2, the highest term of which is equal to 57" . The degree of the product
v —p — 2 _
(33) ( . )s,,w = ¢(z)

is therefore equal to (# — r — p) + 20 = v — r + p. On the other hand the
expression between brackets in the right hand member of (31) is nothing other
than the »-th difference of {(z). (The missing terms of this difference are indeed
equal to zero, the corresponding s,, being equal to zero.)

This »-th difference will certainly vanish if
v—r+p<vie.r > p.

Now, let r = p. Then the y-th difference, i.e. the coefficient o, of F,_,_,a"
= F,_5,d’ in (31), is equal to »! multiplied by the coefficient of 2" in ¢(x):

=y 1
P (v — 2p)! 2¢p!

Finally, let r < p. Then the weight of F,_,_,a is inferior tov/2. We have thus
established Lemma II.
We have for instance forv = 1, 2, 3,4, 5

M1=F1=0,M2=Fz+a,M3=F3+3F2+a
My = (Fi+ 6aF: + 34d’) + 6 Fs + (7F: + a)
My = (Fs + 10 Fs0) + (10 Fy + 40 Foa + 10 0% + 25 Fs 4 (156 F; + a)

43

Inversely in an analogous manner, we can express F, by the
Mt =1,2,...v).

We can now terminate our demonstration by proving the following
LemMma III: If the conditions (18) are satisfied, then
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M, _ o _[0---vodd
T 18- (»—1)--- veven.

34 li -
(34) lim Vis

First the equation (18) for » = 2 gives

lim [iz=lim Mz_u:c
n—ew @ n-—+00

thus

(35) lim M72 =1+4c¢c (c = —1).

It is therefore obviously sufficient to prove the relation

(36) lia *24_, — H(1 + o*.
Putting v = 2u and v = 2u 4 1 respectively we obtain however from our
lemma

M,

&= ﬁ: o, ¥F, 5, + Ra¥.

p=0
Here R represents a finite sum of terms of the form (25), of “weight’’ inferior

to % But by virtue of (18) such a term, divided by a* converges towards zero

and we obtain
. AM,, L . F v—2p L V!
37) lm 5 = Zelim oo = 2y O
For an odd v, G,_s, @s equal to zero; for an even »(= 2u, say) however, we have
H—p (2u — 2p)!
2¢=*(u — p)!

Gz,,_zp =2C

and we obtain

lim Mo _ 3~ @0 (2 — 2)!
n—00 ak =0 (2/,; —_ 2p)!20p! 2}4—p(u _ P)!

(38) 201 & |
— e M v _ H, (1 u
2¢p! ; plu — o)1 © nll +0)
in accordance with (36). Lemma III is therefore proved.

Our principal theorem is now an obvious consequence of the well known
theorem of the continuity of moments. By virtue of this theorem the con-
vergence of V.(a, + ys.\/2) towards a normal distribution as given by (7)
will indeed be assured if the moments of V, converge towards the moments of
the corresponding normal distribution; i.e. if (34) is true. Thus our principal
theorem is completely demonstrated.
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4. Some applications.

ExampLE 1. We shall consider the following play as a very simple appli-
cation of our theorem: An urn contains m = 2n counters bearing the numbers
1,2, ... m. We draw them all, one after the other, without returning the
counters previously drawn. We ask for the probability Pa.(x) that an even counter
will appear at a drawing of even number x times (0 £ = < n).

As can be easily found, we have

[N

p2=p4="'=p2”=

 Das o e = _12n—-2
D24 = P26 = = Pan—22n = i1on—1

Consequently
Si=35, 8 _<">12,___n—2 8 _<")1w_—_4)
1T PT\2/4om -1’ *=\3/8@n — D)(2n — 2V’
(39

S, — l(n) @2n—2)2n —4) --- (2n — 22 + 2)
Fre\z/ (@ —-1D2n—-2)---2n—2+1)"
From (39) it follows that
n—z2n—2
(40) gn(Z) = —n— m .
Setting z/3n = u, we get

ho(u) = -

)

The conditions (i), (ii), (iii) of our principal theorem are obviously satisfied if
e < 4 and we have

(1)

ha(0) = —3%

The probability defined above is thus seen to converge (according to (11)) towards a

4

normal distribution, having a mean equal to 3 and a variance My ~ 3

ExampLE 2. Probability of an ‘“occupation.” Let k stones be distributed
by chance over n places. Then the probability that any stone will occupy a
certain place will be equal to 1/n. We ask for the probability P,(x) that there
shall be x places, every one of which is occupied by exactly m stones.*

By certain simple considerations, well known in combinatory calculus,
we obtain:

4+ The problem presents itself for instance if we ask for the probability that in a certain
county there will be z villages, everyone of m inhabitants.
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_ n! k! \"(. _ z)""’"
43) S, = zl(n — 2)! (m))*(k — me)! (7») (1 n )
Let k/n = . From (43) we deduce that

n—z 1_z+1’"’ ( .’L) (1—_1.)m

n 1_% (1__)“ (1—z+1)mz+m

(D) me)  omnr
«(e=a) (")

Now, let n and k tend simultaneously to «, in such a way that a = lﬁ remains

bounded. We get at first

gn(z) =

44)

. Gn & _a
(45) lim 2 =

As a,is seen to be of the order of magnitude of n we introduce the new variables
2_v and v=u?.
n n

We have then (writing A and k instead of h, and h,):
gn(2) = ga(nv) = R(v)
k(v) = ﬁ( ——) = h(u).

Therefore

1 " 1

) = (1 —v) (1

(46)

(1-is) S
n(l —v) a( 1)( m—l)

n
These formulae show that the k-th derivative of h(v) with respect to » contains
only rational expressions, [in the denominators of which there appear powers of
(1 — v)], and positive powers of log (1 — 77(1_1:_v)> The conditions (i) and (iii)

of our principal theorem are therefore satisfied if ¢ < 1. Furthermore we have
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w DD e

and consequently

. dh
}tl—xfeln (@)u-o

2
[—1—%—a+2m]lim‘ﬁ‘

2 m
- _<1+(m_-ﬁl)a_e—«=,,._
a « /m!

We have thus obtained the interesting result that,
The probability V.(x) that x places at most are occupied, each one by m stones,
converges towards a normal distribution if k and n tend simultaneously to » in

such a way that lim ’ﬁ = a 18 bounded. We have then

(48) lim Vn(a'n + u\/é sn) = ¢(u)
with
m 2 m _—a 2
@) limZ =% limog -2 -[1+(m‘“)].
n—oo N m! n—ow Oy m! : a
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