
SLAC-PUB-44 
August 1964 

ON THE PROBLEM OF HIDDEN VARIABLES IN QUANTUM M3XANICS* 

J. S. Bell f 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 

ABSTRACT 

The demonstrations of von Neumann and others, that quantum 

mechanics does not permit a hidden variable interpretation, are 

reconsidered. It is shown that their essential axioms are un- 

reasonable. It is urged that in further examination of this 

problem an interesting axiom would be that mutually distant 

systems are independent of one another. 
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I. INTRODUCTION 

To know the quantum mechanical state of a system implies, in general, only 

statistical restrictions on the results of measurements. It seems interesting 

t.o ask if this statistical element be thought of as arising, as in classical 

statistical mechanics, because the states in question are averages over better 

defined states for which individually the results would be quite determined. 

These hypothetical "dispersion free M states would be specified not only by the 

quantum mechanical state vector but also by additional "hidden variables" - 

"hidden"because if states with prescribed values of these variables could 

actually be prepared, quantum mechanics would be observably inadequate. 

Whether this question is indeed interesting has been the subject of debate.ly2 

The present paper does not contribute to that debate. It is addressed to those 

who do find the question interesting, and more particularly to those among them 

who believe that' "the question concerning,the existence of such hidden vari- 

ables received an early and rather decisive answer in the form of von Neumann's 

proof on the mathematical impossibility of such variables in quantum theory." 

An attempt will be made to clarify what von Neumann and his successors actually 

demonstrated. This will cover, as well as von Neumann's treatment, the recent 

version of the argument by Jauch and Piron, and the stronger result consequent 

on the work of Gleason.* It will be urged that these analyses leave the real 

question untouched. In fact it will be seen that these demonstrations require 

from the hypothetical dispersion free states, not only that appropriate 

ensembles thereof should have all measurable properties of quantum mechanical 

states, but certain other properties as well. These additional demands appear 

reasonable when results of measurement are loosely identified with properties 
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of isolated systems. They are seen to be quite unreasonable when one 

remembers with Bohr5 "the impossibility of any sharp distinction between 

the behavior of atomic objects and the interaction with the measuring in- 

struments which serve to define the conditions under which the phenomena 

appear." 

The realization that von Neumann's proof is of limited relevance has been 

gaining ground since the 1952 work of Bohm.' However it is far from universal. 

Moreover the writer has not found in the literature any adequate analysis of 

what went wrong.7 Like all authors of non-commissioned reviews he thinks 

that he can restate the position with such clarity and simplicity that all 

previous discussions will be eclipsed. 

II. ASSUMF'TIONS, AND A SIMPLE EXAMPLE 

The authors of the demonstrations to be reviewed were concerned to assume 

as little as possible about quantum mechanics. This is valuable for some. 

purposes, but not for ours. We are interested only in the possibility of 

hidden variables in ordinary quantum mechanics, and will use freely all the - 

usual notions. Thereby the demonstrations will be substantially shortened. 

A quantum mechanical "system" is supposed to have "observables" represented 

by Hermitian operators in,a complex linear vector space. Every "measurement" 

of an observable yields one of the eigenvalues of the corresponding operator. 

Observables with commuting operators can be measured simultaneously.g A 

quantum mechanical "state" is represented by a vector in the linear state 

space. For a state vector J# the statistical expectation value of an 
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observable with operator 0 is the normalized inner product ($,O$)/($,$). 

The question at issue is whether the quantum mechanical states can be 

regarded as ensemblks of states further specified by additional variable's, 

such that given values of these variables together with the state vector 

determine precisely the results of individual measurements. These hypo- 

thetical well-specified states are said to be "dispersion free." 

In the following discussion it will be useful to keep in mind as a simple 

example a system with a 2-dimensional state space. Consider for definiteness 

a spin- 2 particle without translational motion. A quantum mechanical state 

is represented by a 2-component state vector, or spinor, $r. The observables 

are represented by 2 x 2 Hermitian matrices 

a+p - 5 
Fsr 

where a is a real number, k a real vector, and 2 

Pauli matrices; Q: is understood to multiply the unit 

such an observable yields one of the eigenvalues 

cl* I I & 

with relative probabilities that can be inferred from the expectation value 

(1) 

has for components the 

matrix. Measurement of 

(2) 

For this system a hidden variable scheme can be supplied as follows: The 

dispersion, free states are specified by a real number A, in the interval 

1 1 -- <A<- 
2 - -2' 

as well as the spinor q . To describe how A determines 

which eigenvalue the measurement gives, we note that by a rotation of co- 

ordinates $ can be brought to the form 



Let DxY By’ B,’ be the components of @ in the new coordinate system. Then 
A 

measurement of Q: + & * z, on the state specified by $ and h results with 

certainty in the eigenvalue 

a + 111 sign (h IL1 + ;I BzI) sign X (3) 

where x=p 
Z. 

if p, # 0 

= 
PX 

if p, = 0, B, + 0 

= By if $, = 0, and B, = 0 

and 

sign X = +l if X>O 

= -1 if XC0 

The quantum mechanical state specified by Jr is obtained by uniform averaging 

over A. This gives the expectation value 

as required. 

It should be stressed that no physical significance is attributed here to 

the parameter h. All that is offered is a trivial example of a possibility 

which von Neumann's reasoning was for long thought to exclude. 
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III. VON NEUMANN 

Consider now the proof of von NeumannlO that dispersion free states, and 

so hidden variables, are impossible. His essential assumption" is: Any real 

linear combination of any two Hermitian operators represents an observable, and 

the same linear combination of expectation values is the expectation value of 

the combination. This is true for quantum mechanical states; it is required by 

von J!Jeumann of the hypothetical dispersion free states also. In the 2-dimensional 

example of Section II the expectation value must then be a linear function of 

a and 
8. 

But for a dispersion free state (which has no statistical character) 

the expectation value of an observable must equal one of its eigenvalues. The 

eigenvalues (2) are certainly not linear in k. Therefore dispersion free 

states are impossible. If the state space has more dimensions we can always 

consider a 2-dimensional subspace; therefore the demonstration is quite general. 

The essential assumption can be criticized as follows. At first sight the 

required additivity of expectation values seems very reasonable, and it is rather 

the non-additivity of allowed values (eigenvalues) which requires explanation. 

Of course the explanation is well known! A measurement of a sum of non-commuting 

observables cannot be made by combining trivially the results of separate ob- 

servations on the two terms - it requires a quite distinct experiment. For 

example the measurement of 0 x for a magnetic particle might be made with a 

suitably oriented Stern Gerlach magnet. The measurement of 
aY 

would require 

a different orientation, and of (ax + u ) a third and different orientation. 
Y 

But this explanation of the non-additivity of allowed values also establishes 

the non-triviality of the additivity of expectation values. The latter is a 

quite peculiar property of quantum mechanical states, not to be expected a priori. 
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There is no reason to demand it individually of the hypothetical dispersion 

free states, whose function it is to reproduce the measurable peculiarities 

of quantum mechanics when averaged over. 

In the trivial example of Section II the dispersion free states (specified A) 

have additive expectation values only for commuting operators. Nevertheless they 

give logically consistent and precise predictions for the results of all possible 

measurements, which when averaged over h are fully equivalent to the quantum 

mechanical predictions. In fact for this trivial example the hiddenvariable 

question as posed informally by von Neumann12 in his book is answered in the 

affirmative. 

Thus the formal proof does not justify the informal conclusion": "It 

is therefore not, as is often assumed, a question of reinterpretation of quantum 

mechanics - the present system of quantum mechanics would have to be objectively 

false in order that another description of the elementary process than the 

statistical one be possible." It was not the objective measurable predictions 

of quantum mechanics which ruled out hidden variables. It was the arbitrary 

assumption of a particular (and impossible) relation between the results of 

incompatible measurements that might be made on a given occasion but only one 

of which can in fact be made. 

IV. JAUCH AND PIRON 

A new version of the argument has been given by Jauch and Piron. Like 

von Neumann they are interested in generalized forms of quantum mechanics and 

do not assume the usual connection of quantum mechanical expectation values 

with state vectors and operators. We will assume the latter and shorten the 

argument, for we are concerned here only with possible interpretations of 

ordinary quantum mechanics. 
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Consider only observables represented by projection operators. The eigen- 

values of projection operators are 0 and 1. Their expectation values are 

equal to the probabilities that 1 rather than 0 is the result of measurement. 

For any two projection operators, a and b, a third (aflb) is defined as the 

projection on to the intersection of the corresponding subspaces. The essential 

axioms of Jauch and Piron are the following: 

(A) Expectation values of commuting projection operators are additive. 

(B) If, for some state and two projections a and b, 

<a>,=<b>=l 

then for that state 

< anb > = 1 

Jauch and Piron are led to this last axiom (4' in their numbering) by an 

analogy with the calculus of propositions in ordinary logic. The projections 

are to some extent analogous to logical propositions, with the allowed value 1 

corresponding to "truth" and 0 to "falsehood," and the construction (anb) to 

b "and" b). In logic we have,of course, if a is true and b is true then 

(a snd b) is true. The axiom has this same structure. 

Now we can quickly rule out dispersion free states by considering a 2-dimensional 

subspace. In that the projection operators are the zero, the unit operator, and 

those of the form 

1 lfi 
-+--a-u 
2 2m .wu 
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where G is a unit vector. In a dispersion free state the expectation value 

of an operator must be one of its eigenvalues, 0 or 1 for projections. Since 

from A 

we have that for a dispersion free state either 

Let & and L be any non- collinear unit vectors and 

with the signs chosen so that < a > = <b > = 1. Then B requires 

But with G and 5 non-collinear one readily sees that 

anb = 0 

so that 

< anb > = 0 

So there can be no dispersion free states. 

The objection to this is the same as before. We are not dealing in B with 

logical propositions, but with measurements involving, for example; differently 

oriented magnets. The axiom holds for quantum mechanical states.14 But it is 

a quite peculiar property of them, in no way a necessity of thought. Only the 
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quantum mechanical averages over the dispersion free states need reproduce 

this property, as in the example of Section II. 

v. GLEASON 

The remarkable mathematical work of Gleason4 was not explicitly addressed 

to the hidden variable problem. It was directed to reducing the axiomatic 

basis of quantum mechanics. However, as it apparently enables von Netinn's 

result to be obtained without objectionable assumptions about non-commuting 

operators, we must clearly consider it. The relevant corollary of Gleason's 

work is that, if the dimensionality of the state space is greater than 2, the 

additivity requirement for expectation values of commuting operators cannot be 

met by dispersion free states. This till now be proved, and then its signifi- 

cance discussed. It should be stressed that Gleason obtained more than this, by 

a len@hi.er argument, but this is all that is essential here. 

It suffices to consider projection operators. Let P(D) be the projector 

on to the Hilbert space vector Q', i.e., acting on any vector Jr 

If a set Oi are complete and orthogonal 

7 P(Qi) = 1 

i' 

Since the P(Oi) commute, by hypothesis then 

?i 

i< 
P(@i)> = 1 

1 
(4) 
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Since the expectation value of a projector is non-negative (each measurement 

yields one of the allowed values 0 or l), and since any two orthogonal vectors 

can be regarded as members of a complete set, we have 

(A) 'If with some vector Q, (w) = 1 for a given state, then for that 

state <pw> 
= 0 for any $ orthogonal on 0. 

If 4f1 and 4~~ are another orthogonal basis for the subspace spanned by 

some vectors Qi and o2 then from (4) 

<P(jrl)> + <p(J'2)) = ' - 

t 

<'('i)> 

ii 

i# 

or 

<P(l4> + <P(lf,)> = <ml)> + <P(%)> 

Since $i may be any combination of Q1 and D2 we have 

(B) If for a given state 

for some pair of orthogonal vectors, then 

<P(c+ + @D2)> = 0 

for all a: and S. 

(A) and (B) will now be used repeatedly to establish the following. Let 

G and q be some vectors such that for a given state 



I 

Then GI and Ji cannot be arbitrarily close; in fact 

(7) 

To see this let us normalize $ and write CD in the form 

where $' is orthogonal to $ and normalized, and E is a real number. Let 

Ji" be a normalized vector orthogonal to both + and 9' (it is here' that we 

need three dimensions at least) and so to 0. BY A and (5) 

<p(v)> = 0, <P(V)> = 0 

Then by B and (6) 

< ( PQ;+y -l +" )> = 0 

where y is any real number, and also by B 

<( P- E\/r' t- YEqJ")) = 0 

The vector arguments in the last two formulae are orthogonal; so we may 

add them, again using B: 

( 
P ($ +- E(y + y-l) $") 

> 

; 0 

Now if E is less than there are real y such that 

E(Y + y-l) = il 

Therefore 

( 0 + ,“> > = <P(Jr - ,“) > = 0 
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The vectors $ 2 $'l are orthogonal; adding them and again using B 

< PW) = 0 

This contradicts the assumption 5. Therefore 

as announced in (7) 

Consider now the possibility of dispersion free state.-,. For such states 

each projector has expectation value either 0 or 1. i't is clear from (4) that. 

both values must occur, and since there are no other values possible there must 

be arbitrarily close pairs q,0 with different expectation values 0 and 1 re- 

Id not be arbitrarily close. There- spectively. But we saw above such pairs cou 

fore there are no dispersion free states. 

That so much follows from such apparent1 y innocent assumptions leads us to 

question their innocence. Are the requirements imposed, which are satisfied 

by quantum mechanical states, reasonable requirements on the dispersion free 

states? Indeed they are not. Consider the statement B. The operator 

P(QQl + @@,) commutes with p(y > and P(D2) only if either cl or 13 is 

zero. Thus in general measurement of P(aG1, +- @G,) requires a quite distinct 

experimental arrangement: We can therefore reject B on the grounds already 

used; It is a peculiar feature of quantum mechanical states; it relates in 

a non-trivial way the results of experiments which cannot be performed 

simultaneously; the dispersion free states need not have this property, it 

will suffice if the quantum mechanical averages over them do. How did it 

come about that B was a consequence of assumptions in which only commuting 
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operators were explicitly mentioned? The danger in fact was not in the ex- 

plicit but in the implicit assumptions. It was tacitly assumed that measure- 

ment qf an observable must yeild the same value independently of what other 

measurements may be made simultaneously. Thus as well as P(Q3) say, one 

might measure either P(Q2) z P($2) where (P2 and q2 are orthogonal 

to 03. but not to one another. These different possibilities require dif- 

ferent experimental arrangements; there is no a priori reason to believe that 

the results for P(G3) should be the same. The result of an observation may 

reasonably,depend not only on the state of the system (including hidden vari- 

ables) but also on the complete disposition of the apparatus; see again the 

quotation from Bohr at the end of Section I. 

To illustrate these remarks we construct a very artificial but simple 

hidden variable decomposition. If we regard all observables as functions of 

commuting projectors, it will suffice to consider measurements of the latter. 

Let P1,P2. . . . be the set of projectors measured by a given apparatus, 

and for a given quantum mechanical state let their expectation values be );, , h2 - hl-, ,A. 

A,,- A, ) - - ' As hidden variable we take a real number 0 < 1, < 1 ; we - 

specify that measurement on a state with specified 7, yields the value 1 

for Pn if &ml < h < & , and zero otherwise. The quantum mechanical state - 

is obtained by uniform averaging over A . There is no contradiction with 

Gleason's corollary, because the result for a given P, depends also on the 

choice of the others. Of course it would be silly to let the result be af- 

fected by a mere permutation of the other P's, so we specify that the same 

order is taken (however defined) when the Pls are in fact the same set. 

- 14 - 



I 

Reflection will deepen the initial impression of artificiality here. However 

the example suffices to show that the implicit assumption of the impossibility 

proof was essential to its conclusion. A more serious hidden variable de- 

composition will be taken up in Section VI.i5 

VI. LOCALITY AND.SEPARABILITY 

Up till now we have been resisting arbitrary demands upon the hypothetical 

dispersion free states. However, as well as reproducing quantum mechanics on 

averaging, there are features which can reasonably be desired in a hidden vari- 

able scheme. The hidden variables should surely have some spatial significance 

and should evolve in time according to prescribed laws. These are prejudices, 

but it is just this possibility of interpolating some (preferably causal) space- 

time picture, between preparation of and measurements on states, that makes the 

quest for hidden variables interesting to the unsophisticated.2 The ideas of 

space, time, and causality are not prominent in the kind of discussion we have 

been considering. To the writer's knowledge the most successful attempt so 

far in that direction is the 1952 scheme of B&m for elementary wave mechanics. 

By way of conclusion this will be sketched briefly and a curious feature of it 

stressed. 

Consider for example a system of two spin- .$ particles. The quantum 

mechanical state is represented by a wave function 

where i and j are spin indices which will be suppressed. This is governed 

by the Schrodinger equation 



where V is the interparticle potential. For simplicity we have taken 

neutral particles with magnetic moments, and an external magnetic field, H 

has been allowed to represent spin analyzing magnets. The hidden variables 

are then two.vectors X and X , which give directly the results of posi- 
-1 “2 

tion measurements. Other measurements are reduced ultimately to position 

measurements. 
1.6 For example measurement of a spin component means observing 

whether the particle emerges with an upward or downward deflection from a 

Stern Gerlach magnet. The variables X and X are supposed to be .dis- 
T ‘“2 

tributed in configuration space with the probability density 

appropriate to the quantum mechanical state. Consistently with this & and 

X 
a-2 

are supposed to vary with time according to 

d,x, - -= 
dt 

P(&,,$2)-1 Im *i j (;I>,$? 1 

- i 

The curious feature is that the trajectory equations (9) for the hidden 

variables have in general a grossly nonlocal character. If the wave function 

is factorable before the analyzing fields become effective (the particles being 

far apart) 



I 

this factorability will be preserved. Equations (8) then reduce to 

diiz -= 
dt 

The Schrodinger equation 18, also separates, and the trajectories of & 

and & are determined separately by equations involving $2~) and $2,) L 

respectively. However in general the wave function is not factorable. The 

trajectory of 1 then depends in a complicated way on the trajectory and wave 

function of 2, and so on the analyzing fields acting on 2 - however remote these 

may be from particle 1. So in this theory an explicit causal mechanism exists 

whereby the disposition of one piece of apparatus affects the results obtained 

with a distant piece. In fact the Einstein-Podolsky-Rosen paradox is resolved 

in the way which Einstein would have liked least (Ref. 2, p. 35). 

More generally, the hidden variable account of a given system becomes 

entirely different when we remember that it has undoubtedly interacted with 

numerous other systems in the past and that the totai wave function will 

certainly not be factorable. The same effect complicates the hidden variable 

account of the theory of measurement, when it is desired to include part of 

the"apparatus" in the system. 

Bohm of course was well aware6'17'1a~1g of these features of his scheme, 

and has given them much attention. However it must be stressed that, to the 

present writer's knowledge, there is no proof that any hidden variable account 

of quantum mechanics must have this extraordinary character?O It would there- 

fore be interesting, perhaps,'to pursue some further "impossibility proofs," 
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replacing the arbitrary axioms objected to above by some condition of locality, 

or of separability of distant systems. 
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